ON LINEAR OPERATORS FROM ORLICZ SPACES INTO LOCALLY CONVEX LINEAR-TOPOLOGICAL SPACES

E.KASIOR AND R.LEŚNIEWICZ

Received May 15, 2000

ABSTRACT. Let Y be a sequentially complete, locally convex linear-topological space, (E, Σ, μ) a non-atomic measure space and φ a real nondecreasing and continous for $u \geq 0$ function, equal to 0 for u = 0. We prove the identity of the class of linear and pseudomodular continous operators from the Orlicz space $L_{\rho}^{\varphi \varphi}(E, \Sigma, \mu)$ into Y with the class of similar operators from the Orlicz space $L_{\rho}^{\varphi \varphi}(E, \Sigma, \mu)$ into Y, where

$$\overline{\varphi}(u) = \int\limits_{0}^{u} p(t) dt \quad ext{ for } u \geq 0 ext{ and } p(t) = \inf\limits_{t < s} rac{\varphi(s)}{s} \quad ext{ for } t \geq 0$$

Also, we show that the class of linear and pseudonorm continous operators from the space of finite elements $L^{o\varphi}(E, \Sigma, \mu)$ into Y is the same as from the space $L^{o\overline{\varphi}}(E, \Sigma, \mu)$ into Y. The other proof of this fact, using Rademacher functions one can find in [1](th.2.2 b). Our result is a little bit more general than the one mentioned above. But first of all, our proof is simple and esentially different from that in [1].

1. The Orlicz Space

Definition 1.1 A $\tilde{\varphi}$ -function we call a real, nondecreasing and continuus for $u \ge 0$ function, equal to 0 for $u = 0.A \tilde{\varphi}$ -function φ is called convex, if it satisfies the Jensen inequality

$$\varphi(\alpha u + \beta v) \leq \alpha \varphi(u) + \beta \varphi(v)$$
 for $u, v, \alpha, \beta \geq 0$, where $\alpha + \beta = 1$.

As usual in the theory of the Orlicz spaces ([2],[3],[4]), a φ -function we call a real, nondecreasing and continuous for $u \ge 0$ function, equal to 0 only for u = 0 and tending to ∞ as $u \to \infty$. In this paper the use of the $\tilde{\varphi}$ -functions instead of the φ -functions simplifies our considerations.

1.2.Let (E, Σ, μ) denote a measure space. Obviously, we assume that the measure μ is σ -finite on E. By $S = S(E, \Sigma, \mu)$ we denote the space of μ -measurable, real or complex-valued functions defined on E. The measure space (E, Σ, μ) we call non-atomic, if for every set $G \in \Sigma$ there exists a set $F \subset G$, $F \in \Sigma$ with $\mu(F) = \frac{1}{2}\mu(G)$. Then we say also that the measure μ and the space S are non-atomic.

1.3.Let φ be a $\tilde{\varphi}$ -function and (E, Σ, μ) a measure space. For $f \in S$ we write

$$\rho_{\varphi}(f) = \int_{E} \varphi(|f(x)|) d\mu.$$

¹⁹⁹¹ Mathematics Subject Classification. 46E10, 46E30.

Key words and phrases. Orlicz spaces, continous linear operators, locally convex linear topological spaces.

In the space S the functional $\rho_{\varphi}(\cdot)$ is a pseudomodular in the Musielak-Orlicz sense [6].

By $L_{\rho}^{*\varphi} = L_{\rho}^{*\varphi}(E, \Sigma, \mu)$ we denote the class of those functions $f \in S$ for which $\rho_{\varphi}(\lambda f) < \infty$ for some $\lambda = \lambda(f) > 0$ and by $L^{o\varphi} = L^{o\varphi}(E, \Sigma, \mu)$ the class of those functions $f \in S$ for which $\rho_{\varphi}(\lambda f) < \infty$ for all $\lambda > 0$. The classes $L_{\rho}^{*\varphi}$ and $L^{o\varphi}$ are linear subspaces of S and $L^{o\varphi} \subset L_{\rho}^{*\varphi}$.

The class $L_{\rho}^{*\varphi}$ we call the Orlicz space and the class $L^{o\varphi}$ the space of finite elements ([2],[3]).

The spaces $L_a^{\varphi\varphi}$ and $L^{\varphi\varphi}$ we call non-atomic if the measure space (E, Σ, μ) is non atomic.

1.4. In the Orlicz space $L_{\rho}^{*\varphi}$ the functional $|| \cdot ||_{\varphi}$ defined by the formula

$$||f||_{\varphi} = \inf \left\{ \varepsilon > 0 : \rho_{\varphi}(\frac{f}{\varepsilon}) \le \varepsilon \right\} \quad (f \in L_{\rho}^{*\varphi}),$$

is an F-pseudonorm. In the case, when φ is a convex $\tilde{\varphi}$ -function, the formula

$$||f||_{\varphi}^{*} = \inf \{ \varepsilon > 0 : \rho_{\varphi}(\frac{f}{\varepsilon}) \le 1 \} \quad (f \in L_{\rho}^{*\varphi}),$$

determines a *B*-pseudonorm in L^{φ}_{ρ} equivalent to $|| \cdot ||_{\varphi}, ([2], [3], [6]).$

Definition 1.5 We say that the sequence (f_n) in $L^{*\varphi}_{\rho}$ is pseudonorm convergent to f in $L^{*\varphi}_{\rho}$, if $||f_n - f||_{\varphi} \to 0$ as $n \to \infty$.

