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A NOTE ON PRIMITIVE EQUIVALENCE
NANDOR SIEBEN
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ABSTRACT. Primitive equivalence of graphs and matrices was used by Enomoto, Fujii
and Watatani to classify Cuntz-Krieger algebras of 3 x 3 irreducible matrices. In this
paper it is shown that the definition of primitive equivalence can be simplified using
primitive transfers of matrices that involve only two rows of the matrix.

1. INTRODUCTION

Primitive equivalence of graphs and matrices was used by Enomoto, Fujii and Watatani
[3] to classify Cuntz-Krieger algebras [1] of 3x 3 irreducible matrices. It was shown by Drinen
and the author [2] that a graph and its primitive transfer have isomorphic groupoids and
therefore isomorphic C*-algebras. Franks [4, Corollary 2.2] used a similar operation to find
a canonical form for the flow equivalence class of a matrix. His definition is more general but
involves only two columns of a matrix. Parry and Sullivan [5] also used a similar equivalence
relation of graphs called expansion.

The purpose of this paper is to show that the definition of primitive equivalence can be
simplified using primitive transfers that involve only two rows of the matrix. This fact can
be used to simplify proofs about primitive equivalence in [3] and in [2]. The author thanks
Doug Drinen and John Quigg for their help.

2. PRELIMINARIES

A digraph E is a pair (E°, E') of possibly infinite sets where E' C E° x E°. E° is called
the set of vertices and E?! is called the set of edges. We say that the edge e = (v, w) starts
at vertex v and ends at vertex w. If v = w then e is called a loop. Note that a digraph has
no multiple edges but it can have loops. The vertex matriz A of a graph E is an E° by E°
matrix such that

A= 1 if (v,w) € B
’ 0 else.

There is a bijective correspondence between digraphs and 0—1 square matrices. A connected
component of a digraph is a maximal subgraph in which every two vertices can be connected
by an undirected path.

If A is a matrix then we denote the i-th row of A by A; and we use the notation
E; =(0,...,0,1,0,...,0) for a row which has a 1 in the j-th column and 0 in all the other
columns.

Let A be the vertex matrix of a digraph F, that is, a 0 — 1 square matrix. If A, = A4,,,, +
<o+ Ap, + Eg, + -+ + Ej, for some distinct kq,...,k.,m1,...,ms and p & {my,...,ms}
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then the 0 — 1 matrix B defined by

Aij ifi#p
B ;=11 ifi=pandje{my,...,ms,k1,..., k-}
0 else

is called by [3] a primitive transfer of A at p (see also [2]).

We call the number of elements in M = {my,...,ms} the size of the primitive transfer.
Alternatively, B can be defined as
B — A; ifi#p
' AP - ZmEM Am + EmEM Em if i = D.

The digraph F', whose vertex matrix is B, is also called a primitive transfer of E.

Example 1. If

A= and B =
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then B is a primitive transfer of A since Ay = A3 + Ay + Ag + A7 + Ag and By = Ay —
A3 — Ay —Ag— A7 — As+ E1 + Es+ Ey + Eg + E; + Eg. The corresponding graphs are:

6<—7<:_>‘8 6<—7<:_>‘8

s MO 1y O

2 5 5
Definition 2. If A and B are the vertex matrices of the digraphs F and F' then A and B
are called primitively equivalent if there exist matrices A = C4,...,C;,...,C, = B such

that for all 1 <i <n — 1 one of the following holds:
(i) C; is a primitive transfer of C;1;
(ii) Ci41 is a primitive transfer of Cj;
(iii) C; = PC;41 P~ for some permutation matrix P.

The digraphs E and F are also called primitively equivalent.

3. MAIN THEOREM

The purpose of this paper is to show that in the definition of primitive equivalence we
could consider only size 1 primitive transfers. To see this we are going to show that a
primitive transfer can be replaced by a sequence of size 1 primitive transfers. First we need
a few tools.

Definition 3. Let E be a digraph and let B be a primitive transfer of the vertex matrix
A of E, corresponding to the equation A, = >\ Am + D rcx Ex. The graph of the
primitive transfer is the subgraph of E induced by M.

