Q-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

Young Bae Jun

Received July 11, 2000

Abstract

Given a set Q, we introduce the notion of Q-fuzzy subalgebras of BCK/BCIalgebras, and provide some appropriate examples. Using fuzzy subalgebras, we describe Q fuzzy subalgebras. Conversely, we construct fuzzy subalgebras by using Q-fuzzy subalgebras. How the homomorphic images and inverse images of Q-fuzzy subalgebras become Q-fuzzy subalgebras is stated.

1. Introduction

The notion of BCK-algebras was proposed by Iami and Iséki in 1966. In the same year, Iséki [1] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universial structures including lattices and Boolean algebras. Fuzzy sets were initiated by Zadeh [5]. In this paper, given a set Q, we introduce the notion of Q-fuzzy subalgebras of BCK/BCI-algebras, and provide some appropriate examples. Using fuzzy subalgebras, we describe Q-fuzzy subalgebras. Conversely, we construct fuzzy subalgebras by using Q-fuzzy subalgebras. How the homomorphic images and inverse images of Q-fuzzy subalgebras become Q-fuzzy subalgebras is stated.

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.
Recall that a BCI-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$, and
(IV) $x * y=0$ and $y * x=0$ imply $x=y$
for every $x, y, z \in X$. A BCI-algebra X satisfying the condition
(V) $0 * x=0$ for all $x \in X$
is called a BCK-algebra. A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A mapping $f: X \rightarrow Y$ of BCK/BCIalgebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. For further information on BCK/BCI-algebras, the reader refer to the textbook BCK-algebras (Meng and Jun [4]) and [1, 2, 3].

3. Q-fuzzy subalgebras

[^0]Let X be a BCK/BCI-algebra. A fuzzy set A in X, i.e., a mapping $A: X \rightarrow[0,1]$, is called a fuzzy subalgebra of X if $A(x * y) \geq \min \{A(x), A(y)\}$ for all $x, y \in X$. Note that if A is a fuzzy subalgebra of a BCK/BCI-algebra X, then $A(0) \geq A(x)$ for all $x \in X$.
Proposition 3.1. Let A be a fuzzy subalgebra of a $B C K / B C I$-algebra X. Define a fuzzy set B in X by $B(x)=\frac{A(x)}{A(0)}$ for all $x \in X$. Then B is a fuzzy subalgebra of X and $B(0)=1$.
Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
B(x * y) & =\frac{1}{A(0)} A(x * y) \geq \frac{1}{A(0)} \min \{A(x), A(y)\} \\
& =\min \left\{\frac{A(x)}{A(0)}, \frac{A(y)}{A(0)}\right\}=\min \{B(x), B(y)\}
\end{aligned}
$$

Hence B is a fuzzy subalgebra of X, and clearly $B(0)=1$.
According to Proposition 3.1, we may suppose that a fuzzy subalgebra A of a BCK/BCIalgebra X satisfies $A(0)=1$.

In what follows, let Q and X denote a set and a BCK/BCI-algebra, respectively, unless otherwise specified. A mapping $H: X \times Q \rightarrow[0,1]$ is called a Q-fuzzy set in X.

Definition 3.2. A Q-fuzzy set $H: X \times Q \rightarrow[0,1]$ is called a fuzzy subalgebra of X over Q (briefly, Q-fuzzy subalgebra of X) if $H(x * y, q) \geq \min \{H(x, q), H(y, q)\}$ for all $x, y \in X$ and $q \in Q$.
Example 3.3. Let $X=\{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Define a Q-fuzzy set H in X as follows: for every $q \in Q, H(0, q)=H(b, q)=0.6$ and $H(a, q)=H(c, q)=0.2$. It is easy to verify that H is a Q-fuzzy subalgebra of X.

Example 3.4. Consider a BCI-algebra $X=\{0, x\}$ with Cayley table as follows (Iséki [2]):

$*$	0	x
0	0	x
x	x	0

Let $Q=\{1,2\}$ and let H be a Q-fuzzy set in X defined by $H(0,1)=H(0,2)=1$, $H(x, 1)=0.8$ and $H(x, 2)=0.5$. It is easy to verify that H is a Q-fuzzy subalgebra of X.
Example 3.5. Let X be a BCK/BCI-algebra and let

$$
Q=\{A \mid A \text { is a fuzzy subalgebra of } X\} .
$$

Let H be a mapping from $X \times Q$ into $[0,1]$ defined by $H(x, A)=A(x)$ for all $x \in X$ and $A \in Q$. Then H is a Q-fuzzy subalgebra of X.

