ON TWO CLASSES OF $B C I$-ALGEBRAS

Muhammad Anwar Chaudhry

Received June 9, 2000

Abstract

In this paper we introduce two new classes of $B C I$-algebras, namely the class of branchwise positive implicative $B C I$-algebras and the class of branchwise implicative $B C I$-algebras. The class of branchwise positive implicative $B C I$-algebras contains the class of positive implicative $B C K$-algebras [10], the class of medial $B C I$ algebras, the class of positive implicative $B C I$-algebras [1, 4, 13] and the class of branchwise implicative $B C I$-algebras contains the class of implicative $B C K$-algebras [10], the class of weakly implicative $B C I$-algebras [1] and the class of quasi-implicative $B C I$-algebras [17]. Necessary and sufficient condition for a $B C I$-algebra to be a branchwise implicative $B C I$-algebra have been investigated.

1 Introduction K. Iseki and S. Tanaka [10] introduced the notions of positive implicative, implicative and commutative $B C K$-algebras. Further, K. Iseki [8, 11] introduced the notion of a $B C I$-algebra, which is a generalization of the concept of a $B C K$-algebra. K. Iseki [11] and K. Iseki and A.B. Thaheem [12] have shown that if the definitions of the above-mentioned classes of $B C K$-algebras are adopted for the corresponding classes of $B C I$-algebras, then no proper classes of such $B C I$-algebras exist, that is, such $B C I$-algebras are $B C K$-algebras of the corresponding type. Thus a natural question arises whether it is possible to introduce such generalizations of these notions for $B C I$-algebras which not only give proper classes of such $B C I$-algebras but also contain the corresponding classes of $B C K$-algebras. During the past ten years, M.A. Chaudhry [1, 3, 4], J. Meng and X.L. Lin [13, 14], C.S. Hoo [6, 7] and S.M. Wei, et. al. [17] have discussed this problem.

In this paper we introduce two new classes of $B C I$-algebras, the class of branchwise positive implicative $B C I$-algebras and the class of branchwise implicative $B C I$-algebras . The class of branchwise positive implicative $B C I$-algebras contains positive implicative $B C K$-algebras [9, 10], medial $B C I$-algebras [6, 7, 16], weakly positive implicative $B C I$ algebras [1] as well as positive implicative $B C I$-algebras [13]. The class of branchwise implicative $B C I$-algebras contains implicative $B C K$-algebras [9, 10], weakly implicative $B C I$-algebras [1] and quasi-implicative $B C I$-algebras [17]. Our classes of $B C I$-algebras are so general that they contain all the corresponding $B C I$-algebras introduced so far. We also establish necessary and sufficient conditions for a $B C I$-algebra to be a branchwise implicative $B C I$-algebra, which give a generalization of the following well-known result of K. Iseki [10].

Theorem A. A BCK-algebras is implicative if and only if it is positive implicative and commutative.

[^0]2 Preliminaries In this section we describe certain definitions and known results which will be used in the sequel.

Deffinition 1 [11]. A. $B C I$-algebras is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms for $x, y, z \in X$:
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x(x * y)) * y=0$,
(3) $x * x=0$,
(4) $x * x=0$ and $y * x=0$ imply $x=y$,
(5) $x * 0=0$ implies $x=0$.

A partial ordering \leq on X is defined by " $x \leq y$ if and only if $x * y=0$ ".
If (5) is replaced by $0 * x=0$, then the algebra is called a $B C K$-algebra [10]. It is known that every $B C K$-algebra is a $B C I$-algebra but the converse is not true [11].

In a $B C I$-algebra the following hold [11]:
(6) $(x * y) * z=(x * z) * y$,
(7) $x * 0=x$,
(8) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
(9) $x *(x *(x * y))=x * y$,
$(10) 0 *(x * y)=(0 * x) *(0 * y)$,
(11) $(x * z) *(y * z) \leq x * y$.

Definition 2 [10]. A $B C K$-algebra is called positive implicative if it satisfies
(12) $(x * y) * z=(x * z) *(y * z)$.

Definirion 3 [10]. A $B C K$-algebra is called commutative if it satisfies
(13) $x *(x * y)=y *(y * x)$.

Definition $4[\mathbf{9}, \mathbf{1 0}]$. A $B C K$-algebra is called implicative if it satisfies
$(14) x *(y * y)=x$.
Theorem B [10]. A BCK-algebra X is positive implicative if and only if it satisfies
(15) $x * y=(x * y) * y$ for all $x, y \in X$.

