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Abstract. The theory of mathematical morphology was developed for binary images

and extensively uses set-theoretic operations such as union, intersection, and set com-

plement, and many algorithms for pattern analysis critically depend on an accurate

geometrical and topological image description. In the present paper, we shall eliminate

some theoretical shortcoming in [3], and give a perfect topological structure for the

space consisting of images.

1 Introduction The theory of mathematical morphology was developed for binary im-

ages and extensively uses set-theoretic operations such as union, intersection, and set com-

plement, because an image under consideration is always considered as a set in mathematical

morphology. Since many algorithms for pattern analysis, which process noisy data, crit-

ically depend on an accurate geometrical and topological image description. We have to

provide a precise mathematical description of an image X under consideration, and have to

provide its crucial geometrical and topological structure.

In the present paper, we shall eliminate some theoretical shortcoming in [3], and give a

perfect topological structure for the space consisting of images.

Let Rn be the n-dimensional Euclidean space, and for x; y 2 Rn, �(x; y) is the distance

between the points x and y. If � is a positive real number and x 2 Rn, then we denote

U(x; �) = fy 2 Rn : �(x; y) < �g which is called to be open ball centred at x of radius �. If

x = O is the origin of Rn, we denote U(x; �) by �D.

In general, A means the closure of A in X , where A is a subset of a space X . We denote

the set of natural numbers by letter 
. If a sequence fxi : i 2 
g converges to x� in a

space X , then we write it by xi
X

�! x�. When (X; �) is a metric space, and a sequence

fxi : i 2 
g converges to x� in X , then xi
X

�! x� will be denoted for simplicity by the

symbol xi ! x� or �(xi; x
�)! 0.

If y is a point in Rn and A;B are subsets of Rn, we let A[y] be its translation by the

point y, i.e., A[y] = fa+ y : a 2 Ag, and �A be the symmetric set of A with respect to the

origin, i.e., �A = f�a : a 2 Ag. A � B = fa + b : a 2 A; b 2 Bg is called the dilation of

set A by set B, and A 	 �B = \
b2 �B

A[b] is the erosion of set A by set B. It is clear that

A� (B � C) = (A�B)� C, and U(A; �) = A� �D, and A	 �B = fx : B[x] � Ag.

For A and B � Rn, let �(A;B) = inff� : B � U(A; �)g. H(A;B) = maxf�(A;B),

�(B;A)g.

Let Y � Rn be a 'very big' bounded closed set which contains the origin as its interior

point. We shall construct three families as follows.
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If we let F = fF � Rn : F 6= ;; F is closedg, K = fK � Rn : K 6= ;;K is compactg and

P = fK � Y : K 6= ;;K is compactg, then it is clear that K � F and P = fK \Y : K 2 K

and K \ Y 6= ;g.

De�nition 1.1 ([3]). Let G1; G2; � � � ; Gm be �nite non-empty open sets, and K1;K2; � � � ;Kp

�nite compact sets of Rn ( Kj can be empty). We set

N(fGig; fKjg) = fF 2 F : F \ Gi 6= ; for each i = 1; 2; � � � ;m;F \Kj = ; for each

j = 1; 2; � � � ; pg

B(F) = fN(fGig; fKjg) : fGig is a �nite family of non-empty open sets of Rn, and

fKjg is a �nite family of compact sets of Rng, and T (F) = f[B� : B� � B(F)g.

It can be easily proved that (F ; T (F)) is a topological space. Similarly we know that

(K; T (K)), (P ; T (P)) are topological spaces. T (F) is called HM -topology.

2. Some Lemmas

In this section, we shall give some lemmas which are useful for the main theorems.

Lemma 2.1. Topological spaces (F ; T (F)) ((K; T (K)) and (P ; T (P))) are Hausdor� spaces

with countable bases.

