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ABSTRACT. The theory of mathematical morphology was developed for binary images
and extensively uses set-theoretic operations such as union, intersection, and set com-
plement, and many algorithms for pattern analysis critically depend on an accurate
geometrical and topological image description. In the present paper, we shall eliminate
some theoretical shortcoming in [3], and give a perfect topological structure for the
space consisting of images.

1 Introduction The theory of mathematical morphology was developed for binary im-
ages and extensively uses set-theoretic operations such as union, intersection, and set com-
plement, because an image under consideration is always considered as a set in mathematical
morphology. Since many algorithms for pattern analysis, which process noisy data, crit-
ically depend on an accurate geometrical and topological image description. We have to
provide a precise mathematical description of an image X under consideration, and have to
provide its crucial geometrical and topological structure.

In the present paper, we shall eliminate some theoretical shortcoming in [3], and give a
perfect topological structure for the space consisting of images.

Let R™ be the n-dimensional Euclidean space, and for z,y € R", p(z,y) is the distance
between the points = and y. If € is a positive real number and = € R™, then we denote
U(z,e) = {y € R™ : p(z,y) < €} which is called to be open ball centred at z of radius e. If
x = O is the origin of R", we denote U(z,€) by €D.

In general, A means the closure of A in X, where A is a subset of a space X. We denote
the set of natural numbers by letter Q. If a sequence {z; : i € Q} converges to z* in a
space X, then we write it by x; =X, 2*. When (X, p) is a metric space, and a sequence
{z; : i € Q} converges to z* in X, then x; X, 2* will be denoted for simplicity by the
symbol z; — z* or p(z;,z*) — 0.

If y is a point in R™ and A, B are subsets of R"™, we let A[y] be its translation by the
point y, i.e., A[y] = {a+y :a € A}, and A be the symmetric set of A with respect to the
origin, i.e., A ={-a:a€ A}. A®@B={a+b:a€ Abec B} is called the dilation of
set A by set B, and A © B = N,z A[b] is the erosion of set A by set B. It is clear that
A9 (BaC)=(AdB)®C,and U(A,e) = A® €D, and A B = {z: B[z] C A}.

For A and B C R", let p(A,B) = inf{e: B C U(A,¢e)}. H(A,B) = maz{p(A, B),
p(B,A)}.

Let Y C R™ be a ’very big’ bounded closed set which contains the origin as its interior
point. We shall construct three families as follows.
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Ifwelet F={F CR":F#0,Fisclosed}, K={K C R": K # 0, K is compact} and
P={K CY:K #0,K is compact}, then it is clear that C C Fand P={KNY : K € K
and KNY # 0}.

Definition 1.1 ([3]). Let G1,G>, -+ , G, be finite non-empty open sets, and K1, Ks, -+ , K,
finite compact sets of R™ ( K can be empty). We set

N{G:}{K;}) ={FeF:FNG; #0 for eachi =1,2,--- ,m;FNK; =0 for each
j: 172)"' )p}

B(F) = {N({G:},{K;}) : {G:} is a finite family of non-empty open sets of R", and
{K;} is a finite family of compact sets of R"}, and T (F) = {UB* : B* C B(F)}.

It can be easily proved that (F,T(F)) is a topological space. Similarly we know that
(K, T(K)), (P, T(P)) are topological spaces. T (F) is called H M-topology.

2. Some Lemmas

In this section, we shall give some lemmas which are useful for the main theorems.

Lemma 2.1. Topological spaces (F, T (F)) (K, T(K)) and (P, T (P))) are Hausdorff spaces
with countable bases.

Proof. We shall prove for only the case of (F,7(F)). Ler ri,r2, -+ ,m,-+- be the
rational points of R", and U,y = {x € R™ : p(rm,z) < %} and V = {Up; : m,l € Q} =
{V1,V2,-+-,i € Q}. Then for any open set U C R™ and z € U, there is some V in V with
reVcCU.

We let F € F and F € N({G;},{K;}), where i = 1,--- ;m, and j = 1,---,p. Since
every K; is compact, we can have Vi*,---,V* € V, such that U;’:lKj C Uilek* and
Fn(UL_, V) =0. On the other hand, we can pick Vi € V with FN V! # 0 and Vi € Gy
for each i = 1,--- ,m. Then F € N{V;'},{V,}) € N{G;},{K,}) where i = 1,--- ,m,
k=1,---,l,and j =1, --- ,p. Since V is countable it is seen that F has a countable base.