It has been shown in $[11,12]$ that no proper classes of positive implicative $B C I$-algebras, commutative BCI-algebras and implicative BCI-algebras exist. This has led to the following generalizations of these notions. Each generalization contains the corresponding class of $B C K$-algebras.

Definition 5 [1]. A $B C I$-algebra X satisfying
(16) $(x * y) * z=((x * z) * z) *(y * z)$ for all $x, y, z \in X$,
is called a weakly positive implicative $B C I$-algebra.

Theorem C [1]. A BCI-algebra X is weakly positive implicative if and only if
(17) $x * y=((x * y) * y) *(0 * y)$ for all $x, y \in X$.

Definition 6 [13]. A $B C I$-algebra X is said to be positive implicative if it satisfies
(18) $(x *(x * y)) *(y * x)=x *(x *(y *(y * x)))$ for all $x, y \in X$.

The following theorem shows that the notions of weak positive implicativeness and positive implicativeness for $B C I$-algebras are equivalent.

Theorem D [4,Theorems 1 and 2]. A BCI-algebra X is weakly positive implicative if and only if it is positive implicative.

A BCI-algebra satisfying $(x * y) *(z * u)=(x * z) *(y * u)$ is called a medial BCI-algebra.
Let X be a $B C I$-algebra and $M=\{x: x \in X$ and $0 * x=0\}$. Then M is called its $B C K$-part. If $M=\{0\}$, then X is called p-semisimple.

It has been shown in [5], [6], [7] and [16] that in a $B C I$-algebra X, the following are equivalent:
(19) X is medial,
(20) $x *(x * y)=y$ for all $x, y \in X$,
(21) $0 *(0 * x)=x$ for all $x \in X$,
(22) X is p-semisimple.

We now describe the notions of branches of a $B C I$-algebra and branchwise commutative $B C I$-algebras defined and investigated in [2] and [3].

Deffinition 7 [2]. Let X be a $B C I$-algebra, then the set $\operatorname{Med}(X)=\{x: x \in X$ and $0 *$ $(0 * x)=x\}$ is called the medial part of X.

Obviously, $0 \in \operatorname{Med}(X)$. It is known that $\operatorname{Med}(X)$ is a medial subalgebra of X [2]. Further, for each $x \in X$, there is a unique $x_{0}=0 *(0 * x) \in \operatorname{Med}(X)$ such that $x_{0} \leq x$ [2]. This is because $0 *\left(0 * x_{0}\right)=0 *(0 *(0 *(0 * x)))=0 *(0 * x)=x_{0}$. Obviously, for a $B C K$-algebra $X, \operatorname{Med}(X)=\{0\}$. In the sequel the elements of $\operatorname{Med}(X)$ will be denoted by x_{0}, y_{0}, \ldots

Definition 8 [2]. Let X be a $B C I$-algebra and $x_{0} \in \operatorname{Med}(X)$, then the set

$$
B\left(x_{0}\right)=\left\{x: x \in X \text { and } x_{0} * x=0\right\}
$$

is called a branch of X determined by the element x_{0}.
Remark 1. A $B C K$-algebra X is a one-branch $B C I$-algebra and in this case $X=B(0)$.
The following theorem proved in [2] and [3] shows that the branches of a $B C I$-algebra X are pairwise disjoint and form a partition of X. So the study of branches of a $B C I$-algebra X plays an important role in the investigation of the properties of X.

Theorem E [2, 3]. Let X be a $B C I$-algebra with medial part $\operatorname{Med}(X)$, then
(i) $\cup\left\{B\left(x_{0}\right): x_{0} \in \operatorname{Med}(X)\right\}=X$,
(ii) $B\left(x_{0}\right) \cap B\left(y_{0}\right)=\emptyset$ for $x_{0}, y_{0} \in \operatorname{Med}(X)$ and $x_{0} \neq y_{0}$,
(iii) if $x, y \in B\left(x_{0}\right)$, then $0 * x=0 * y=0 * x_{0}=0 * y_{0}$ and $x * y \in M, \quad y * x \in M$, that is,

$$
0 *(x * y)=0=0 *(y * x)
$$

Definition 9 [3]. A $B C I$-algebra X is said to be branchwise commutative if and only if for $x_{0} \in \operatorname{Med}(X)$ and $x, y \in B\left(x_{0}\right)$ the equality
(23) $x *(x * y)=y *(y * x)$ holds.