Note that the graph of a primitive transfer has no vertex with more than one incoming
edge since A, contains only 0’s and 1’s, hence no two A,,’s can have a 1 at the same location.
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Example 4. The graph of the primitive transfer in Example 1 has three connected compo-
nents:

4
7728

3 &

Lemma 5. If G is the graph of a primitive transfer with size s from the matriz A to B
and there is an edge (I,n) in G which is not a loop, then there is a matriz C such that A is
a size 1 primitive transfer of C and B is a size s — 1 primitive transfer of C. If H is the
graph of the latter primitive transfer then (I,m) € H' whenever (n,m) € G*.

Proof. Let B be the primitive transfer of A at p corresponding to the equation A, =
Y oment Am + 2 rek Er. Note that M and K are disjoint and p ¢ M. Define

o A; ifi#l
T A+ A, —E, ifi=I.

C'is a 0—1 matrix since A;+ A4, isa0—1rowand 4;,, =1. fJ ={j: 4 ; =1 and j #n}
then the equation C; = A, + > jes Ej determines a primitive transfer of C' at {. This
primitive transfer is A since

e C; = ifi #1
"o, -C,+E, ifi=I.

The equation

Cr=Ap=Y An+ > Ey

meM ke K
= Y Cn+(C—Cu+E)+ > E
meM\{l} kEK
= Z Cm + Z Ek
meM\{n} ke KU{n}

determines another primitive transfer of C' at p. This primitive transfer is B since B; =
A; = C; for i # p and

By=Ay,— Y An+ Y En

meM meM
=Cp— >, Cmt > En—(Ai+4,-E)
meM\{n,l} meM\{n}
=Ch— >, Cm+ Y.  En
meM\{n} meM\{n}
The last part of the lemma follows from the construction of C. O

Note that in the previous lemma, H is connected if G is. This follows from the last
sentence of the lemma and the fact that (I,n) is the only edge in G that ends at n.

Lemma 6. If G is the graph of the primitive transfer from the matrix A to B and F is one
of several connected components of G, then there is a matrix D such that D is the primitive
transfer of A with graph F, and B is the primitive transfer of D with graph H := G \ F.
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Proof. Let the original primitive transfer correspond to the equation A, = 3\, Ay +
> rex Er- Note that M = FOUH? and FONH? = 0. If J = {j : A ; =1 for some h € H°}

then the equation
4= Y At Y B
meFo kEKUJT

determines a primitive transfer of A at p. Note that F° and K U J are disjoint since
M N K = () and there is no edge from H® to F° in G. Let D be this primitive transfer of
A at p, that is,

 — A ifi#£p
' AP _EmeFO Am +ZmEF0 E,, if ¢ =Dp.

The equation

Dpy=4,— > Am+ > En

meF° meF°
=D An+ Y Er— > An+ > En
meM keK meF° meF0
=Y Dnt+ > E
meH° ke KUF°

determines a primitive transfer of D at p. This primitive transfer is B since if i # p then
Bi = Al = Dl and

By=Ay— Y An+ > En

meM meM
=4y = > Am— Y A+ Y En+ Y En
meF° meH?O meFo meEH?O
=Dpy— Y Dm+ Y En
meH° meH°
The statement about the graphs of the primitive transfers is obvious. O

We are now in position to show our main result.

Theorem 7. If the matriz B is a primitive transfer of A then there is a sequence of matrices
A=0Cy,...,C;,...,Ch = B such that for all 1 <i <n—1 either Ciy1 is a size 1 primitive
transfer of C; or C; is a size 1 primitive transfer of Ciy1.

Proof. By Lemma 6 there is a sequence of matrices A = Dy,...,D;, ..., D,, = B such that
for all 1 <i <m —1, D;;1 is the primitive transfer of D; and the graph of the primitive
transfer is connected. Inductively applying Lemma 5 we can transform D; to D, for all i,
using size 1 primitive transfers. By the note after Lemma 5, we never run out of non-loop
edges. O
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