It is easily verified that the sequence (f_n) in $L^{*\varphi}_{\rho}$ is pseudonorm convergent to f in $L^{*\varphi}_{\rho}$ if and only if for any $\lambda > 0$ there holds $\rho_{\varphi}(\lambda(f_n - f)) \to 0$ as $n \to \infty$. The space $L^{o\varphi}$ is a closed subspace of the Orlicz space L^{φ} with respect on the pseudonorm convergence.

Also, we say that the sequence (f_n) in L_{ρ}^{φ} is pseudomodular convergent or φ -convergent to $f \in L_{\rho}^{\varphi}$, and write $f_n \xrightarrow{\varphi} f$, if $\rho_{\varphi}(\lambda(f_n - f)) \to 0$ as $n \to \infty$ for some $\lambda > 0$, dependent on $(f_n), ([3])$.

1.6. In the case, when φ is a φ -function, the suffix "pseudo" in 1.3, 1.4 and 1.5 we omit, because then we have the classical Orlicz spaces ([2], [3]).

2. Convex $\tilde{\varphi}$ -functions $\overline{\varphi}$ and $\overline{\overline{\varphi}}$ generated by φ .

2.1.Let φ be a $\tilde{\varphi}$ -function. We define

$$\overline{\varphi}(u) = \int_{0}^{u} p(t)dt$$
 for $u \ge 0$, where $p(t) = \inf_{t \le s} \frac{\varphi(s)}{s}$ for $t \ge 0$.

Since the function p is non-negative and nondecreasing for $t \ge 0$, so the function $\overline{\varphi}$ is a convex $\tilde{\varphi}$ -function,([2]). Also, we observe that if φ is such that $\lim_{u\to\infty} \inf \frac{\varphi(u)}{u} = 0$, then $\overline{\varphi}(u) = 0$ for $u \ge 0$, and if φ is a φ -function with the property $\lim_{u\to\infty} \inf \frac{\varphi(u)}{u} > 0$, then $\overline{\varphi}$ is a convex φ -function.

Further, by Ψ_{φ} we denote the class of those convex $\tilde{\varphi}$ -function ψ for which the inequality $\psi(u) \leq \varphi(u)$ for $u \geq 0$ holds. The class Ψ_{φ} is not empty, because the function $\psi_0(u) = 0$ for $u \geq 0$ belongs to Ψ_{φ} . We define

228

$$\overline{\overline{\varphi}}(u) = \sup\{\psi(u) : \psi \in \Psi_{\varphi}\} \quad \text{for} \quad u \ge 0.$$

Obviously, $\overline{\varphi}$ is a function satisfying the inequality $0 \leq \overline{\varphi}(u) \leq \varphi(u)$ for $u \geq 0$. The function $\overline{\varphi}$ is nondecreasing and convex for $u \geq 0$, because it is a supremum of nondecreasing and convex functions for $u \geq 0$. The Jensen inequality for $\overline{\varphi}$ guarantees the continuity of $\overline{\overline{\varphi}}$ for u > 0 and the inequality $0 \leq \overline{\overline{\varphi}} \leq \varphi$ the continuity of $\overline{\overline{\varphi}}$ for u = 0. Hence $\overline{\overline{\varphi}}$ is the greatest convex $\tilde{\varphi}$ -function satisfying the inequality $\overline{\overline{\varphi}}(u) \leq \varphi(u)$ for $u \geq 0$.

Theorem 2.2 For any $\tilde{\varphi}$ -function φ the following inequality holds

$$\overline{\varphi}(u) \leq \overline{\overline{\varphi}}(u) \leq \overline{\varphi}(2u) \quad \text{for} \quad u \geq 0.$$

Proof. From the definition of $\overline{\varphi}$ we get for u > 0

$$\overline{\varphi}(u) \le up(u) = u \inf_{u < s} \frac{\varphi(s)}{s} \le u \frac{\varphi(u)}{u} = \varphi(u).$$

Since $\overline{\varphi}$ is a convex $\tilde{\varphi}$ -function, so it must be $\overline{\varphi}(u) \leq \overline{\overline{\varphi}}(u)$ for $u \geq 0$. On the other hand, from the Jensen inequality for $\overline{\overline{\varphi}}$ and the fact that $\overline{\overline{\varphi}}(0) = 0$ it follows that the quotient $\frac{\overline{\overline{\varphi}}(u)}{u}$ is a nondecreasing function for u > 0. Therefore by virtue of the inequality $\overline{\overline{\varphi}} \leq \varphi$ we have for u > 0

$$\overline{\overline{\varphi}}(u) = u \frac{\overline{\overline{\varphi}}(u)}{u} = u \inf_{u < s} \frac{\overline{\overline{\varphi}}(s)}{s} \le u \inf_{u < s} \frac{\varphi(s)}{s} = up(u) \le \int_{u}^{2u} p(t) dt \le \overline{\varphi}(2u).$$

Hence the inequality $\overline{\overline{\varphi}}(u) \leq \overline{\varphi}(2u)$ for $u \geq 0$ is also true.

2.3 If the $\tilde{\varphi}$ -function φ satisfies the condition $\lim_{u \to \infty} \frac{\varphi(u)}{u} = \infty$ then the following equality holds $\overline{\overline{\varphi}} = (\varphi^*)^*$, where

$$\varphi^*(v) = \sup\{uv - \varphi(u) : u \ge 0\}$$
 for $v \ge 0$

This theorem for φ -functions one can find in [4].Since the proof of our theorem is analogical, we omit it.

