Q-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

YOUNG BAE JUN

Received July 11, 2000

ABSTRACT. Given a set Q, we introduce the notion of Q-fuzzy subalgebras of BCK/BCIalgebras, and provide some appropriate examples. Using fuzzy subalgebras, we describe Qfuzzy subalgebras. Conversely, we construct fuzzy subalgebras by using Q-fuzzy subalgebras. How the homomorphic images and inverse images of Q-fuzzy subalgebras become Q-fuzzy subalgebras is stated.

1. Introduction

The notion of BCK-algebras was proposed by Iami and Iséki in 1966. In the same year, Iséki [1] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universial structures including lattices and Boolean algebras. Fuzzy sets were initiated by Zadeh [5]. In this paper, given a set Q, we introduce the notion of Q-fuzzy subalgebras of BCK/BCI-algebras, and provide some appropriate examples. Using fuzzy subalgebras, we describe Q-fuzzy subalgebras. Conversely, we construct fuzzy subalgebras by using Q-fuzzy subalgebras. How the homomorphic images and inverse images of Q-fuzzy subalgebras become Q-fuzzy subalgebras is stated.

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Recall that a *BCI-algebra* is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

(III) x * x = 0, and

(IV) x * y = 0 and y * x = 0 imply x = y

for every $x, y, z \in X$. A BCI-algebra X satisfying the condition (V) 0 * x = 0 for all $x \in X$

is called a *BCK-algebra*. A non-empty subset *S* of a BCK/BCI-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A mapping $f : X \to Y$ of BCK/BCI-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. For further information on BCK/BCI-algebras, the reader refer to the textbook **BCK-algebras** (Meng and Jun [4]) and [1, 2, 3].

3. Q-fuzzy subalgebras

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35;\ 03B52.$

Key words and phrases. Q-fuzzy set; Q-fuzzy subalgebra .

Let X be a BCK/BCI-algebra. A fuzzy set A in X, i.e., a mapping $A : X \to [0, 1]$, is called a *fuzzy subalgebra* of X if $A(x * y) \ge \min\{A(x), A(y)\}$ for all $x, y \in X$. Note that if A is a fuzzy subalgebra of a BCK/BCI-algebra X, then $A(0) \ge A(x)$ for all $x \in X$.

Proposition 3.1. Let A be a fuzzy subalgebra of a BCK/BCI-algebra X. Define a fuzzy set B in X by $B(x) = \frac{A(x)}{A(0)}$ for all $x \in X$. Then B is a fuzzy subalgebra of X and B(0) = 1. *Proof.* For any $x, y \in X$, we have

$$\begin{split} B(x*y) &= \frac{1}{A(0)} A(x*y) \geq \frac{1}{A(0)} \min\{A(x), A(y)\} \\ &= \min\{\frac{A(x)}{A(0)}, \frac{A(y)}{A(0)}\} = \min\{B(x), B(y)\}. \end{split}$$

Hence B is a fuzzy subalgebra of X, and clearly B(0) = 1. \Box

According to Proposition 3.1, we may suppose that a fuzzy subalgebra A of a BCK/BCIalgebra X satisfies A(0) = 1.

In what follows, let Q and X denote a set and a BCK/BCI-algebra, respectively, unless otherwise specified. A mapping $H: X \times Q \rightarrow [0, 1]$ is called a Q-fuzzy set in X.

Definition 3.2. A *Q*-fuzzy set $H: X \times Q \rightarrow [0,1]$ is called a *fuzzy subalgebra* of *X* over *Q* (briefly, *Q*-fuzzy subalgebra of *X*) if $H(x * y, q) \geq \min\{H(x, q), H(y, q)\}$ for all $x, y \in X$ and $q \in Q$.

Example 3.3. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Define a Q-fuzzy set H in X as follows: for every $q \in Q$, H(0,q) = H(b,q) = 0.6 and H(a,q) = H(c,q) = 0.2. It is easy to verify that H is a Q-fuzzy subalgebra of X.