Secondly we shall prove that F is a Hausdorff space. For F,G € F with F # G, we
suppose that F — G # 0. Let x € F — G and y € G. Then there is an open set V € V
with z € V and VNG = 0, and there is a compact set K C R with KN F = (. We
get F € N(V,K). Similarly we have an open set U with y € U and U NV = ) and then
G € N(U,V). Tt is clear that N(V, K)N N(U,V) = . Hence F is a Hausdorff space.

From Lemma 2.1 we know that the convergency can be characterized by sequence in
above spaces.

Lemma 2.2 ([3]). Let {F; :i € Q} be a sequence in F. Then F; 2 F if and only if the
following two conditions are satisfied:

1). If G is an open set in R™ and GNF # ), then G intersects eventually {F; : i € Q}
(that is, there is an N € Q, such that G N F; # () for each i > N).

2). If K is a compact set in R™ with K N F = (), then K does not cofinally intersect
{F; :i € Q} (that is, there is an N € Q, such that K N F; = () for each i > N).

Lemma 2.3. If F; Ly Fin (F,T(F)), yi € F;(i € Q) and y; —» y in R™, theny € F.

Proof. Suppose that y ¢ F, then there is some § > 0, such that U(y,4) N F = @. Since
F; N F, U(y,d) can not eventually intersect {F; : i € } by Lemma 2.2. This contradicts
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to that y; € F;(i € ).

Lemma 2.4. If F; Ly Fin (F, T(F)) andy € F, then we can pick y; € F;(i € Q) with
Yi 7 y.

Proof. Let {U;(y) : i € Q} be a decreasing neighborhood base of y in Y. By Lemma 2.2,
for Uy (y) there is an 41 € Q, such that Ui (y) N F; # () for any ¢ > 4;. Similarly for Us(y),
there is an i3 > 141, such that Ux(y) N F; # (0 for any ¢ > i». Inductively we can get a
sequence {y; : i € Q} with y; € F; with y; — y.

It is clear that the arguments of Lemmas 2.2, 2.3 and 2.4 are also true for spaces

(K, T(K)) and (P, T(P)).
Lemma 2.5 ([6]). H(A, B) is a metric function on the space P.

Proof. Since A, B € P are compact in R"™, we have that H(A, B) = 0 if and only if A = B,
and H(A,B) > 0. It is clear that H(A, B) = H(B, A).

If BC A®eD and C C B P exD, then we have that C C A ® 1D & exD, that is
p(A,C) < p(A,B) + p(B,C). Similarly we have that p(C, A) < p(C, B) + p(B, A). Hence
H(A, B) is a metric.

Lemma 2.6. Let {F; : i € Q} be a sequence in P and F € P. If H(F;,F) — 0, then
P
F;, — F.

Proof. Since H(F;, F) — 0, we have that §; = p(F;, F) — 0. For any x € F, there is an
a; € F; with p(a;,x) < 6; + %, and hence a; — z. This means that if G is an open set in
R"™ with GN F # 0, then for some ig, G N F; # 0 for each i > ig € Q.

Suppose K is compact in R™ with K N F = (), then §(F,K) > 0, where §(F,K) =
inf{p(z,y) : « € F and y € K}. Furthermore n; = p(F, F;) — 0, because H(F;,F) — 0.
Hence there is an iy € Q, such that 2n; < §(F, K) for i > ip, and then F; C F & 16(F, K)D.

That is F; N K = 0 for each ¢ > iy. Therefore F; Ly by Lemma 2.2.

Lemma 2.7. Let {F; : i € Q} be a sequence in P and F € P. If F; N F, then
H(F;,F)—0.

Proof. Let x € F and U be open in Y with z € U, then U intersects eventually with
{F; :i € Q} by Lemma 2.2, and hence we can get some a; € F; such that p(a;,z) — 0 and
0(F;,z) < p(a;, ).