2.4 For arbitrary $\tilde{\varphi}$ -function φ the following equality holds

(*)
$$\overline{\overline{\varphi}}(u) = \inf \sum_{k=1}^{m} \alpha_k \varphi(u_k) \qquad (u \ge 0),$$

where infimum is taken over all convex combinations

$$u = \sum_{k=1}^{m} \alpha_k u_k$$
, where $\alpha_k, u_k \ge 0$ for $k = 1, \dots, m$ and $\sum_{k=1}^{m} \alpha_k = 1$.

Proof. By $\tilde{\varphi}$ we denote the function defined by the right side of the equality (*).Let us take

$$u = \sum_{k=1}^{m} \alpha_k u_k$$
, where $\alpha_k, u_k \ge 0$ for $k = 1, \dots, m$ and $\sum_{k=1}^{m} \alpha_k = 1$.

Then by virtue of the inequality $\overline{\varphi} \leq \varphi$ and the convexity of $\overline{\varphi}$ we have

$$\overline{\overline{\varphi}}(u) \le \sum_{k=1}^m \alpha_k \overline{\overline{\varphi}}(u_k) \le \sum_{k=1}^m \alpha_k \varphi(u_k).$$

From this we deduce that $\overline{\overline{\varphi}}(u) \leq \tilde{\varphi}(u)$ dla $u \geq 0$.

On the other hand, from the definition of $\tilde{\varphi}$ we get immediately the inequality $\tilde{\varphi}(u) \leq \varphi(u)$ for $u \geq 0$. We shall show that $\tilde{\varphi}$ is a convex $\tilde{\varphi}$ -function. Let us take arbitrary $\varepsilon > 0$, $u', u'', \alpha, \beta \geq 0, \alpha + \beta = 1$. We observe that there exist $\alpha'_k, u'_k \geq 0$, where $k = 1, \ldots, m'$, such that

$$\sum_{k=1}^{m'} \alpha'_k = 1 \ , \ u' = \sum_{k=1}^{m'} \alpha'_k u'_k, \ \text{ and } \ \sum_{k=1}^{m'} \alpha'_k \varphi(u'_k) \leq \tilde{\varphi}(u') + \varepsilon,$$

and $\alpha_k'', u_k'' \ge 0$, where $k = 1, \ldots, m''$ such that

$$\sum_{k=1}^{m''} \alpha_k'' = 1 \ , \ u'' = \sum_{k=1}^{m''} \alpha_k'' u_k'', \ \text{ and } \ \sum_{k=1}^{m''} \alpha_k'' \varphi(u_k'') \le \tilde{\varphi}(u'') + \varepsilon.$$

Let us denote $m = m' + m'', \alpha_k = \alpha \alpha'_k, u_k = u'_k$ for $k = 1, \dots, m'$ and $\alpha_{m'+k} = \beta \alpha''_k, u_{m'+k} = u''_k$ for $k = 1, \dots, m''$. Since $\alpha_k, u_k \ge 0$ for $k = 1, \dots, m$,

$$\sum_{k=1}^{m} \alpha_k = \alpha \sum_{k=1}^{m'} \alpha'_k + \beta \sum_{k=1}^{m''} \alpha''_k = 1 \quad \text{and}$$
$$\sum_{k=1}^{m} \alpha_k u_k = \alpha \sum_{k=1}^{m'} \alpha'_k u'_k + \beta \sum_{k=1}^{m''} \alpha''_k u''_k = \alpha u' + \beta u'',$$

so we get

$$\tilde{\varphi}(\alpha u' + \beta u'') \leq \sum_{k=1}^{m} \alpha_k \varphi(u_k) = \alpha \sum_{k=1}^{m'} \alpha'_k \varphi(u'_k) + \beta \sum_{k=1}^{m''} \alpha''_k \varphi(u''_k)$$
$$\leq \alpha(\tilde{\varphi}(u') + \varepsilon) + \beta(\tilde{\varphi}(u'') + \varepsilon) = \alpha \tilde{\varphi}(u') + \beta \tilde{\varphi}(u'') + \varepsilon.$$

From this we obtain the Jensen inequality for $\tilde{\varphi}$ and thus the function $\tilde{\varphi}$ is convex for $u \geq 0$.Now,the convexity of $\tilde{\varphi}$ implies the continuity of $\tilde{\varphi}$ for u > 0 and the inequality $\overline{\varphi} \leq \tilde{\varphi} \leq \varphi$ the continuity of $\tilde{\varphi}$ for u = 0 and $\tilde{\varphi}(0) = 0$.The function $\tilde{\varphi}$ is also nondecreasing for $u \geq 0$, because for $0 \leq u_1 < u_2$ we have

$$\tilde{\varphi}(u_1) = \tilde{\varphi}(\frac{u_1}{u_2}u_2 + (1 - \frac{u_1}{u_2})0) \le \frac{u_1}{u_2}\tilde{\varphi}(u_2) \le \tilde{\varphi}(u_2).$$

Hence $\tilde{\varphi}$ is a convex $\tilde{\varphi}$ -function. This fact and the inequality $\overline{\overline{\varphi}} \leq \tilde{\varphi} \leq \varphi$ imply finally the equality $\overline{\overline{\varphi}} = \tilde{\varphi}$.

2.5.Remark In 2.4 we may assume that the numbers α_k are of finite binary representation.

