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INTEGRALS, SUMS OF RECIPROCAL POWERS AND

MITTAG-LEFFLER EXPANSIONS

J.M. AMIG�O

Received February 25, 2000

Abstract. The zeta series with odd exponents and the alternating series of the

positive odd integers to an even power can be expressed as in�nite integrals involving

derivatives of some hyperbolic functions. These integral formulas can be derived in

a straightforward way from the Mittag-Le�er series of the corresponding hyperbolic

function.

1. Introduction

Let �(n) denote, as usual, the zeta series of exponent n = 2; 3; :::,

�(n) =

1X
�=1

1

�n

Other related series of reciprocal powers are [1, Ch. 23]

�(n) =

1X
�=1

(�)�+1

�n
= (1� 21�n)�(n)(1)

�(n) =

1X
�=0

1

(2� + 1)n
= (1� 2�n)�(n)(2)

for n = 2; 3; ::: (�(1) = ln 2) and

L(n) =

1X
�=0

(�)�

(2� + 1)n
(n = 1; 2; :::)(3)

Remember that

�(2n) = (�)n+1
(2�)2n

2(2n)!
B2n =

(2�)2n

2(2n)!
jB2nj (n = 1; 2; :::)(4)

where B0 = 1; B1 = �1=2; B2 = 1=6; B4 = �1=30; ::: are the Bernoulli numbers, and

L(2n+ 1) = (�)n
(�=2)2n+1

2(2n)!
E2n =

(�=2)2n+1

2(2n)!
jE2nj (n = 0; 1; :::)(5)

where E0 = 1; E4 = 5; ::: (all integers) are the Euler numbers.
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No similar numerical formulas for �(2n+1) and L(2n) are known. Instead, some integral

expressions can be derived in a variety of ways, usually from properties of the transcendental

functions �(z) and �(z), z 2 C ; or (in a more involved way) via Jacobian elliptic functions.

But there are also more elementary techniques based, for example, on the Mittag-Le�er

expansions of some hyperbolic functions [5, Ch. 7]. Indeed, it can be shown that

1. from

sechx = �

1X
k=0

(�)k
2k + 1�

(2k+1)�

2

�2
+ x2

it follows

L(2n) = (�)n
�2n�1

22n(2n� 1)!

Z
1

0

dx

x

d2n�1sechx

dx2n�1
(6)

2. from

tanhx = 2x

1X
k=0

1�
(2k+1)�

2

�2
+ x2

it follows

�(2n+ 1) = (�)n
�2n

(22n+1 � 1)(2n)!

Z
1

0

dx

x

d2n tanhx

dx2n
(7)

3. from

x cschx = 1� 2x2
1X
k=1

(�)k+1

k2�2 + x2

it follows

�(2n+ 1) = (�)n+1
(2�)2n

(22n � 1)(2n+ 1)!

Z
1

0

dx

x

d2n+1(x cschx)

dx2n+1
(8)

4. from

x cothx = 1 + 2x2
1X
k=1

1

k2�2 + x2

it follows

�(2n+ 1) = (�)n
�2n

(2n+ 1)!

Z
1

0

dx

x

d2n+1(x coth x)

dx2n+1
(9)

This paper can be considered a continuation of [3], which contains a proof of (8) based

on the corresponding Mittag-Le�er expansion. The proofs of (7) and (9) are formally

analogous. In this paper we extend this technique to the L-series by showing (6). Other

interesting integral expressions for L(2n) will be also derived (v.g. Eq. (19)).

2. First step: L(2)

From the Mittag-Le�er expansion of sechx [5, Ch. 7]

sechx = �

1X
k=0

(�)k
2k + 1�

(2k+1)�

2

�2
+ x2

(x 2 R)
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and the decomposition in simple fractions (x 6= 0)

(�)k�(2k + 1)

x2
��

(2k+1)�

2

�2
+ x2

� = (�)k
4

�

0
BB@ 1

(2k + 1)x2
�

1

(2k + 1)

��
(2k+1)�

2

�2
+ x2

�
1
CCA(10)

it follows

sechx

x2
=

4

�

1X
k=0

0
BB@ (�)k

(2k + 1)x2
�

(�)k

(2k + 1)

��
(2k+1)�

2

�2
+ x2

�
1
CCA(11)

=
4

�x2

1X
k=0

(�)k

(2k + 1)
�

4

�

1X
k=0

(�)k

(2k + 1)

��
(2k+1)�

2

�2
+ x2

�

Now,

1X
k=0

(�)k

(2k + 1)
= L(1) =

(�=2) jE0j

2
=

�

4

so that

sechx

x2
=

1

x2
�

4

�

1X
k=0

(�)k

(2k + 1)

��
(2k+1)�

2

�2
+ x2

� (x 6= 0)(12)

and

1� sechx

x2
=

1

x2
�

sechx

x2
=

4

�

1X
k=0

(�)k

(2k + 1)

��
(2k+1)�

2

�2
+ x2

� (x 6= 0)(13)

The rhs of (13) extends by continuity the function on the lhs to all x 2 R.