Proof. We shall prove for only the case of (F ; T (F)). Ler r1; r2; � � � ; rm; � � � be the

rational points of Rn, and Um;l = fx 2 Rn : �(rm; x) <
1

l
g and V = fUm;l : m; l 2 
g =

fV1; V2; � � � ; i 2 
g. Then for any open set U � Rn and x 2 U , there is some V in V with

x 2 V � U .

We let F 2 F and F 2 N(fGig; fKjg), where i = 1; � � � ;m; and j = 1; � � � ; p. Since

every Kj is compact, we can have V �
1
; � � � ; V �

l
2 V , such that [

p

j=1
Kj � [l

k=1
V �
k

and

F \ ([l
k=1

V
�

k
) = ;: On the other hand, we can pick V 1

i
2 V with F \ V 1

i
6= ; and V 1

i
� Gi

for each i = 1; � � � ;m. Then F 2 N(fV 1

i
g; fV

�

k
g) � N(fGig; fKjg) where i = 1; � � � ;m,

k = 1; � � � ; l, and j = 1; � � � ; p. Since V is countable it is seen that F has a countable base.

Secondly we shall prove that F is a Hausdor� space. For F;G 2 F with F 6= G, we

suppose that F � G 6= ;. Let x 2 F � G and y 2 G. Then there is an open set V 2 V

with x 2 V and V \ G = ;, and there is a compact set K � Rn with K \ F = ;. We

get F 2 N(V;K). Similarly we have an open set U with y 2 U and U \ V = ; and then

G 2 N(U; V ). It is clear that N(V;K) \N(U; V ) = ;. Hence F is a Hausdor� space.

From Lemma 2.1 we know that the convergency can be characterized by sequence in

above spaces.

Lemma 2.2 ([3]). Let fFi : i 2 
g be a sequence in F . Then Fi
F

�! F if and only if the

following two conditions are satis�ed:

1). If G is an open set in Rn and G \ F 6= ;, then G intersects eventually fFi : i 2 
g

(that is, there is an N 2 
, such that G \ Fi 6= ; for each i > N).

2). If K is a compact set in Rn with K \ F = ;, then K does not co�nally intersect

fFi : i 2 
g (that is, there is an N 2 
, such that K \ Fi = ; for each i > N).

Lemma 2.3. If Fi
F

�! F in (F ; T (F)), yi 2 Fi(i 2 
) and yi ! y in Rn, then y 2 F .

Proof. Suppose that y 62 F , then there is some Æ > 0, such that U(y; Æ) \ F = ;. Since

Fi
F

�! F , U(y; Æ) can not eventually intersect fFi : i 2 
g by Lemma 2.2. This contradicts
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to that yi 2 Fj(i 2 
).

Lemma 2.4. If Fi
F

�! F in (F ; T (F)) and y 2 F , then we can pick yi 2 Fi(i 2 
) with

yi ! y.

Proof. Let fUi(y) : i 2 
g be a decreasing neighborhood base of y in Y . By Lemma 2.2,

for U1(y) there is an i1 2 
, such that U1(y) \ Fi 6= ; for any i > i1. Similarly for U2(y),

there is an i2 > i1, such that U2(y) \ Fi 6= ; for any i > i2. Inductively we can get a

sequence fyi : i 2 
g with yi 2 Fi with yi ! y.

It is clear that the arguments of Lemmas 2.2, 2.3 and 2.4 are also true for spaces

(K; T (K)) and (P ; T (P)).

Lemma 2.5 ([6]). H(A;B) is a metric function on the space P.

Proof. Since A;B 2 P are compact in Rn, we have that H(A;B) = 0 if and only if A = B,

and H(A;B) � 0. It is clear that H(A;B) = H(B;A).

If B � A � �1D and C � B � �2D, then we have that C � A � �1D � �2D, that is

�(A;C) � �(A;B) + �(B;C). Similarly we have that �(C;A) � �(C;B) + �(B;A). Hence

H(A;B) is a metric.