Proof. According to the formula 2.4 (*) for arbitrary $u \ge 0$ and $\varepsilon > 0$ there exist such $\alpha_k, u_k \ge 0$, where $k = 1, \ldots, m$ that

$$\sum_{k=1}^{m} \alpha_k = 1 \ , \quad u = \sum_{k=1}^{m} \alpha_k u_k \quad \mathrm{i} \quad \overline{\overline{\varphi}}(u) \leq \sum_{k=1}^{m} \alpha_k \varphi(u_k) \leq \overline{\overline{\varphi}}(u) + \frac{\varepsilon}{2}.$$

If m = 1, then $\alpha_1 = 1$. Therefore let us suppose m > 1. Since $\alpha_k \ge 0$ for $k = 1, \ldots, m$ and $\alpha_1 + \cdots + \alpha_m = 1$, so it must be $\alpha_{k_0} \ge \frac{1}{m}$ for some index k_0 . We may assume that $k_0 = m$. Let M be a positive number such that $u_k \le M$ and $\varphi(u_k) \le M$ for $k = 1, \ldots, m$. Since the function φ is continous in the point u_m , so there exists δ satisfying $0 < \delta \le \varepsilon$ and such that $|\varphi(u_m) - \varphi(v)| \le \frac{\varepsilon}{4}$ if $v \ge 0$ and $|u_m - v| \le \delta$. We choose numbers β_k , $k = 1, \ldots, m - 1$, of finite binary representation such that $0 \le \beta_k \le \alpha_k$ and $\alpha_k - \beta_k \le \frac{\delta}{2m^2M}$ for $k = 1, \ldots, m$. We observe that the number $\beta_m = 1 - (\beta_1 + \cdots + \beta_{m-1})$ is of finite binary representation and satisfies the inequalities

$$\frac{1}{m} \le \alpha_m \le \beta_m \le 1$$
 and $\beta_m - \alpha_m = \sum_{k=1}^{m-1} (\alpha_k - \beta_k) \le \frac{\delta}{2mM}$

Let us put $v_k = u_k$ for $k = 1, \ldots, m - 1$,

$$v_m = \frac{1}{\beta_m} \Big(\sum_{k=1}^{m-1} (\alpha_k - \beta_k) u_k + \alpha_m u_m \Big).$$

We see that $v_k \ge 0$ for k = 1, ..., m, $\sum_{k=1}^m \beta_k v_k = \sum_{k=1}^m \alpha_k u_k = u$,

$$|u_m - v_m| \le \frac{1}{\beta_m} \Big(\sum_{k=1}^{m-1} (\alpha_k - \beta_k) u_k + (\beta_m - \alpha_m) u_m \Big) \le \\\le m (m \frac{\delta}{2m^2 M} M + \frac{\delta}{2mM} M) \le \delta.$$

Therefore

$$\sum_{k=1}^{m} \beta_k \varphi(v_k) \le \sum_{k=1}^{m} \beta_k \varphi(v_k) - \sum_{k=1}^{m} \alpha_k \varphi(u_k) + \overline{\varphi}(u) + \frac{\varepsilon}{2}$$
$$\le \beta_m \varphi(v_m) - \alpha_m \varphi(u_m) + \overline{\varphi}(u) + \frac{\varepsilon}{2} \le \beta_m (\varphi(v_m) - \varphi(u_m))$$
$$+ (\beta_m - \alpha_m) \varphi(u_m) + \overline{\varphi}(u) + \frac{\varepsilon}{2} \le \frac{\varepsilon}{4} + \frac{\varepsilon}{2mM} M + \overline{\varphi}(u) + \frac{\varepsilon}{2} \le \overline{\varphi}(u) + \varepsilon$$

and we see that the remark is true.

3. Lemmas on simple functions.

Definition 3.1 A simple function we call a function $g \in S$ of the form

$$(+) g = \sum_{i=1}^n a_i \chi_{E_i},$$

where a_i denote numbers and χ_{E_i} characteristic functions of sets $E_i \in \Sigma$ with finite measures. We will assume that the sets E_i are pairwise disjoint.

It is well known that for every function $f \in S$ there exists a sequence of simple functions (g_n) convergent to f everywhere on E and such that

 $|g_n(x)| \le |f(x)|$ and $|f(x) - g_n(x)| \le |f(x)|$ for $x \in E$ and $n = 1, 2, \ldots$ From this fact we get immediately the following lemma.

Lemma 3.2 For every function $f \in L^{\varphi^{\varphi}}_{\rho}$ with $\rho_{\varphi}(f) < \infty$ there exists a sequence of simple functions (g_n) such that $\rho_{\varphi}(g_n) \leq \rho_{\varphi}(f)$ for n = 1, 2, ... and $\rho_{\varphi}(f - g_n) \to 0$ as $n \to \infty$. Moreover, for every function $f \in L^{\varphi^{\varphi}}$ there exists a sequence of simple functions (g_n) such that $||g_n||_{\varphi} \leq ||f||_{\varphi}$ for n = 1, 2, ... and $||f - g_n||_{\varphi} \to 0$ as $n \to \infty$.

Now we prove our fundamental lemma.

Lemma 3.3 Let (E, Σ, μ) be a non-atomic measure space, φ a $\tilde{\varphi}$ -function, $\delta > 0$ and g a simple function such that $\rho_{\overline{\varphi}}(g) \leq \delta$. Then there exist simple functions g_1, \ldots, g_{2^k} such that $\rho_{\varphi}(g_l) \leq 2\delta$ for $l = 1, \ldots, 2^k$ and

$$g = \frac{1}{2^k}(g_1 + \dots + g_{2^k}).$$

Proof. Let the simple functions g be of the form 3.1 (+). We denote $u_i = |a_i|$ for i = 1, ..., n. By virtue of 2.4 for every i there exist $u_{i,j} \ge 0$ and $\alpha_{i,j} > 0$, where $j = 1, ..., m_i$, such that

$$\sum_{j=1}^{m_i} \alpha_{i,j} = 1 \qquad \qquad u_i = \sum_{j=1}^{m_i} \alpha_{i,j} u_{i,j}$$

 and

$$\sum_{j=1}^{m_i} \alpha_{i,j} \varphi(u_{i,j}) \le \overline{\overline{\varphi}}(u_i) + \delta \left(\sum_{i=1}^n \mu(E_i)\right)^{-1}$$