Example 3.4. Consider a BCI-algebra $X = \{0, x\}$ with Cayley table as follows (Iséki [2]):

Let $Q = \{1, 2\}$ and let H be a Q-fuzzy set in X defined by H(0, 1) = H(0, 2) = 1, H(x, 1) = 0.8 and H(x, 2) = 0.5. It is easy to verify that H is a Q-fuzzy subalgebra of X.

Example 3.5. Let X be a BCK/BCI-algebra and let

$$Q = \{A \mid A \text{ is a fuzzy subalgebra of } X\}.$$

Let H be a mapping from $X \times Q$ into [0,1] defined by H(x, A) = A(x) for all $x \in X$ and $A \in Q$. Then H is a Q-fuzzy subalgebra of X.

Note that for $q \in Q$, if H is a q-fuzzy subalgebra of X, then

$$H(0,q) = H(x * x,q) \ge \min\{H(x,q), H(x,q)\} = H(x,q)$$

for all $x \in X$.

Proposition 3.6. Let *H* be a *Q*-fuzzy subalgebra of *X*. Define a *Q*-fuzzy set *G* in *X* by $G(x,q) = \frac{H(x,q)}{H(0,q)}$ for all $x \in X$ and $q \in Q$. Then *G* is a *Q*-fuzzy subalgebra of *X*.

Proof. Let $x, y \in X$ and $q \in Q$. Then

$$G(x * y, q) = \frac{H(x * y, q)}{H(0, q)} \ge \frac{1}{H(0, q)} \min\{H(x, q), H(y, q)\}$$
$$= \min\{\frac{H(x, q)}{H(0, q)}, \frac{H(y, q)}{H(0, q)}\} = \min\{G(x, q), G(y, q)\}.$$

Hence G is a Q-fuzzy subalgebra of X. \Box

Let X^Q denote the collection of all functions from Q into X, and define a binary operation \circledast on X^Q by

$$(u \circledast v)(q) = u(q) \ast v(q)$$

for all $u, v \in X^Q$ and $q \in Q$. Then $(X^Q, \circledast, \theta)$ is a BCK/BCI-algebra, where θ is the zero map in X^Q , i.e., $\theta(q) = 0$ for all $q \in Q$.

Proposition 3.7. Let A be a fuzzy subalgebra of X and let H be a mapping from $X^Q \times Q$ into [0,1] defined by H(u,q) = A(u(q)) for all $u \in X^Q$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X^Q .

Proof. For any $u, v \in X^Q$, we have

$$H(u \circledast v, q) = A((u \circledast v)(q)) = A(u(q) \ast v(q))$$

$$\geq \min\{A(u(q)), A(v(q))\}$$

$$= \min\{H(u, q), H(v, q)\}.$$

Hence H is a Q-fuzzy subalgebra of X^Q .

Proposition 3.8. Let H be a Q-fuzzy subalgebra of X. For any $q \in Q$, define $H_q : X \to [0,1]$ by $H_q(x) = H(x,q)$ for all $x \in X$. Then H_q is a fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $q \in Q$. Then

$$H_q(x * y) = H(x * y, q) \ge \min\{H(x, q), H(y, q)\} = \min\{H_q(x), H_q(y)\}.$$

Hence H_q is a fuzzy subalgebra of X. \Box

We now consider the converse of Proposition 3.8.

Proposition 3.9. Let H_q , $q \in Q$, be a fuzzy subalgebra of X. Let H be a Q-fuzzy set in X defined by $H(x,q) = H_q(x)$ for all $x \in X$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X.

Proof. For every $x, y \in X$ and $q \in Q$, we have

$$H(x * y, q) = H_q(x * y) \ge \min\{H_q(x), H_q(y)\} = \min\{H(x, q), H(y, q)\}.$$

Thus H is a Q-fuzzy subalgebra of X. \Box

Proposition 3.10. Let Ω be a subalgebra of X^Q . Then for any $q \in Q$, the set $\Omega_q := \{u(q) \mid u \in \Omega\}$ is a subalgebra of X.