Lemma 2.6. Let fFi : i 2 
g be a sequence in P and F 2 P. If H(Fi; F ) ! 0, then

Fi
P

�! F .

Proof. Since H(Fi; F ) ! 0, we have that Æi = �(Fi; F ) ! 0. For any x 2 F , there is an

ai 2 Fi with �(ai; x) < Æi +
1

i
, and hence ai ! x. This means that if G is an open set in

Rn with G \ F 6= ;, then for some i0, G \ Fi 6= ; for each i > i0 2 
.

Suppose K is compact in Rn with K \ F = ;, then Æ(F;K) > 0, where Æ(F;K) =

inff�(x; y) : x 2 F and y 2 Kg. Furthermore �i = �(F; Fi) ! 0, because H(Fi; F ) ! 0.

Hence there is an i0 2 
, such that 2�i < Æ(F;K) for i > i0, and then Fi � F � 1

2
Æ(F;K)D.

That is Fi \K = ; for each i > i0. Therefore Fi
P

�! F by Lemma 2.2.

Lemma 2.7. Let fFi : i 2 
g be a sequence in P and F 2 P. If Fi
P

�! F , then

H(Fi; F )! 0.

Proof. Let x 2 F and U be open in Y with x 2 U , then U intersects eventually with

fFi : i 2 
g by Lemma 2.2, and hence we can get some ai 2 Fi such that �(ai; x)! 0 and

Æ(Fi; x) � �(ai; x).

If we suppose that �(Fi; F ) ! 0 is not true, then there are some � > 0 and some

subsequence fFik : k 2 
g � fFi : i 2 
g with �(Fik ; F ) � � for each k 2 
. We have

xk 2 F with Æ(Fik ; xk) � �. Since F is compact, the sequence fxk : k 2 
g has a converging

subsequence. Without loss of generality we can let that xk ! x 2 F . Since Æ(Fik ; x) ! 0

and j Æ(Fik ; xk)�Æ(Fik ; x) j� �(x; xk), we have that Æ(Fik ; xk)! 0. This is a contradiction.

We prove furthermore that �(F; Fi) ! 0. Suppose not, that is, there are some � > 0

and some subsequence fFik : k 2 
g � fFi : i 2 
g with �(F; Fik ) > �, and then we can

pick out some ak 2 Fik for each k 2 
 such that Æ(F; ak) � �. Since fak : k 2 
g � Y ,

fak : k 2 
g has a subsequence converging to some a� 2 Y . From Lemma 2.3, a� 2 F .

This contradicts to Æ(F; ak) � �.

Therefore we have that H(Fi; F )! 0.



e4- 252 GAO ZHI MIN AND YOSHIKAZU YASUI

3. Main results

Theorem 3.1. The space P is metrizable and its metric is H(A;B).

Proof. The proof can be completed by means of Lemmas 2.1, 2.6 and 2.7.

De�nition 3.2. For a sequence fFi : i 2 
g of F , let
�

F= fx: For each neighborhood Ux of x, there is a subsequence fFik : k 2 
g such that

Ux \ Fik 6= ;:g and

F = fx: For each neighborhood Ux of x, Ux intersects eventually with fFi : i 2 
gg,

where Ux is the neighborhood of x in Rn. We call
�

F upper closed limit and F lower closed

limit.

Theorem 3.3. Let fFi : i 2 
g be a sequence in F . Then Fi
F

�! F if and only if

F =
�

F= F .

Proof. Necessity. For x 2
�

F , let fUi(x) : i 2 
g be a decreasing neighborhood base of x in

Rn.

For U1(x), we can get a subsequence fF 1

i
: i 2 
g � fFi : i 2 
g with U1(x) \ F

1

i
6= ;

for each i 2 
. Then we have a sequence x1
1
; x1

2
; � � � ; where x1

i
2 U1(x) \ F

1

i
.