Since a $B C K$-algebra is a one-branch $B C I$-algebra, therefore it is commutative if and only if it is branchwise commutative.

Theorem F [3]. A BCI-algebra X is branchwise commutative if and only if
(24) $x *(x * y)=y *(y *(x *(x * y)))$ for all $x, y \in X$.

3 Branchwise Positive implicative $B C I$-algebras. In this section we define branchwise positive implicative $B C I$-algebras and show that this proper class of $B C I$-algebras contains the class of positive implicative $B C K$-algebras, the class of medial $B C I$-algebras and the class of weakly positive implicative $B C I$-algebras.

Definition 10. A $B C I$-algebra X is called a branchwise positive implicative $B C I$-algebra if, for all $x_{0} \in \operatorname{Med}(X)$ and x, y beloging to the same branch $B\left(x_{0}\right)$, it satisfies
$(25) x * y=(x * y) *(y *(0 *(0 * y)))$.
Example 1. Let $X=\{0,1,2,3\}$ in which $*$ is defined by

$*$	0	1	2	3
0	0	0	0	3
1	1	0	0	3
2	2	2	0	3
3	3	3	3	0

It is easy to verify that X is branchwise positive implicative. This shows that proper branchwise positive implicative $B C I$-algebras exist.

Remark 2. (i) A $B C K$-algebra X is a one-branch $B C I$-algebra and $X=B(0)$. If $x, y \in$ $X=B(0)$, then $0 * y=0$ gives $0 *(0 * y)=0$. Further, if X is positive implicative, then $x * y=(x * y) * y$ or $x * y=(x * y) *(y *(0 *(0 * y)))$. Thus X is a branchwise positive implicative $B C I$-algebra.
(ii) It is known that every branch of a medial $B C I$-algebra is singleton. Let X be a medial $B C I$-algebra and $x_{0} \in \operatorname{Med}(X)$, then $B\left(x_{0}\right)=\left\{x_{0}\right\}$. Hence $x_{0} * x_{0}=0=$
$\left(x_{0} * x_{0}\right) *\left(x_{0} * x_{0}\right)=\left(x_{0} * x_{0}\right) *\left(x_{0} *\left(0 *\left(0 * x_{0}\right)\right)\right)$. Thus X is branchwise positive imlplicative.

We now show that every weakly positive implicative $B C I$-algebra [1] is branchwise positive implicative.

Theorem 1. If X is a weakly positive implicative $B C I$-algebra, then it is a branchwise positive implicative BCI-algebra.

Proof. Let X be a weakly positive implicative $B C I$-algebra, then (17) gives
(a)

$$
p * q=((p * q) * q) *(0 * q) \text { for all } p, q \in X
$$

Let $x_{0} \in \operatorname{Med}(X)$ and $x, y \in B\left(x_{0}\right)$. Then

$$
\begin{aligned}
& {[(x * y) *(y *(0 *(0 * y)))] *(x * y)} \\
& =((x * y) *(x * y)) *(y *(0 *(0 * y))) \quad(\text { by }(6)) \\
& =0 *(y *(0 *(0 * y)))=(0 * y) *(0 *(0 *(0 * y))) \quad(\text { by }(10)) \\
& =(0 * y) *(0 * y) \quad(\text { by }(9)) \\
& =0
\end{aligned}
$$

Thus
(b)

$$
(x * y) *(y *(0 *(0 * y))) \leq x * y
$$

Since X is weakly positive implicative, therefore using (a), we get

$$
\begin{aligned}
& (x * y) *[(x * y) *(y *(0 *(0 * y)))] \\
& =[((x * y) * y) *(0 * y)] *[(x * y) *(y *(0 *(0 * y)))] \\
& =[[(x * y) *[(x * y) *(y *(0 *(0 * y)))]] * y] *(0 * y) \quad(\text { using (6) twice) } \\
& \leq((y *(0 *(0 * y))) * y) *(0 * y) \quad(\text { by }(2)) \\
& =((y * y) *(0 *(0 * y))) *(0 * y)=(0 *(0 *(0 * y))) *(0 * y) \\
& =(0 * y) *(0 * y) \quad(\text { by }(9)) \\
& =0
\end{aligned}
$$

Hence
(c)

$$
x * y \leq(x * y) *(y *(0 *(0 * y)))
$$

Using (b) and (c), we get $x * y=(x * y) *(y *(0 *(0 * y)))$ for all $x, y \in B\left(x_{0}\right)$. Hence X is a branchwise positive implicative $B C I$-algebras. This completes the proof.