Note that for $q \in Q$, if H is a q-fuzzy subalgebra of X, then

$$
H(0, q)=H(x * x, q) \geq \min \{H(x, q), H(x, q)\}=H(x, q)
$$

for all $x \in X$.

Proposition 3.6. Let H be a Q-fuzzy subalgebra of X. Define a Q-fuzzy set G in X by $G(x, q)=\frac{H(x, q)}{H(0, q)}$ for all $x \in X$ and $q \in Q$. Then G is a Q-fuzzy subalgebra of X.
Proof. Let $x, y \in X$ and $q \in Q$. Then

$$
\begin{aligned}
G(x * y, q) & =\frac{H(x * y, q)}{H(0, q)} \geq \frac{1}{H(0, q)} \min \{H(x, q), H(y, q)\} \\
& =\min \left\{\frac{H(x, q)}{H(0, q)}, \frac{H(y, q)}{H(0, q)}\right\}=\min \{G(x, q), G(y, q)\} .
\end{aligned}
$$

Hence G is a Q-fuzzy subalgebra of X.
Let X^{Q} denote the collection of all functions from Q into X, and define a binary operation \circledast on X^{Q} by

$$
(u \circledast v)(q)=u(q) * v(q)
$$

for all $u, v \in X^{Q}$ and $q \in Q$. Then $\left(X^{Q}, \circledast, \theta\right)$ is a BCK/BCI-algebra, where θ is the zero map in X^{Q}, i.e., $\theta(q)=0$ for all $q \in Q$.
Proposition 3.7. Let A be a fuzzy subalgebra of X and let H be a mapping from $X^{Q} \times Q$ into $[0,1]$ defined by $H(u, q)=A(u(q))$ for all $u \in X^{Q}$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X^{Q}.
Proof. For any $u, v \in X^{Q}$, we have

$$
\begin{aligned}
H(u \circledast v, q) & =A((u \circledast v)(q))=A(u(q) * v(q)) \\
& \geq \min \{A(u(q)), A(v(q))\} \\
& =\min \{H(u, q), H(v, q)\} .
\end{aligned}
$$

Hence H is a Q-fuzzy subalgebra of X^{Q}.
Proposition 3.8. Let H be a Q-fuzzy subalgebra of X. For any $q \in Q$, define $H_{q}: X \rightarrow$ $[0,1]$ by $H_{q}(x)=H(x, q)$ for all $x \in X$. Then H_{q} is a fuzzy subalgebra of X.
Proof. Let $x, y \in X$ and $q \in Q$. Then

$$
H_{q}(x * y)=H(x * y, q) \geq \min \{H(x, q), H(y, q)\}=\min \left\{H_{q}(x), H_{q}(y)\right\} .
$$

Hence H_{q} is a fuzzy subalgebra of X.
We now consider the converse of Proposition 3.8.
Proposition 3.9. Let $H_{q}, q \in Q$, be a fuzzy subalgebra of X. Let H be a Q-fuzzy set in X defined by $H(x, q)=H_{q}(x)$ for all $x \in X$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X.
Proof. For every $x, y \in X$ and $q \in Q$, we have

$$
H(x * y, q)=H_{q}(x * y) \geq \min \left\{H_{q}(x), H_{q}(y)\right\}=\min \{H(x, q), H(y, q)\} .
$$

Thus H is a Q-fuzzy subalgebra of X.
Proposition 3.10. Let Ω be a subalgebra of X^{Q}. Then for any $q \in Q$, the set $\Omega_{q}:=$ $\{u(q) \mid u \in \Omega\}$ is a subalgebra of X.
Proof. For any $q \in Q$, let $u(q), v(q) \in \Omega_{q}$. Then $u(q) * v(q)=(u \circledast v)(q) \in \Omega_{q}$ since $u \circledast v \in \Omega$. Hence $\Omega_{q}, q \in Q$, is a subalgebra of X.

Theorem 3.11. Let A be a fuzzy subalgebra of X^{Q}. Define a mapping

$$
H: X \times Q \rightarrow[0,1] \text { by } H(x, q):=\sup \left\{A(u) \mid u \in X^{Q}, u(q)=x\right\}
$$

for all $x \in X$ and $q \in Q$. Then H is a Q-fuzzy subalgebra of X.
Proof. Let $x, y \in X$ and $q \in Q$. Then

$$
\begin{aligned}
H(x * y, q) & =\sup \left\{A(u) \mid u \in X^{Q}, u(q)=x * y\right\} \\
& \geq \sup \left\{A(u \circledast v) \mid u, v \in X^{Q}, u(q)=x, v(q)=y\right\} \\
& \geq \sup \left\{\min \{A(u), A(v)\} \mid u, v \in X^{Q}, u(q)=x, v(q)=y\right\} \\
& =\min \left\{\sup \left\{A(u) \mid u \in X^{Q}, u(q)=x\right\}, \sup \left\{A(v) \mid v \in X^{Q}, v(q)=y\right\}\right\} \\
& =\min \{H(x, q), H(y, q)\}
\end{aligned}
$$