For U2(x), we can get a subsequence fF 2

i
: i 2 
g � fFi : i 2 
g with U2(x) \ F

2

i
6= ;

for i 2 
. So we have a sequence x2
1
; x2

2
; � � � ; with x2

i
2 U2(x) \ F

2

i
.

By induction, we can get a sequence fxi
i
: i 2 
g with xi

i
! x. Since Fi

F

�! F , then

x 2 F by Lemma 2.3. From Lemma 2.2 we have that if Ux is a neighborhood of x in Rn,

then Ux intersects eventually with fFi : i 2 
g and hence x 2 F by De�nition 3.2. That is
�

F� F . It is clear that F �
�

F . Hence we have
�

F= F .

SuÆciency. If
�

F= F = F , we shall prove that Fi
F

�! F by means of Lemma 2.2.

First we let U be open in Rn with U \ F 6= ;. Let x be any point in U \ F , then

x 2 F = F . By De�nition 3.2, the open set U intersects eventually with fFi : i 2 
g.

Secondly we let K be a compact set in Rn with K \F = ;. Here we shall prove that K

does not eventually intersect with fFi : i 2 
g . Suppose not. So there were a subsequence

fF 1

i
: i 2 
g � fFi : i 2 
g with K \ F 1

i
6= ; for each i 2 
. Then we have a sequence

fxi 2 K \ F 1

i
: i 2 
g in the compact set K. Without loss of generality we can suppose

xi ! x� 2 K. For each neighborhood U(x�) of x�, U(x�) intersects with in�nitely many

elements of fFi : i 2 
g. Since x� 2
�

F= F , we have x� 2 K \ F . This is a contradiction.

Theorem 3.4. The space P is compact.

Proof. It is suÆcient to prove that every sequence fFi : i 2 
g has a converging subse-

quence in P , since P has a countable base.

Let fFi : i 2 
g � P , and xi 2 Fi for each i 2 
. Since Y is closed and bounded, the

sequence fxi : i 2 
g has an accumulation point x�, and x� 2
�

F : Let V = fV1; V2; � � � g be

a countable base for Y .

The �rst step. Let V = V1
0
[ V2

0
[ V3

0
. For V 2 V1

0
, V intersects with at most �nitely

many elements of fFi : i 2 
g; For V 2 V2
0
, V intersects with in�nitely many elements

of fFi : i 2 
g, but V does not intersect eventually with fFi : i 2 
g; If V intersects

eventually with fFi : i 2 
g, then V 2 V3
0
. As mentioned above we know that V2

0
[V3

0
6= ;.

That V2
0
= ; implies that, if an open set U (in Y ) intersects with in�nitely many elements
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of fFi : i 2 
g, then U intersects eventually with fFi : i 2 
g. In this case we have
�

F= F

and, since
�

F 6= ;, we have Fi
P

�!
�

F by Theorem 3.3.

If V2
0
6= ;, write V2

0
= fV 0

1
; V 0

2
; � � � g � V . For V 0

1
2 V2

0
, we have a subsequence

fF 1

i
: i 2 
g � fFi : i 2 
g with V 0

1
\ F 1

i
6= ; for each i 2 
. In this case, we let

V2
0
= V1

1
[ V2

1
[ V3

1
satisfying, for V 2 V1

1
, V intersects with only �nitely many elements

of fF 1

i
: i 2 
g; If V 2 V2

1
, V intersects with in�nitely many elements of fF 1

i
: i 2 
g,

but V does not intersect eventually with fF 1

i
: i 2 
g; While V intersects eventually with

fF 1

i
: i 2 
g, then V 2 V3

1
. It is clear that V 0

1
2 V3

1
. If we let V1 = V3

0
[ V3

1
, then V1 6= ;.

The second step. Suppose that V2
1
= ;. Then the open set U (in Y ) which intersects

with in�nitely many elements of fF 1

i
: i 2 
g, intersects eventually with fF 1

i
: i 2 
g. Set

�

F (1) = fx: if U is a neighborhood of x in Y , then U intersects with in�nitely many

elements of fF 1

i
: i 2 
gg; and

F (1) = fx: if U is a neighborhood of x, then U intersects eventually with fF 1

i
: i 2 
gg.