Proof. For any $q \in Q$, let $u(q), v(q) \in \Omega_q$. Then $u(q) * v(q) = (u \circledast v)(q) \in \Omega_q$ since $u \circledast v \in \Omega$. Hence $\Omega_q, q \in Q$, is a subalgebra of X. \Box **Theorem 3.11.** Let A be a fuzzy subalgebra of X^Q . Define a mapping

$$H: X \times Q \to [0,1]$$
 by $H(x,q) := \sup\{A(u) \mid u \in X^Q, u(q) = x\}$

for all $x \in X$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X. Proof. Let $x, y \in X$ and $q \in Q$. Then

$$\begin{split} H(x*y,q) &= \sup\{A(u) \mid u \in X^Q, u(q) = x*y\} \\ &\geq \sup\{A(u \circledast v) \mid u, v \in X^Q, u(q) = x, v(q) = y\} \\ &\geq \sup\{\min\{A(u), A(v)\} \mid u, v \in X^Q, u(q) = x, v(q) = y\} \\ &= \min\{\sup\{A(u) \mid u \in X^Q, u(q) = x\}, \sup\{A(v) \mid v \in X^Q, v(q) = y\}\} \\ &= \min\{H(x,q), H(y,q)\}. \end{split}$$

Hence H is a Q-fuzzy subalgebra of X. \Box

Example 3.12. Let $X = \{0, x\}$ be a BCI-algebra in Example 3.4 and let $Q = \{1, 2\}$. Then $X^Q := \{\theta, u, v, w\}$, where $\theta(1) = \theta(2) = 0$, u(1) = u(2) = x, v(1) = 0, v(2) = x, w(1) = x and w(2) = 0, is a BCI-algebra under the following Cayley table:

Let A be a fuzzy subalgebra of X^Q defined by $A(\theta) = 0.8$, A(u) = A(v) = 0.3 and A(w) = 0.7. Then we can obtain a Q-fuzzy subalgebra of X as follows:

$$H(0,1) = \sup\{A(u) \mid u \in X^Q, u(1) = 0\}$$

= sup{ $A(\theta), A(v)$ } = sup{ $0.8, 0.3$ } = 0.8,

and similarly we have H(0, 2) = 0.8, H(x, 1) = 0.7 and H(x, 2) = 0.3.

Theorem 3.13. Let H be a Q-fuzzy subalgebra of X and let A be a fuzzy set in X^Q defined by $A(u) := \inf \{H(u(q), q) \mid q \in Q\}$ for all $u \in X^Q$. Then A is a fuzzy subalgebra of X^Q .

Proof. Let $u, v \in X^Q$. Then

$$A(u \circledast v) = \inf \{ H((u \circledast v)(q), q) \mid q \in Q \}$$

= $\inf \{ H(u(q) \ast v(q), q) \mid q \in Q \}$
 $\geq \inf \{ \min \{ H(u(q), q), H(v(q), q) \} \mid q \in Q \}$
= $\min \{ \inf \{ H(u(q), q) \mid q \in Q \}, \inf \{ H(v(q), q) \mid q \in Q \} \}$
= $\min \{ A(u), A(v) \}.$

Therefore A is a fuzzy subalgebra of X^Q . \Box

Example 3.14. Let *H* be a *Q*-fuzzy subalgerba of *X* in Example 3.4. Then we can induce a fuzzy subalgebra *A* of X^Q as follows:

$$A(\theta) = \inf \{ H(\theta(q), q) \mid q \in Q \}$$

= $\inf \{ H(\theta(1), 1), H(\theta(2), 2) \} = 1$

and similarly we obtain A(u) = A(v) = 0.5 and A(w) = 0.8, where X^Q is a BCI-algebra in Example 3.12.

Definition 3.15. Let $f: X \to Y$ be a homomorphism of BCK/BCI-algebras and let H be a Q-fuzzy set in Y. Then the *inverse image* of H, denoted by $f^{-1}[H]$, is the Q-fuzzy set in X given by $f^{-1}[H](x,q) = H(f(x),q)$ for all $x \in X$ and $q \in Q$. Conversely, let G be a Q-fuzzy set in X. The *image* of G, written as f[G], is a Q-fuzzy set in Y defined by

$$f[G](y,q) = \begin{cases} \sup_{z \in f^{-1}(y)} G(z,q) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise,} \end{cases}$$

for all $y \in Y$ and $q \in Q$, where $f^{-1}(y) = \{x \mid f(x) = y\}$.