The following example shows that the converse of the above theorem is not true.
Example 2 [15]. Let $X=\{0,1,2,3\}$ in which $*$ is defined by

$*$	0	1	2	3
0	0	0	2	2
1	1	0	2	2
2	2	2	0	0
3	3	2	1	0

Routine calculations give that X is branchwise positive implicative but not weakly positive implicative because $3 * 2=1$ and $((3 * 2) * 2) *(0 * 2)=(1 * 2) *(0 * 2)=2 * 2=0$. Thus $3 * 2 \neq((3 * 2) * 2) *(0 * 2)$.

4 Branchwise Implicative $B C I$-algebras In this section we define branchwise implicative $B C I$-algebras and show that this proper class of $B C I$-algebras contains the class of implicative $B C K$-algebras [10], the class of medial $B C I$-algebras [7] and the class of quasi-implicative $B C I$-algebras [17]. We also investigate necessary and sufficient conditions for a $B C I$-algebra to be a branchwise positive implicative $B C I$-algebra.

Since no proper class of implicative $B C K$-algebras exists, therefore the following generalizations of this notion have been made during the past ten years.

Definition 11 [1]. A $B C I$-algebra X is called weakly implicative if and only if (26) $x=(x *(y * x)) *(0 *(y * x))$ for all $x, y \in X$.

Definition 12 [17]. A $B C I$-algebra X is called quasi-implicative if and only if (27) $y *(y *(x *(x * y)))=((x *(x * y)) *(x * y)) *(0 *(x * y))$ for all $x, y \in X$.

We further generalize this concept and prove a generalization of Theorem A, a wellknown result of K. Iseki [10].

Definition 13. A $B C I$-algebra X is said to be a branchwise implicative $B C I$-algebra if and only if

$$
\begin{equation*}
x *(y * x)=x, \text { for all } x_{0} \in \operatorname{Med}(X) \text { and for all } x, y \in B\left(x_{0}\right) \tag{28}
\end{equation*}
$$

Example 3 [15]. The set X with the binary operation $*$ defined as

$*$	0	1	2	3
0	0	0	2	2
1	1	0	3	2
2	2	2	0	0
3	3	2	1	0

is a branchwise implicative $B C I$-algebra. Thus there exist proper branchwise implicative $B C I$-algebras .

Remark 2. (i) A $B C K$-algebra X is one-branch $B C I$-algebra and $X=B(0)$. If $x, y \in$ $X=B(0)$ and X is an implicative $B C K$-algebra, then $x *(y * x)=x$ for $x, y \in X=B(0)$. Hence X is a branchwise implicative $B C I$-algebra.
(ii) Let X be a medial $B C I$-algebra, then each beanch is a singleton. Thus $B\left(x_{0}\right)=$ $\left\{x_{0}\right\}$. Further, $x_{0}=x_{0} * 0=x_{0} *\left(x_{0} * x_{0}\right)$. Hence X is branchwise implicative.
(iii) Let X be a weakly implicative $B C I$-algebra, then $x=(x *(y * x)) *(0 *(y * x))$. Let $x_{0} \in \operatorname{Med}(X)$ and $x, y \in B\left(x_{0}\right)$, then Theorem E part (iii) implies $0 *(y * x)=0$. Hence $x=(x *(y * x)) * 0=x *(y * x)$ for all $x, y \in B\left(x_{0}\right)$. Thus X is branchwise implicative. But the following example shows that the converse is not true.

Example 4. Let $X=\{0,1,2\}$ in which $*$ is defined by

Then X is branchwise implicative but not weakly implicative because $(1 *(2 * 1)) *(0 *(2 * 1))=$ $(1 * 2) *(0 * 2)=2 * 2=0 \neq 1$.

We now investigate necessary and sufficient conditions for a $B C I$-algebra to be a branchwise implicative $B C I$-algebra.