Hence H is a Q-fuzzy subalgebra of X.
Example 3.12. Let $X=\{0, x\}$ be a BCI-algebra in Example 3.4 and let $Q=\{1,2\}$. Then $X^{Q}:=\{\theta, u, v, w\}$, where $\theta(1)=\theta(2)=0, u(1)=u(2)=x, v(1)=0, v(2)=x, w(1)=x$ and $w(2)=0$, is a BCI-algebra under the following Cayley table:

\circledast	θ	u	v	w
θ	θ	u	v	w
u	u	θ	w	v
v	v	w	θ	u
w	w	v	u	θ

Let A be a fuzzy subalgebra of X^{Q} defined by $A(\theta)=0.8, A(u)=A(v)=0.3$ and $A(w)=$ 0.7. Then we can obtain a Q-fuzzy subalgebra of X as follows:

$$
\begin{aligned}
H(0,1) & =\sup \left\{A(u) \mid u \in X^{Q}, u(1)=0\right\} \\
& =\sup \{A(\theta), A(v)\}=\sup \{0.8,0.3\}=0.8
\end{aligned}
$$

and similarly we have $H(0,2)=0.8, H(x, 1)=0.7$ and $H(x, 2)=0.3$.
Theorem 3.13. Let H be a Q-fuzzy subalgebra of X and let A be a fuzzy set in X^{Q} defined by $A(u):=\inf \{H(u(q), q) \mid q \in Q\}$ for all $u \in X^{Q}$. Then A is a fuzzy subalgebra of X^{Q}.

Proof. Let $u, v \in X^{Q}$. Then

$$
\begin{aligned}
A(u \circledast v) & =\inf \{H((u \circledast v)(q), q) \mid q \in Q\} \\
& =\inf \{H(u(q) * v(q), q) \mid q \in Q\} \\
& \geq \inf \{\min \{H(u(q), q), H(v(q), q)\} \mid q \in Q\} \\
& =\min \{\inf \{H(u(q), q) \mid q \in Q\}, \inf \{H(v(q), q) \mid q \in Q\}\} \\
& =\min \{A(u), A(v)\} .
\end{aligned}
$$

Therefore A is a fuzzy subalgebra of X^{Q}.

Example 3.14. Let H be a Q-fuzzy subalgerba of X in Example 3.4. Then we can induce a fuzzy subalgebra A of X^{Q} as follows:

$$
\begin{aligned}
A(\theta) & =\inf \{H(\theta(q), q) \mid q \in Q\} \\
& =\inf \{H(\theta(1), 1), H(\theta(2), 2)\}=1
\end{aligned}
$$

and similarly we obtain $A(u)=A(v)=0.5$ and $A(w)=0.8$, where X^{Q} is a BCI-algebra in Example 3.12.

Definition 3.15. Let $f: X \rightarrow Y$ be a homomorphism of BCK/BCI-algebras and let H be a Q-fuzzy set in Y. Then the inverse image of H, denoted by $f^{-1}[H]$, is the Q-fuzzy set in X given by $f^{-1}[H](x, q)=H(f(x), q)$ for all $x \in X$ and $q \in Q$. Conversely, let G be a Q-fuzzy set in X. The image of G, written as $f[G]$, is a Q-fuzzy set in Y defined by

$$
f[G](y, q)= \begin{cases}\sup _{z \in f^{-1}(y)} G(z, q) & \text { if } f^{-1}(y) \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

for all $y \in Y$ and $q \in Q$, where $f^{-1}(y)=\{x \mid f(x)=y\}$.
Theorem 3.16. Let $f: X \rightarrow Y$ be a homomorphism of BCK/BCI-algebras. If H is a Q-fuzzy subalgebra of Y, then the inverse image $f^{-1}[H]$ of H is a Q-fuzzy subalgebra of X.
Proof. Let $x, y \in X$ and $q \in Q$. Then

$$
\begin{aligned}
f^{-1}[H](x * y, q) & =H(f(x * y), q)=H(f(x) * f(y), q) \\
& \geq \min \{H(f(x), q), H(f(y), q)\} \\
& =\min \left\{f^{-1}[H](x, q), f^{-1}[H](y, q)\right\} .
\end{aligned}
$$

Hence $f^{-1}[H]$ is a Q-fuzzy subalgebra of X.
Theorem 3.17. Let $f: X \rightarrow Y$ be a homomorphism between BCK/BCI-algebras X and Y. If G is a Q-fuzzy subalgebra of X, then the image $f[G]$ of G is a Q-fuzzy subalgebra of Y.