On virtue of 2.5 we may assume that the the numbers $\alpha_{i,j}$ are of finite binary representation.Let k be a non-negative integer such that all numbers

$$k_{i,j} = 2^k \alpha_{i,j}, \quad (j = 1, \dots, m_i, i = 1, \dots, n),$$

are positive integers.Next, we denote by $K_{i,j,l}$, where the indices may assume the values $j = 1, \ldots, m_i, i = 1, \ldots, n$ and $l = 1, \ldots, 2^k$, the set of those positive integers $r \leq 2^k$ for which there holds

$$k_{i,j-1,l} < r \le k_{i,j,l}$$
 or $k_{i,j-1,l} < r + 2^k \le k_{i,j,l}$,
where $k_{i,0,l} = l$ and $k_{i,j,l} = l + \sum_{v=1}^{j} k_{i,v}$.

The measure space (E, Σ, μ) is non-atomic, therefore every set E_i may be divided on 2^k pairwise disjoint sets $E_{i,r}$ with measures $\mu(E_{i,r}) = \frac{1}{2^k} \mu(E_i)$ for $r = 1, \ldots, 2^k$.

We set

$$g_l = \sum_{i=1}^n \sum_{j=1}^{m_i} u_{i,j} \operatorname{sign} a_i \sum_{r \in K_{i,j,l}} \chi_{E_{i,r}} \quad \text{for} \quad l = 1, \dots, 2^k.$$

The set $K_{i,j,l}$ possesses $k_{i,j}$ elements and therefore we have

$$\rho_{\varphi}(g_{l}) = \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \varphi(u_{i,j}) \sum_{r \in K_{i,j,l}} \mu(E_{i,r}) = \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \varphi(u_{i,j}) k_{i,j} \frac{1}{2^{k}} \mu(E_{i}) =$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \alpha_{i,j} \varphi(u_{i,j}) \mu(E_{i}) \leq \sum_{i=1}^{n} \overline{\varphi}(u_{i}) \mu(E_{i}) + \delta = \rho_{\overline{\varphi}}(g) + \delta \leq 2\delta.$$

Finally, let us observe that

$$\frac{1}{2^{k}} \sum_{l=1}^{2^{k}} g_{l} = \frac{1}{2^{k}} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} u_{i,j} \operatorname{sign} a_{i} \sum_{l=1}^{2^{k}} \sum_{r \in K_{i,j,l}} \chi_{E_{i,r}} =$$

$$= \frac{1}{2^{k}} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} k_{i,j} u_{i,j} \chi_{E_{i}} \operatorname{sign} a_{i} = \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \alpha_{i,j} u_{i,j} \chi_{E_{i}} \operatorname{sign} a_{i} =$$

$$= \sum_{i=1}^{n} u_{i} \chi_{E_{i}} \operatorname{sign} a_{i} = g.$$

3.4 Let $(E, \Sigma, \mu), \varphi, \delta$ be as in 3.3 and let g be a simple function such that $||g||_{\overline{\varphi}} \leq \delta$. Then there exist simple functions g_1, \ldots, g_{2^k} such that $||g_l||_{\varphi} \leq 2\delta$ for $l = 1, \ldots, 2^k$ and $g = \frac{1}{2^k}(g_1 + \cdots + g_{2^k})$.

Proof. Let us observe that the inequality $||g||_{\overline{\varphi}} \leq \delta$ implies $\rho_{\overline{\varphi}}(\frac{g}{\delta}) \leq \delta$. We apply 3.3 to the simple function $h = \frac{g}{\delta}$. So, there exist simple functions h_1, \ldots, h_{2^k} such that

$$\begin{split} \rho_{\varphi}(h_l) &\leq 2\delta \quad \text{for} \quad l=1,\ldots,2^k \quad \text{and} \quad h=2^{-k}\left(h_1+\cdots+h_{2^k}\right).\\ \text{We set } g_l &= \delta h_l \text{ for } l=1,\ldots,2^k \text{ and observe that } g_l \text{ are simple functions such that } g=2^{-k}(g_1+\cdots+g_{2^k}) \text{ and } ||g_l||_{\varphi} &\leq 2\delta, \text{ because } \rho_{\varphi}(\frac{g_l}{2\delta}) = \rho_{\varphi}(\frac{h_l}{2}) \leq \rho_{\varphi}(h_l) \leq 2\delta. \end{split}$$

4. The locally convex spaces

Definition 4.1 Let X be a linear space over field K real or complex numbers and let τ be a topology in the set X.A space $\langle X, \tau \rangle$ is called a linear-topological space, when the operations $+ : X \times X \to X$ and $\cdot : K \times X \to X$ are continuous functions from $X \times X$ into X and $K \times X$ into X respectively.

The linear-topological spaces with a topology defined by the metric in linear spaces are normed spaces, countable-normed spaces and F^* -spaces, because we have

$$\begin{aligned} |(x+y) - (x_0 + y_0)| &\leq |x - x_0| + |y - y_0| \quad \text{and} \quad |ax - a_0 x_0| \leq \\ &\leq |a(x - x_0)| + |(a - a_0)x_0|, \end{aligned}$$

and it implies the continuity of the operators + and \cdot .