On the other hand,

1X
k=1

Z
1

0

dx

��������
(�)k

(2k + 1)

��
(2k+1)�

2

�2
+ x2

�
��������
=

1X
k=1

1

2k + 1

Z
1

0

dx�
(2k+1)�

2

�2
+ x2

=

1X
k=1

1

2k + 1

�
2

(2k + 1)�
arctan

2x

(2k + 1)�

�
1

0

=

1X
k=1

1

(2k + 1)2
= �(2) =

�2

8
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for all x 2 R, so that (13) can be integrated termwise [2, Th. 10.26] to obtain

�

4

Z
1

0

dx

x2
(1� sechx) =

1X
k=0

(�)k

(2k + 1)

Z
1

0

dx�
(2k+1)�

2

�2
+ x2

=

1X
k=0

(�)k

(2k + 1)

�
2

(2k + 1)�
arctan

2x

(2k + 1)�

�
1

0

=

1X
k=0

(�)k

(2k + 1)2

= L(2)

The integral on the lhs can be eventually simpli�ed by integration by parts with the

following result:

Corollary 2.1. We have

L(2) =
�

4

Z
1

0

dx

x
sechx tanhx = �

�

4

Z
1

0

dx

x

sechx

dx

3. Generalization: L(2n)

In order to generalize the previous result, we need the following lemma.

Lemma 3.1. For n = 1; 2; ::: and x 6= 0

sechx

x2n
=

1

x2n
+

E2

2!

1

x2n�2
+ :::+

E2n�2

(2n� 2)!

1

x2
+(14)

+(�)n
22n

�2n�1

1X
k=0

(�)k

(2k + 1)2n�1
��

(2k+1)�

2

�2
+ x2

�

=

n�1X
k=0

E2k

(2k)!

1

x2n�2k
+ (�)n

22n

�2n�1

1X
k=0

(�)k

(2k + 1)2n�1
��

(2k+1)�

2

�2
+ x2

�

Proof. The proof is by induction. For n = 1; we get Eq.(12). Suppose now the formula is

true for n 2 N and let us prove it for n+ 1:

sechx

x2n+2
=

1

x2
sechx

x2n
=

n�1X
k=1

E2k

(2k)!

1

x2n�2k+2
(15)

+(�)n
22n

�2n�1

1X
k=0

(�)k

(2k + 1)2n�1x2
��

(2k+1)�

2

�2
+ x2

�

To decompose in simple fractions the general term of the last series, resort to (10),

1

x2
��

(2k+1)�

2

�2
+ x2

� =
4

�2

0
BB@ 1

(2k + 1)2x2
�

1

(2k + 1)2
��

(2k+1)�

2

�2
+ x2

�
1
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hence

1X
k=0

(�)k

(2k + 1)2n�1x2
��

(2k+1)�

2

�2
+ x2

�

=
4

�2

1X
k=0

(�)k

(2k + 1)2n+1x2
�

4

�2

1X
k=0

(�)k

(2k + 1)2n+1
��

(2k+1)�

2

�2
+ x2

�

Substitution in Eq. (15) leads to

sechx

x2n+2
=

n�1X
k=0

E2k

(2k)!

1

x2n�2k+2
+ (�)n

22n

�2n�1
4

�2
L(2n+ 1)

x2

+(�)n+1
22n

�2n�1
4

�2

1X
k=0

(�)k

(2k + 1)2n+1
��

(2k+1)�

2

�2
+ x2

�

Finally, using (5),

sechx

x2n+2

=

n�1X
k=0

E2k

(2k)!

1

x2n�2k+2
+

E2n

(2n)!
+ (�)n+1

22n+2

�2n+1

1X
k=0

(�)k

(2k + 1)2n+1
��

(2k+1)�

2

�2
+ x2

�

=

nX
k=0

E2k

(2k)!

1

x2(n+1)�2k
+ (�)n+1

22(n+1)

�2(n+1)�1

1X
k=0

(�)k

(2k + 1)2n+1
��

(2k+1)�

2

�2
+ x2

�

2

Eq. (14) de�nes by continuity the function

sechx

x2n
�

n�1X
k=0

E2k

(2k)!

1

x2n�2k
(16)

at x = 0:

Corollary 3.2. For n = 1; 2; :::

L(2n) = (�)n
�2n�1

22n

Z
1

0

dx

x2n

 
sechx�

n�1X
k=0

E2k

(2k)!
x2k

!
(17)
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Proof. Integration of (14) from 0 to 1 yields

Z
1

0

dx

 
n�1X
k=0

E2k

(2k)!

1

x2n�2k
�

sechx

x2n

!