Then we have
�

F (1) = F (1). Since V1 6= ; we know that F (1) 6= ;, and fF 1

i
: i 2 
g is

convergent in P by Theorem 3.3.

If V2
1
6= ;, then V2

1
= fV 1

1
; V 1

2
; � � � g � V2

0
. For V 1

1
2 V2

1
, we can get a subsequence

fF 2

i
: i 2 
g � fF 1

i
: i 2 
g with V 1

1
\ F 2

i
6= ; for each i 2 
. Let V2

1
= V1

2
[ V2

2
[ V3

2

such that, if V 2 V1
2
, then V intersects with at most �nitely many elements of fF 2

i
: i 2 
g;

for V 2 V2
2
, V intersects with in�nitely many elements of fF 2

i
: i 2 
g, but V does not

intersect eventually with fF 2

i
: i 2 
g, while V intersects eventually with fF 2

i
: i 2 
g,

then V 2 V3
2
. Similarly we know that V 1

1
2 V3

2
, and if let V2 = V1 [ V3

2
, then V2 6= ;.

The jth step. By induction, for each j 2 
 we de�ne the following

1). fF
j

i
: i 2 
g is a subsequence of fF

j�1

i
: i 2 
g,

2).
�

F (j) = fx: if U is a neighborhood of x in Y , then U intersects with in�nitely many

elements of fF
j

i
: i 2 
gg;

3). F (j) = fx: if U is a neighborhood of x, then U intersects eventually with fF
j

i
: i 2


gg,

4). V2
j�1

= V1
j
[ V2

j
[ V3

j
and Vj = Vj�1 [ V3

j
:

If for some j 2 
 with V2
j
= ;, then any open set U in Y which intersects with

in�nitely many elements of fF
j

i
: i 2 
g, intersects eventually with fF

j

i
: i 2 
g. Therefore

�

F (j) = F (j) and F j

i

P

�!
�

F (j), that is, fFi : i 2 
g has a convergent subsequence.

On the other hand if V2
j
6= ; for each j 2 
, then we can pick out a sequence fF i

i
: i 2 
g

from the following sequences

F 1

1
; F 1

2
; � � � ; F 1

n
; � � �

F 2

1
; F 2

2
; � � � ; F 2

n
; � � �

� � �

F
j

1
; F

j

2
; � � � ; F j

n
; � � �

� � �

For the sequence fF i

i
: i 2 
g, we know easily that if an open set U in Y intersects with

in�nitely many elements of fF i

i
: i 2 
g, then U intersects eventually with fF i

i
: i 2 
g.

Hence fF i

i
: i 2 
g is convergent in P . That is, P is a compact space.

4. Two counter-examples and the conclusions

Example 4.1. The space K (F) has not necessarily the metric H(A;B):

Let Rn = R and F = f0g, Fi = f0; ig for each i 2 
, then Fi 2 K, and Fi
K

�! F . But

H(Fi; F )! +1.
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Example 4.2. The space K is not necessarily compact.

Let Rn = R and Fi = fig, then Fi 2 K. It is clear that fFi : i 2 
g is not convergent.

Open set and closed set are only mathematical concepts, are not physical concepts,

hence we can consider an image as a closed set. In actual pattern recognition, the treated

pattern is always limited in a large scope, and a pattern can be considered as a compact

set in mathematics. In above we proved that the topological space P is a compact metric

space with a countable base, and H(A;B) is a metric on P . The metric H(A;B) coincides

with our physical intuition. In [4] we proved the dilation operation is a continuous map and

the erosion operation is a upper semicontinuous map on the space P . From the erosion and

dilation we can get all other operations of mathematical morphology. Hence we deem that

the space P is a good mathematical space for pattern recognition.
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