4.2. A neighbourhood base of the point 0 of linear-topological space has the following properties:

- a) for every $V \in \mathcal{V}_0$ there exists $U \in \mathcal{V}_0$ such that $U + U \subset V$
- b) if $V \in \mathcal{V}_0$, $\alpha \in K$ and $|\alpha| \leq 1$, then $\alpha V \subset V$
- c) if $V \in \mathcal{V}_0$ and $x \in X$, then there exists a number $\alpha_0 > 0$ such that $\alpha_0 x \in V$.

4.3.Let $\langle X, \tau \rangle$ be a linear-topological space and let $x_0 \in X$. If $V \in \mathcal{V}_0$ is a neighbourhood base of the point 0 in the linear-topological space $\langle X, \tau \rangle$ and $x_0 \in X$, then a family \mathcal{V}_{x_0} of the sets of the form $V_{x_0} = V_0 + x_0$, when $V \in \mathcal{V}_0$ is the neighbourhood base of the point x_0 in $\langle X, \tau \rangle$.

4.4. For any subset A of linear-topological space X and any base of the neighbourhood \mathcal{V}_0 of $0 \in X$ the formula $\overline{A} = \bigcap_{V \in \mathcal{V}_0} (A + V)$ defines the closure of the set A.

The proof of this fact one can find in [8].

From 4.4 and the property (1) of base of the neighbourhood of 0 it follows that for every $V \in \mathcal{V}_0$ there exists $U \in \mathcal{V}_0$ such that

$$\overline{U} = \bigcap_{W \in \mathcal{V}_0} (U + W) \subset U + U \subset V.$$

From this it follows that there exists a neighbourhood base of 0 which consists of closed sets.

Definition 4.5 The set A of the linear space X is called a convex set if from the conditions $x, y \in A, \alpha, \beta \ge 0, \alpha + \beta = 1$ it follows that $\alpha x + \beta y \in A$.

4.6. If the sets A and B are convex in a linear space over the field K of the real or complex numbers and $a \in K$, then the sets aA, A + B, A - B are convex in X.

Definition 4.7 The linear-topological space $\langle X, \tau \rangle$ is called a locally convex if there exists a neighbourhood base \mathcal{V}_0 in X of the point 0 which consists of convex sets.

5. LINEAR OPERATORS FROM THE ORLICZ SPACES INTO LOCALLY CONVEX LINEAR-TOPOLOGICAL SPACES

5.1. In the Orlicz space $L_{\rho}^{*\varphi}$ and also in its subspace $L^{o\varphi}$ we have two types of convergences, one is the pseudonorm convergence and the other the pseudomodular convergence. Therefore let us denote by $\alpha(L^{o\varphi}, Y)$ the class of pseudonorm continous linear operators from $L^{o\varphi}$ into Y, where Y is a locally convex linear-topological space and by $\alpha(L_{\rho}^{e\varphi}, Y)$ the class of pseudomodular continous linear operators from $L_{\rho}^{e\varphi}$ into Y. Obviously, the linear operator A from $L^{o\varphi}$ into Y is pseudonorm continous, i.e. belongs to $\alpha(L^{o\varphi}, Y)$, if and only if for every $V \in \mathcal{V}_0$ there exists $\delta > 0$ such that the conditions $f \in L^{o\varphi}$ and $||f||_{\varphi} \leq \delta$ imply $A(f) \in V$. Let us observe that the linear operator A from $L_{\rho}^{*\varphi}$ into Y is pseudomodular continous, i.e. belongs to $\alpha(L_{\rho}^{*\varphi}, Y)$, if and only if for every $V \in \mathcal{V}_0$ there exists $\delta > 0$ such that the conditions $f \in L^{o\varphi}$ and $||f||_{\varphi} \leq \delta$ imply $A(f) \in V$. Let us observe that f = 0 operator A from $L_{\rho}^{*\varphi}$ into Y is pseudomodular continous, i.e. belongs to $\alpha(L_{\rho}^{*\varphi}, Y)$, if and only if for every $V \in \mathcal{V}_0$ there exists $\delta > 0$ such that the conditions $f \in S$ and $\rho_{\varphi}(f) \leq \delta$ imply $A(f) \in V$.

5.2.Let φ be a $\tilde{\varphi}$ -function and $\overline{\varphi}$ its convex $\tilde{\varphi}$ -function as in 2.1. For these functions the inequality $\overline{\overline{\varphi}}(u) \leq \varphi(u)$ for $u \geq 0$ holds. Hence we have $\rho_{\overline{\varphi}}(f) \leq \rho_{\varphi}(f)$ for $f \in S$ and next the inclusions $L_{\rho}^{*\overline{\varphi}} \subset L_{\rho}^{*\overline{\varphi}}$, $L^{o\varphi} \subset L^{o\overline{\varphi}}$ and the inequality $||f||_{\overline{\varphi}} \leq ||f||_{\varphi}$ for $f \in L_{\rho}^{*\varphi}$.

From this follows immediately

5.3. If $A \in \alpha(L_{\rho}^{*\overline{\varphi}}, Y)$, then the restriction $A|_{L_{\rho}^{*\varphi}}$ belongs to $\alpha(L_{\rho}^{*\varphi}, Y)$ and if $A \in \alpha(L^{o\overline{\varphi}}, Y)$, then $A|_{L^{o\varphi}} \in \alpha(L^{o\varphi}, Y)$.

Now we present two main theorems

Theorem 5.4 If the Orlicz space $L^{*\varphi}_{\rho}$ is non-atomic, then for every linear operator $A \in \alpha(L^{*\varphi}_{\rho}, Y)$ there exists a linear operator $B \in \alpha(L^{*\overline{\varphi}}_{\rho}, Y)$ such that $A = B|_{L^{*\varphi}_{\rho}}$.