If we suppose that p(F;, F) — 0 is not true, then there are some ¢ > 0 and some
subsequence {F;, : k € Q} C {F; : i € Q} with p(F;,,F) > € for each k € Q. We have
z € F with §(F}, ,x1) > €. Since F' is compact, the sequence {z, : k € Q} has a converging
subsequence. Without loss of generality we can let that z;, — = € F. Since 6(F;, ,z) — 0
and | 6(F;, , zx) — 0(F;,, x) |< p(z, x1), we have that §(F;, , ) — 0. This is a contradiction.

We prove furthermore that p(F, F;) — 0. Suppose not, that is, there are some ¢ > 0
and some subsequence {F;, :k € Q} C {F; :i € Q} with p(F,F;,) > ¢, and then we can
pick out some a € F;, for each k € Q such that §(F,ar) > €. Since {ar : k € Q} C Y,
{ar : k € Q} has a subsequence converging to some a* € Y. From Lemma 2.3, a* € F.
This contradicts to §(F,ar) > €.

Therefore we have that H(F;, F)) — 0.
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3. Main results
Theorem 3.1. The space P is metrizable and its metric is H(A, B).
Proof. The proof can be completed by means of Lemmas 2.1, 2.6 and 2.7.

Definition 3.2. For a sequence {F; :i € Q} of F, let

F= {z: For each neighborhood U, of x, there is a subsequence {F;, : k € Q} such that
U.NF; #0.} and
F = {x: For each neighborhood U, of x, U, intersects eventually with {F; :i € Q}},

where U, is the neighborhood of x in R™. We call }?‘ upper closed limit and F lower closed
limat.

Theorem 3.3. Let {F; : i € Q} be a sequence in F. Then F; I F if and only if
F=pF=F.

Proof. Necessity. For z E}N?, let {U;(x) : i € Q} be a decreasing neighborhood base of = in
R".

For Uy (z), we can get a subsequence {F} :i € Q} C {F; :i € Q} with Uy(z) N E! # 0
for each i € Q. Then we have a sequence x1,xL, .- | where ! € Uy (x) N FL.

For Us(x), we can get a subsequence {F? :i € Q} C {F; : i € Q} with Us(z) N E? # 0
for i € Q. So we have a sequence 2%, 3, - , with #? € Us(x) N F?.

By induction, we can get a sequence {z¢ : i € Q} with 2! — z. Since F; Z F, then
z € F by Lemma 2.3. From Lemma 2.2 we have that if U, is a neighborhood of z in R",
then U, intersects eventually with {F; : i € Q} and hence z € F by Definition 3.2. That is

}?'C F. 1t is clear that F Cl?‘. Hence we have = F.

Sufficiency. If }?‘: F = F, we shall prove that F; i F by means of Lemma 2.2.

First we let U be open in R™ with UNF # (). Let x be any point in U N F, then
z € F = F. By Definition 3.2, the open set U intersects eventually with {F; : i € Q}.

Secondly we let K be a compact set in R™ with K N F = (). Here we shall prove that K
does not eventually intersect with {F; : i € Q} . Suppose not. So there were a subsequence
{Fl :ieQ} c {F;:i€ Q} with KNF! # 0 for each i € Q. Then we have a sequence
{z; € KN F!:i € Q} in the compact set K. Without loss of generality we can suppose
x; = x* € K. For each neighborhood U(z*) of z*, U(z*) intersects with infinitely many

elements of {F; : i € Q}. Since z* € F= F, we have * € K N F. This is a contradiction.
Theorem 3.4. The space P is compact.

Proof. It is sufficient to prove that every sequence {F; : i € Q} has a converging subse-
quence in P, since P has a countable base.
Let {F; :i € Q} C P, and z; € F; for each i € Q. Since Y is closed and bounded, the

sequence {z; : i € } has an accumulation point z*, and z* €F . LetV = {V1,V2,---} be
a countable base for Y.

The first step. Let V =V UVZU V3. For V € V§, V intersects with at most finitely
many elements of {F; : i € Q}; For V € V3, V intersects with infinitely many elements
of {F; : i € Q}, but V does not intersect eventually with {F; : i« € Q}; If V intersects
eventually with {F; : i € Q}, then V € V3. As mentioned above we know that V3 U V3 # 0.