Proof. We first prove that

$$
\begin{equation*}
f^{-1}\left(y_{1}\right) * f^{-1}\left(y_{2}\right) \subseteq f^{-1}\left(y_{1} * y_{2}\right) \tag{*1}
\end{equation*}
$$

for all $y_{1}, y_{2} \in Y$. For, if $x \in f^{-1}\left(y_{1}\right) * f^{-1}\left(y_{2}\right)$, then $x=x_{1} * x_{2}$ for some $x_{1} \in f^{-1}\left(y_{1}\right)$ and $x_{2} \in f^{-1}\left(y_{2}\right)$. Since f is a homomorphism, it follows that $f(x)=f\left(x_{1} * x_{2}\right)=f\left(x_{1}\right) * f\left(x_{2}\right)=$ $y_{1} * y_{2}$ so that $x \in f^{-1}\left(y_{1} * y_{2}\right)$. Hence (*1) holds. Now let $y_{1}, y_{2} \in Y$ and $q \in Q$. Assume that $y_{1} * y_{2} \notin \operatorname{Im}(f)$. Then $f[G]\left(y_{1} * y_{2}, q\right)=0$. But if $y_{1} * y_{2} \notin \operatorname{Im}(f)$, i.e., $f^{-1}\left(y_{1} * y_{2}\right)=\emptyset$, then $f^{-1}\left(y_{1}\right)=\emptyset$ or $f^{-1}\left(y_{2}\right)=\emptyset$ by $(* 1)$. Thus $f[G]\left(y_{1}, q\right)=0$ or $f[G]\left(y_{2}, q\right)=0$, and so

$$
f[G]\left(y_{1} * y_{2}, q\right)=0=\min \left\{f[G]\left(y_{1}, q\right), f[G]\left(y_{2}, q\right)\right\} .
$$

Suppose that $f^{-1}\left(y_{1} * y_{2}\right) \neq \emptyset$. Then we should consider two cases as follows:
(i) $f^{-1}\left(y_{1}\right)=\emptyset$ or $f^{-1}\left(y_{2}\right)=\emptyset$,
(ii) $f^{-1}\left(y_{1}\right) \neq \emptyset$ and $f^{-1}\left(y_{2}\right) \neq \emptyset$.

For the case (i), we have $f[G]\left(y_{1}, q\right)=0$ or $f[G]\left(y_{2}, q\right)=0$, and so

$$
f[G]\left(y_{1} * y_{2}, q\right) \geq 0=\min \left\{f[G]\left(y_{1}, q\right), f[G]\left(y_{2}, q\right)\right\} .
$$

Case (ii) implies from $(* 1)$ that

$$
\begin{aligned}
f[G]\left(y_{1} * y_{2}, q\right) & =\sup _{z \in f^{-1}\left(y_{1} * y_{2}\right)} G(z, q) \geq \sup _{z \in f^{-1}\left(y_{1}\right) * f^{-1}\left(y_{2}\right)} G(z, q) \\
& =\sup _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)} G\left(x_{1} * x_{2}, q\right) \\
& \geq \sup _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)} \min \left\{G\left(x_{1}, q\right), G\left(x_{2}, q\right)\right\} \\
& =\min \left\{\sup _{x_{1} \in f^{-1}\left(y_{1}\right)} G\left(x_{1}, q\right), \sup _{x_{2} \in f^{-1}\left(y_{2}\right)} G\left(y_{2}, q\right)\right\} \\
& =\min \left\{f[G]\left(y_{1}, q\right), f[G]\left(y_{2}, q\right)\right\} .
\end{aligned}
$$

Hence $f[G]\left(y_{1} * y_{2}, q\right) \geq \min \left\{f[G]\left(y_{1}, q\right), f[G]\left(y_{2}, q\right)\right\}$ for all $y_{1}, y_{2} \in Y$ and $q \in Q$. This completes the proof.

References

[1] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 351-366.
[2] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[3] K. Iséki, Some examples of BCI-algebras, Math. Seminar Notes 8 (1980), 237-240.
[4] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Korea, 1994.
[5] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Department of Mathematics Education
Gyeongsang National University
Jinju 660-701, Korea.
E-mail address: ybjun@nongae.gsnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35; 03B52.
 Key words and phrases. Q-fuzzy set; Q-fuzzy subalgebra