Theorem 3.16. Let $f : X \to Y$ be a homomorphism of BCK/BCI-algebras. If H is a Q-fuzzy subalgebra of Y, then the inverse image $f^{-1}[H]$ of H is a Q-fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $q \in Q$. Then

$$f^{-1}[H](x * y, q) = H(f(x * y), q) = H(f(x) * f(y), q)$$

$$\geq \min\{H(f(x), q), H(f(y), q)\}$$

$$= \min\{f^{-1}[H](x, q), f^{-1}[H](y, q)\}.$$

Hence $f^{-1}[H]$ is a Q-fuzzy subalgebra of X. \Box

Theorem 3.17. Let $f : X \to Y$ be a homomorphism between BCK/BCI-algebras X and Y. If G is a Q-fuzzy subalgebra of X, then the image f[G] of G is a Q-fuzzy subalgebra of Y.

Proof. We first prove that

(*1)
$$f^{-1}(y_1) * f^{-1}(y_2) \subseteq f^{-1}(y_1 * y_2)$$

for all $y_1, y_2 \in Y$. For, if $x \in f^{-1}(y_1) * f^{-1}(y_2)$, then $x = x_1 * x_2$ for some $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$. Since f is a homomorphism, it follows that $f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2$ so that $x \in f^{-1}(y_1 * y_2)$. Hence (*1) holds. Now let $y_1, y_2 \in Y$ and $q \in Q$. Assume that $y_1 * y_2 \notin \text{Im}(f)$. Then $f[G](y_1 * y_2, q) = 0$. But if $y_1 * y_2 \notin \text{Im}(f)$, i.e., $f^{-1}(y_1 * y_2) = \emptyset$, then $f^{-1}(y_1) = \emptyset$ or $f^{-1}(y_2) = \emptyset$ by (*1). Thus $f[G](y_1, q) = 0$ or $f[G](y_2, q) = 0$, and so

$$f[G](y_1 * y_2, q) = 0 = \min\{f[G](y_1, q), f[G](y_2, q)\}.$$

Suppose that $f^{-1}(y_1 * y_2) \neq \emptyset$. Then we should consider two cases as follows:

(i)
$$f^{-1}(y_1) = \emptyset$$
 or $f^{-1}(y_2) = \emptyset$,
(ii) $f^{-1}(y_1) \neq \emptyset$ and $f^{-1}(y_2) \neq \emptyset$

For the case (i), we have $f[G](y_1,q) = 0$ or $f[G](y_2,q) = 0$, and so

$$f[G](y_1 * y_2, q) \ge 0 = \min\{f[G](y_1, q), f[G](y_2, q)\}$$

Case (ii) implies from (*1) that

$$\begin{split} f[G](y_1 * y_2, q) &= \sup_{z \in f^{-1}(y_1 * y_2)} G(z, q) \geq \sup_{z \in f^{-1}(y_1) * f^{-1}(y_2)} G(z, q) \\ &= \sup_{x_1 \in f^{-1}(y_1), \, x_2 \in f^{-1}(y_2)} G(x_1 * x_2, q) \\ &\geq \sup_{x_1 \in f^{-1}(y_1), \, x_2 \in f^{-1}(y_2)} \min\{G(x_1, q), G(x_2, q)\} \\ &= \min\{\sup_{x_1 \in f^{-1}(y_1)} G(x_1, q), \sup_{x_2 \in f^{-1}(y_2)} G(y_2, q)\} \\ &= \min\{f[G](y_1, q), f[G](y_2, q)\}. \end{split}$$

Hence $f[G](y_1 * y_2, q) \ge \min\{f[G](y_1, q), f[G](y_2, q)\}$ for all $y_1, y_2 \in Y$ and $q \in Q$. This completes the proof. \Box

References

[1] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 351-366.

[2] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.

[3] K. Iséki, Some examples of BCI-algebras, Math. Seminar Notes 8 (1980), 237-240.

[4] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Korea, 1994.

[5] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Education Gyeongsang National University Jinju 660-701, Korea. E-mail address: ybjun@nongae.gsnu.ac.kr