= (�)n+1
22n

�2n�1

1X
k=0

(�)k

(2k + 1)2n�1

Z
1

0

dx�
(2k+1)�

2

�2
+ x2

= (�)n+1
22n

�2n�1

1X
k=0

(�)k

(2k + 1)2n�1

�
2

(2k + 1)�
arctan

2x

(2k + 1)�

�
1

0

= (�)n+1
22n

�2n�1
L(2n)

2

Another expression can be derived from Corollary 3.2 by subdividing [0;1) = [0; �) [

[�;1) with 0 < � < �=2 and using the Taylor series [1, 4.5.66]

sechx =

1X
k=0

E2k

(2k)!
x2k (jxj < �=2)(18)

as follows:

Z
1

0

dx

x2n

 
sechx�

n�1X
k=0

E2k

(2k)!
x2k

!

=

Z
�

0

1X
k=n

E2k

(2k)!
x2k�2ndx+

Z
1

�

dx

 
sechx

x2n
�

n�1X
k=0

E2k

(2k)!
x2k�2n

!

=

1X
k=0

E2k

(2k � 2n+ 1)(2k)!
�2k�2n+1 +

Z
1

�

dx
sechx

x2n

Hence, for 0 < � < �=2;

L(2n) = (�)n
�2n�1

22n

 
1X
k=0

E2k

(2k � 2n+ 1)(2k)!
�2k�2n+1 +

Z
1

�

dx
sechx

x2n

!

In particular, choosing � = 1;

L(2n) = (�)n
�2n�1

22n

 
1X
k=0

E2k

(2k � 2n+ 1)(2k)!
+

Z
1

1

dx
sechx

x2n

!
(19)

which can be considered a generalization of (5) for even exponents.

Finally, let us integrate by parts the rhs of (17).

Corollary 3.3. For n = 1; 2; :::

L(2n) = (�)n
�2n�1

22n(2n� 1)!

Z
1

0

dx

x
(sechx)(2n�1)(20)
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Proof. A �rst integration by parts of (17) gives

(�)n
22n

�2n�1
L(2n)

=

Z
1

0

dx

�
�1

(2n� 1)x2n�1

�(1)
 
sechx�

n�1X
k=0

E2k

(2k)!
x2k

!

=
�1

(2n� 1)

"
1

x2n�1

 
sechx�

n�1X
k=0

E2k

(2k)!
x2k

!#1
0

+
1

(2n� 1)

Z
1

0

dx

x2n�1

 
(sechx)(1) �

n�1X
k=1

E2k

(2k � 1)!
x2k�1

!

As before, the integrated term vanishes at in�nity. On the other hand, the Taylor expansion

of sechx for jxj < �=2 (Eq. (18)) shows that this term behaves near the origin as

�1

(2n� 1)

�
E2n

(2n)!
x+

E2n+2

(2n+ 2)!
x3 + :::

�
= O(x)

so that it also vanishes at the lower limit x = 0.

Integrate a second time by parts,

(�)n
22n

�2n�1
L(2n)

=
1

(2n� 1)

Z
1

0

dx

�
�1

(2n� 2)x2n�2

�(1)
 
(sechx)(1) �

n�1X
k=1

E2k

(2k � 1)!
x2k�1

!

=
�1

(2n� 1)(2n� 2)

"
1

x2n�2

 
(sechx)(1) �

n�1X
k=1

E2k

(2k � 1)!
x2k�1

!#1
0

+
1

(2n� 1)(2n� 2)

Z
1

0

dx

x2n�2

 
(sechx)(2) �

n�1X
k=1

E2k

(2k � 2)!
x2k�2

!

Since y = sechx has the at asymptote y = 0 at in�nity, limx!1 (sechx)(�) = 0 for all

� = 1; 2; :::, so that the integrated term vanishes at in�nity. As for the lower limit, if

jxj < �=2

1

x2n�2

 
(sechx)(1) �

n�1X
k=1

E2k

(2k � 1)!
x2k�1

!

=
1

x2n�2

 
1X
k=1

E2k

(2k � 1)!
x2k�1 �

n�1X
k=1

E2k

(2k � 1)!
x2k�1

!

=
1

x2n�2

 
1X
k=n

E2k

(2k � 1)!
x2k�1

!
= O(x)

and, consequently, it also vanishes.
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Following in this way, after 2n�2 integrations by parts one arrives at the �nal expression

(�)n
22n

�2n�1
L(2n)

=
1

(2n� 1)!

Z
1

0

dx

x2

 
(sechx)(2n�2) �

n�1X
k=n�1

E2k

(2k � 2n+ 2)!
x2k�2n+2

!

=
1

(2n� 1)!

Z
1

0

dx

�
�1

x

�(1) �
(sechx)(2n�2) � E2n�2

�

=
�1

(2n� 1)!

�
1

x

�
(sechx)(2n�2) �E2n�2

��1
0

+
1

(2n� 1)!

Z
1

0

dx

x

�
(sechx)(2n�1)

�

The claim follows since

(sechx)(2n�2) �E2n�2 �

E2n

2!
x2

near the origin. 2

Observe that by L'Hôpital,

lim
x!0

(sechx)(2n�1)

x
= (sechx)(2n)

���
x=0

= E2n

i.e. the integrand in (20) has no singularity at the origin.
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