Theorem 2. If a BCI-algebra X is a branchwise positive implicative and branchwise commutative BCI-algebra, then it is a branchwise implicative BCI-algebra.
Proof. Let X be a branchwise positive implicative as well as a branchwise commutative $B C I$-algebra. Let $x_{0} \in \operatorname{Med}(X)$ and $x, y \in B\left(x_{0}\right)$. Then (24) gives

$$
x *(x *(y * x))=(y * x) *((y * x) *(x *(x *(y * x))))
$$

Using (25) we get

$$
\begin{aligned}
x *(x *(y * x)) & =((y * x) *(x *(0 *(0 * x)))) *((y * x) *(x *(x *(y * x)))) \\
& =[(y * x) *((y * x) *(x *(x *(y * x))))] *(x *(0 *(0 * x))) \\
& =(x *(x *(y * x))) *(x *(0 *(0 * x))) \quad(\text { by }(24)) \\
& \leq(0 *(0 * x)) *(x *(y * x)) \quad(\text { by }(1)) \\
& =(0 *(x *(y * x))) *(0 * x) \quad(\text { by }(6)) \\
& =((0 * x) *(0 *(y * x))) *(0 * x) \quad(\text { by }(10)) \\
& =((0 * x) * 0) *(0 * x) \quad(\text { by Th. } \mathrm{E}(\text { part iii })) \\
& =(0 * x) *(0 * x)=0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
x \leq x *(y * x) \tag{d}
\end{equation*}
$$

Further, $(x *(y * x)) * x=(x * x) *(y * x)=0 *(y * x)=0$. Thus

$$
\begin{equation*}
x *(y * x) \leq x \tag{e}
\end{equation*}
$$

which along with (d) implies $x=x *(y * x)$ for all $x, y \in B\left(x_{0}\right)$. Hence X is branchwise implicative. This completes the proof.

We now state and use the following theorem.
Theorem G [17, Theorem 1]. If X is a quasi-implicative BCI-algebra, then it is both weakly positive implicative and branchwise commutative.

Remark 3. Theorem 1 gives that every weakly positive implicative $B C I$-algebra X is branchwise positive implicative. Thus Theorem G implies that every quasi-implicative $B C I$-algebra is both branchwise positive implicative and branchwise commutative. Using Theorem 2 we get that every quasi-implicative $B C I$-algebra is branchwise implicative. But its converse is not true because that $B C I$-algebra of Example 2 is branchwise positive implicative as well as branchwise implicative but it is not quasi-implicative. This is because

$$
1 *(1 *(3 *(3 * 1)))=1 *(1 *(3 * 2))=1 *(1 * 1)=1 * 0=1
$$

and

$$
\begin{aligned}
((3 *(3 * 1)) *(3 * 1)) *(0 *(3 * 1)) & =((3 * 2) * 2) *(0 * 2) \\
& =(1 * 2) * 2=2 * 2=0,
\end{aligned}
$$

which implies

$$
y *(y *(x *(x * y))) \neq((x *(x * y)) *(x * y))(0 *(x * y)) .
$$

Theorem 3. If X is a branchwise implicative BCI-algebra, then it is both branchwise positive implicative and branchwise commutative.
Proof. Let X be branchwise implicative. Let $x_{0} \in \operatorname{Med}(X)$ and $x, y \in B\left(x_{0}\right)$. Then $x=x *(y * x)$, which implies

$$
\begin{aligned}
x *(x * y) & =(x *(y * x)) *(x * y) \\
& =(x *(x * y)) *(y * x) \leq y *(y * x) .
\end{aligned}
$$

Interchanging x and y we get

$$
y *(y * x) \leq x *(x * y) .
$$

Thus $x *(x * y)=y *(y * x)$ for all $x, y \in B\left(x_{0}\right)$. Hence X is branchwise commutative. Further

$$
\begin{aligned}
& {[(x * y) *(y *(0 *(0 * y)))] *(x * y)} \\
& =((x * y) *(x * y)) *(y *(0 *(0 * y))) \\
& =0 *(y *(0 *(0 * y)))=(0 * y) *(0 *(0 *(0 * y))) \\
& =(0 * y) *(0 * y)=0
\end{aligned}
$$

Thus

$$
\begin{equation*}
(x * y) *(y *(0 *(0 * y))) \leq x * y \tag{f}
\end{equation*}
$$