Proof. On virtue of 4.4 one can assume that in the space Y there exists a neighbourhood base \mathcal{V}_0 of the point 0 which consists of convex and closed sets.Let $A \in \alpha(L_{\rho}^{*\varphi}, Y)$ and let us take $V \in \mathcal{V}_0$. Then there exists $\delta > 0$ such that the conditions $f \in S$ and $\rho_{\varphi}(f) \leq 2\delta$ imply $A(f) \in V$.Let us take an arbitrary simple function g such that $\rho_{\overline{\varphi}}(g) \leq \delta$. On virtue of 3.3 there exist simple functions g_1, \ldots, g_{2^k} such that $\rho_{\varphi}(g_l) \leq 2\delta$ for $l = 1, \ldots, 2^k$ and $g = 2^{-k}(g_1 + \cdots + g_{2^k})$. Therefore one can write $A(g_l) \in V$ for $l = 1, \ldots, 2^k$ and next on virtue of convexity of the set V there is $A(g) \in V$.

Thus we have proved the following remark:

(R) If $A \in \alpha(L^{*\varphi}_{\rho}, Y)$, then for every $V \in \mathcal{V}_0$ there exists $\delta > 0$ such that the inequality $\rho_{\overline{\omega}}(g) \leq \delta$ for any simple function g implies $A(g) \in V$.

Now we shall prove the theorem. Let $A \in \alpha(L_{\rho}^{*\varphi}, Y)$. We take an arbitrary $f \in L_{\rho}^{*\overline{\varphi}}$. Then $\rho_{\overline{\varphi}}(\lambda f) < \infty$ for some $\lambda > 0$ and on virtue of 3.2 there exists a sequence of simple functions (g_n) such that $\rho_{\overline{\varphi}}(\lambda(f - g_n)) \to 0$ as $n \to \infty$. Since

$$\rho_{\overline{\varphi}}(\frac{1}{2}\lambda(g_n - g_m)) \le \rho_{\overline{\varphi}}(\lambda(f - g_n)) + \rho_{\overline{\varphi}}(\lambda(f - g_m)),$$

so we have $\rho_{\overline{\varphi}}(\frac{1}{2}\lambda(g_n - g_m)) \to 0$ as $n, m \to \infty$. Whence, by virtue of the remark (R), we get

$$A(\frac{1}{2}\lambda(g_n - g_m)) = \frac{1}{2}\lambda(A(g_n) - A(g_m)) \to \theta , \text{ as } n, m \to \infty.$$

This shows that the sequence $(A(g_n))$ satisfies the Cauchy condition. Since Y is a sequentially complete space, then the sequence $(A(g_n))$ is convergent; we denote $B(f) = \lim_{n \to \infty} A(g_n)$.

Further, let (h_n) be an arbitrary sequence of simple functions such that $h_n \xrightarrow{\overline{\varphi}} f$. Then $\rho_{\overline{\varphi}}(\lambda_1(f-h_n)) \to 0$ as $n \to \infty$ for some $\lambda_1 > 0$. From this, on virtue of the inequality

$$\rho_{\overline{\overline{\varphi}}}(\frac{1}{2}\lambda_2(g_n - h_n)) \le \rho_{\overline{\overline{\varphi}}}(\lambda(f - g_n)) + \rho_{\overline{\overline{\varphi}}}(\lambda_1(f - h_n)),$$

where $\lambda_2 = \inf\{\lambda, \lambda_1\}$, we get $\rho_{\overline{\varphi}}(\frac{1}{2}\lambda_2(g_n - h_n)) \to 0$ as $n \to \infty$. Whence, in view of the remark (R), it follows that

$$A(\frac{1}{2}\lambda_2(g_n - h_n)) = \frac{1}{2}\lambda_2(A(g_n) - A(h_n)) \to \theta \text{ as } n \to \infty.$$

Hence the sequence $(A(h_n))$ is convergent and

$$B(f) = \lim_{n \to \infty} A(g_n) = \lim_{n \to \infty} A(h_n).$$

This means that the value B(f) is independent on the choice of a sequence of simple functions (h_n) satisfying $h_n \xrightarrow{\overline{\varphi}} f$.

Let us take $f_1, f_2 \in L_{\rho}^{*\overline{\varphi}}$ and numbers a and b. Then from 3.2 it follows the existence of sequences of simple functions $(g_{1,n})$ and $(g_{2,n})$ such that $g_{1,n} \xrightarrow{\overline{\varphi}} f_1$ and $g_{2,n} \xrightarrow{\overline{\varphi}} f_2$. This implies $ag_{1,n} + bg_{2,n} \xrightarrow{\overline{\varphi}} af_1 + bf_2$ and therefore

$$B(af_1 + bf_2) = \lim_{n \to \infty} A(ag_{1,n} + bg_{2,n}) = a \lim_{n \to \infty} A(g_{1,n}) + b \lim_{n \to \infty} A(g_{2,n}) = aB(f_1) + bB(f_2).$$

Next, let us take $f \in L^{*\varphi}_{\rho}$. On virtue of 3.2 there exists a sequence of simple functions (g_n) such that $g_n \xrightarrow{\varphi} f$. From 5.2 it follows that the convergence $g_n \xrightarrow{\overline{\varphi}} f$ holds too. Therefore, in this case, we have

$$B(f) = \lim_{n \to \infty} A(g_n) = A(f).$$

Further, let $V \in \mathcal{V}_0, \delta > 0$ be such that the condition $\rho_{\overline{\varphi}}(g) \leq \delta$ for simple function g implies $A(g) \in V$ and let $f \in L_{\rho}^{*\overline{\varphi}}$ be such that $\rho_{\overline{\varphi}}(f) \leq \delta$. Then, from 3.2 it follows the existence of a sequence of simple functions (g_n) such that $\rho_{\overline{\varphi}}(g_n) \leq \rho_{\overline{\varphi}}(f)$ for $n = 1, 2, \ldots$ and $\rho_{\overline{\varphi}}(f - g_n) \to 0$ as $n \to \infty$. Hence there holds $B(f) = \lim_{n \to \infty} A(g_n) \in \overline{V} = V$.