That VZ = () implies that, if an open set U (in V') intersects with infinitely many elements



TOPOLOGICAL STRUCTURE FOR THE SPACE CONSISTING OF IMAGES e4- 253

of {F; :i € Q}, then U intersects eventually with {F; : i € Q}. In this case we have F=F

and, since Zj”;é (), we have F; F by Theorem 3.3.

If Vi # 0, write Vi = {V2,V2,---} C V. For V{? € V3, we have a subsequence
{F} :i e Q) C{F :i € Q} with V2N F! # 0 for each i € Q. In this case, we let
V2 = Vi uV?2 UV} satisfying, for V € Vi, V intersects with only finitely many elements
of {F! :i € Q}; f V€ V2, V intersects with infinitely many elements of {F} : i € Q},
but V does not intersect eventually with {F} : i € Q}; While V intersects eventually with
{F!:i € Q}, then V € V}. Tt is clear that V0 € V}. If we let V! = V3 UV}, then V! # ().

The second step. Suppose that V2 = (). Then the open set U (in Y) which intersects
with infinitely many elements of {F} : i € Q}, intersects eventually with {F} : i € Q}. Set

F (1) = {a: if U is a neighborhood of z in Y, then U intersects with infinitely many
elements of {F! :i € Q}}, and

F(1) = {z: if U is a neighborhood of z, then U intersects eventually with {F} :i € Q}}.
Then we have F' (1) = F(1). Since V! # 0 we know that F(1) # 0, and {F} : i € Q} is
convergent in P by Theorem 3.3.

If Vi # 0, then Vi = {V},V}',---} € V2. For V! € Vi, we can get a subsequence
{F?:ie€ Q} C{F!:ieQ} with V! NF? # () for each i € Q. Let V = VIuViuV;
such that, if V € V}, then V intersects with at most finitely many elements of {F? : i € Q};
for V € V7, V intersects with infinitely many elements of {F? : i € Q}, but V does not
intersect eventually with {F? : i € Q}, while V intersects eventually with {F? : i € Q},
then V € V3. Similarly we know that V! € V3, and if let V2 = V! U V3, then V? £ 0.

The jth step. By induction, for each j € 2 we define the following

1). {F/ :i € Q} is a subsequence of {F/ "' :i e Q},

2). F (j) = {x: if U is a neighborhood of z in Y, then U intersects with infinitely many
elements of {FY :i € Q}},

3). F(j) = {: if U is a neighborhood of z, then U intersects eventually with {F/ :i €
0}},

4). V;_ =ViUuViuV?and Vi =V/TluVs

If for some j € Q with VJ2 = (b, then any open set U in Y which intersects with
infinitely many elements of {F? : i € Q}, intersects eventually with {F” : i € Q}. Therefore
F (j) = F(j) and F} g (4), that is, {F; : i € Q} has a convergent subsequence.

On the other hand if V} # () for each j € Q, then we can pick out, a sequence {F} : i € 0}
from the following sequences

1 1 1
F17F27"'7Fn7"'
2 2 2
F17F27"'7Fn7"'
J I j
Flsz,...,F%,...

For the sequence {F} : i € 0}, we know easily that if an open set U in Y intersects with
infinitely many elements of {F} : i € Q}, then U intersects eventually with {F} : i € Q}.
Hence {F} : i € Q} is convergent in P. That is, P is a compact space.

4. Two counter-examples and the conclusions

Example 4.1. The space K (F) has not necessarily the metric H(A, B).

Let R" = R and F = {0}, F; = {0,i} for each i € 2, then F; € K, and F; X, F. But
H(F;,,F) = +0oo.
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Example 4.2. The space K is not necessarily compact.
Let R™ = R and F; = {i}, then F; € K. It is clear that {F; : i € Q} is not convergent.

Open set and closed set are only mathematical concepts, are not physical concepts,
hence we can consider an image as a closed set. In actual pattern recognition, the treated
pattern is always limited in a large scope, and a pattern can be considered as a compact
set in mathematics. In above we proved that the topological space P is a compact metric
space with a countable base, and H (A, B) is a metric on P. The metric H (A, B) coincides
with our physical intuition. In [4] we proved the dilation operation is a continuous map and
the erosion operation is a upper semicontinuous map on the space P. From the erosion and
dilation we can get all other operations of mathematical morphology. Hence we deem that
the space P is a good mathematical space for pattern recognition.
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