Since $x, y \in B\left(x_{0}\right)$, therefore $x * y \in M=B(0)$. Further $0 *(0 * y) \leq y$ gives that $0 *(0 * y)$ and y belong to the same branch $B\left(y_{0}\right)$. Thus $y *(0 *(0 * y)) \in M=B(0)$. Since X is branchwise commutative, therefore

$$
\begin{aligned}
&(x * y) *((x * y) *(y *(0 *(0 * y)))) \\
&=(y *(0 *(0 * y))) *((y *(0 *(0 * y))) *(x * y)) \\
&=(y *(0 *(0 * y))) *((y *(x * y)) *(0 *(0 * y))) \\
&=(y *(0 *(0 * y))) *(y *(0 *(0 * y))), \quad(\text { by }(28))
\end{aligned}
$$

because X is branchwise implicative. Hence

$$
\begin{aligned}
& (x * y) *((x * y) *(y *(0 *(0 * y)))) \\
& \quad=(y *(0 *(0 * y))) *(y *(0 *(0 * y)))=0
\end{aligned}
$$

Thus

$$
\begin{equation*}
x * y \leq(x * y) *(y *(0 *(0 * y))) \tag{g}
\end{equation*}
$$

which along with (f) implies $x * y=(x * y) *(y *(0 *(0 * y)))$. Thus X is branchwise positive implicative. This complete the proof.

Combining Theorems 2 and 3, we get the following theorem.
Theorem 4. A BCI-algebra X is branchwise implicative if and only if it is both branchwise positive implicative and branchwise commutative.

Remark 4. Since in a $B C K$-algebra X branchwise implicativeness, branchwise positive implicativeness and branchwise commutativeness coincide with implicativeness, positive implicativeness and commutativeness, respectively, therefore the following well-known result, Theorem A, of K. Iseki [10] follows as a corollary from Theorem 4.

Corollary 1. A BCK-algebras X is implicative if and only if it is both positive implicative and commutative.

Acknowledgment. The author gratefully acknowledges the support provided by King Fahd University of Petroleum and Minerals during this reseach.

References

[1] M. Anwar Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japonica, 35(1990), 141-151.
[2] M. Anwar Chaudhry, On BCH-algebras, Math. Japonica, 36(1991), 665-676.
[3] M. Anwar Chaudhry, Branchwise commutative BCI-algebras, Math. Japonica, 37(1992), 163170.
[4] M. Anwar Chaudhry, On positive implicative BCI-algebras, Math. Japonica, 52(2000), 9-12.
[5] W.A. Dudek, On some algebras with condition(s), Math. Japonica, 31(1986), 25-29.
[6] C.S. Hoo, BCI-algebras with condition(s), Math. Japonica, 32(1987), 741-748.
[7] C.S. Hoo and P.V. Ramna Murty, Quasi-commutative p-semisimple BCI-algebras, Math. Japonica, 33(1988), 237-246.
[8] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29.
[9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21(1976), 352-366.
[10] K. Iseki and S. Tanaka, An introduction to the theory of $B C K$-algebras, Math. Japonica, 23(1978), 1-26.
[11] K. Iseki, On BCI-algebras, Math. Seminar Notes, Kobe University 8(1980), 125-130.
[12] K. Iseki and A.B. Thaheem, Note on BCI-algebras, Math. Japonica, 29(1984), 255-258.
[13] J. Meng and X.L. Xin, Positive implicatrive $B C I$-algebras, Selected papers on $B C K$ - and $B C I$-algebras, Shaanxi Scientific and Technological Press, Xian, 1992, 45-49.
[14] J. Meng and X.L. Xin, Implicative $B C I$-algebras, Selected papers on $B C K$ - and $B C I$-algebras, Shaanxi Scientific and Technological Press, Xian, 1992, 50-53.
[15] E.H. Roh and Y. Huang, J-semisimple $B C I$-algebras, Math. Japonica, 49(1999), 213-216.
[16] L. Tiande and Xi Changchang, p-radical in BCI-algebras, Math. Japonica, 30(1987). 511-517.
[17] S.M. Wei, G.Q. Bai, J. Meng and Y.Q. Wang, Quasi-implicative BCI-algebras, Math. Japonica, 50(1999), 227-233.

Department of Mathmatical Sciences
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
e-mail: chaudhry@kfupm.edu.sa

[^0]: 1991 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. Brachwise positive implicative $B C I$-algebras, branchwise implicative $B C I$ algebras, branchwise commutative $B C I$-algebras, branch.