Thus we have proved the existence of a operator $B \in \alpha(L_{\rho}^{*\overline{\varphi}}, Y)$ with the property $B|_{L_{\rho}^{*\varphi}} = A$. Such operator is only one. Namely if B and B_1 are operators with the required properties, then taking an arbitrary $f \in L_{\rho}^{*\overline{\varphi}}$ and more, on virtue of 3.2, a sequence of simple functions (g_n) such that $g_n \xrightarrow{\overline{\varphi}} f$ we see that

$$B(f) = \lim_{n \to \infty} B(g_n) = \lim_{n \to \infty} A(g_n) = \lim_{n \to \infty} B_1(g_n) = B_1(f).$$

5.5 If the space $L^{o\varphi}$ is non-atomic, then for every operator $A \in \alpha(L^{o\varphi}, Y)$ there exists a unique operator $B \in \alpha(L^{o\overline{\varphi}}, Y)$ such that $A = B|_{L^{o\varphi}}$.

Since the proof is similar to the previous one, we omit it.

5.6. On virtue of 2.2 for the convex $\tilde{\varphi}$ -functions $\overline{\varphi}$ and $\overline{\overline{\varphi}}$ generated by φ the inequality $\overline{\varphi}(u) \leq \overline{\varphi}(u) \leq \overline{\varphi}(2u)$ for $u \geq 0$ holds, therefore we may replace in the statements 5.2, 5.3, 5.4 and 5.5 the function $\overline{\overline{\varphi}}$ by the function $\overline{\varphi}$. Moreover, we observe that the results 5.3, 5.4 and 5.5 may be formulated in the form announced in the abstract. Namely,

If (E, Σ, μ) is a non-atomic measure space, then

 $\alpha(L^{*\varphi}_{\rho},Y)=\alpha(L^{*\overline{\varphi}}_{\rho},Y) \ \ \text{and} \ \ \alpha(L^{o\varphi},Y)=\alpha(L^{o\overline{\varphi}},Y).$

The first equality is closely connected with the theorem of W. Orlicz in [7]. The other proof of the second equality one can find in [1](th.2.2 b). Our result is a little bit more general than the one mentioned above. But first of all, our proof is esentially different from that in [7].

In the particularity, from our results one can obtain the following theorem with the first part known from [7].

Theorem 5.7 If the $\tilde{\varphi}$ -function φ is such that $\lim_{u\to\infty} \inf \frac{\varphi(u)}{u} = 0$, then only trivial linear operator from the non-atomic Orlicz space $L_{\rho}^{*\varphi}$ into locally convex space Y is pseudomodular continous and only trivial linear operator from the non-atomic space of finite elements $L^{\circ\varphi}$ into Y is pseudonorm continous.

Proof. In this case we have $\overline{\varphi}(u) = 0$ for $u \ge 0$. This implies $\rho_{\overline{\varphi}}(f) = 0$ for all $f \in S$, and next $L_{\rho}^{*\overline{\varphi}} = L^{o\overline{\varphi}} = S$ and $||f||_{\overline{\varphi}} = 0$ for all $f \in S$. Whence we get $\alpha(L_{\rho}^{*\overline{\varphi}}, Y) = \alpha(L^{o\overline{\varphi}}, Y) = \{0\}$, because only the trivial operator satisfies the inequality $A(f) \in V$ for all $f \in S$ and all $V \in \mathcal{V}_0$. Thus, by virtue of 5.6 we obtain $\alpha(L_{\rho}^{*\varphi}, Y) = \alpha(L^{o\varphi}, Y) = \{0\}$.

The other proof of this theorem one can find in [1] (th. 2.2 a).

References

- N.J.Kalton, Compact and Strictly Singular Operators from Orlicz Spaces, Israel Journal of Mathematics (26) (2) (1977), 126-136.
- [2] M.A.Krasnosielskij and J.B.Rutickij, Convex functions and Orlicz spaces, Groninger (1961)
- [3] W.Matuszewska, Przestrzenie funkcji φ -całkowalnych I,II, Prace Mat.6 (1961), 121–139 and 149–163.
- [4] W.Matuszewska and W.Orlicz, A note on the theory of s-normed spaces of φ -integrable functions Studia Math. 21 (1961), 107–115.
- [5] J.Musielak, Wstep do analizy funkcjonalnej, PWN (1976)
- [6] J.Musielak and W.Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- [7] W.Orlicz, On integral representability of linear functionals over the space of φ -integrable functions Bull.Acad.Polon.Sci.,Ser.sci.math.,astr. et phys. 8 (1960), 567–569.
- [8] H.Schaefer, Topological Vector Spaces, Springer (1980).

INSTITUTE OF MATHEMATICS, UNIVERSITY OF SZCZECIN, WIELKOPOLSKA 15, 70–451 SZCZECIN 3, POLAND

E-mail address :kasior euler.mat.univ.szczecin.pl *E-mail address* :ryszardl @ wmf.univ.szczecin.pl