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ON CLASSES OF OPERATORS RELATED

TO PARANORMAL OPERATORS

Dongick Jung, Mi Young Lee and Sang Hun Lee

Received February 15, 2000; revised February 26, 2000

Abstract. Recently, Furuta-Ito-Yamazaki [16] and Fujii-Nakamoto [11] introduce new classes

of operators which are derived from the Furuta inequality. We will give some properties and

generalized results for these classes.

1. Introduction. Let H be a Hilbert space and L(H) denote the algebra of all bounded

linear operators acting on H. An operator T 2 L(H) is positive, T � 0, if (Tx; x) � 0 for

all x 2 H. An operator T 2 L(H) is said to be p-hyponormal if

(1.1) (TT �)p � (T �T )p

for p > 0([1]). It is clear that 1-hyponormal operator is a hyponormal operator, and also

it has been studied by many authors([1],[4] and [7]). An operator T 2 L(H) is said to be

paranormal if

(1.2) jjT 2xjjjjxjj � jjTxjj2

for all x 2 H([2],[12] and [13]). It is introduced as an intermediate class between hyponormal

operators and normaloid ones. In [13], it is proved that every paranormal operator is

normaloid. For p > 0, the p-paranormality was introduced by Fujii-Izumino-Nakamoto [8]

and the p-paranormality is based on the fact that T = U jT j is p-hyponormal if and only if

S = U jT jp is hyponormal[7, Lemma 1]. Actually, T = U jT j is p-paranormal if and only if

S = U jT jp is paranormal.

We have to state the order-preserving operator inequality because it is a base of our

discussion in the below([14]).

The Furuta inequality. If A � B � 0, then for each r � 0,

(1.3) (BrApBr)1=q � (BrBpBr)1=q

holds for p � 0 and q � 1 with (1 + 2r)q � p+ 2r:

We denote by A > 0 if a positive operator A is invertible. For A;B > 0, A � B if

logA � logB([10]).
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Theorem A. The following statements are mutually equivalent for A;B > 0:

(1) A� B, i.e., logA � logB.

(2) (BpA2pBp)
1
2 � B2p for all p > 0.

(3) (BrA2pBr)
r

p+r � B2r for all p; r > 0.

We note that (2) is due to Ando [3] and (3) in [5], and that (3) is regarded as "the

Furuta inequality for chaotic order". Based on the above operator inequalities, Furuta-Ito-

Yamazaki [16] introduced absolute p-paranormality as an extension of paranormality. In

addition, they proved that every paranormal operator is absolute p-paranormal operator

for p � 1 and every absolute p-paranormal for p > 0 is normaloid.

Recently, Fujii-Jung-Lee-Lee-Nakamoto [9] proved that the p-paranormality has the

monotone increasing property and every p-paranormal operator is normaloid. Very recently,

Fujii-Nakamoto [11] introduced the (p; r; q)-paranormality and absolute (p; r)-paranormality

using Furuta inequality and they gave some relations of those classes of operators. In this

note, we will give some generalization properties of (p; r; q)-paranormal and absolute (p; r)-

paranormal operators.

2. (p; r; q)-paranormal operators. In this section, we will consider the (p; r; q)-paranor-

mality and the p-paranormality.

First, we recall de�nitions due to Furuta-Ito-Yamazaki and Fujii-Nakamoto([16] and [11]).

De�nition. Let T = U jT j be the polar decomposition of T and let p; r; q > 0

(1) An operator T on H is p-paranormal if

(2.1) jjjT jpU jT jpxjj � jjjT jpxjj2

for all unit vectors x 2 H.

(2) An operator T on H is (p; r; q)-paranormal if

(2.2) jjjT jpU jT jrxjj 1q � jjjT j p+r

q xjj

for all unit vectors x 2 H.

(3) An operator T on H is absolute p-paranormal if it satis�es

(2.3) jjjT jpTxjj � jjjT jxjjp+1

for all unit vectors x 2 H.

(4) An operator T on H is absolute (p; r)-paranormal if it is (p; r; p+ r)-paranormal, i.e., it

satis�es

(2.4) jjjT jpU jT jrxjj � jjjT jxjjp+r

for all unit vectors x 2 H.

We know that every p-paranormal operator is paranormal for 1 � p > 0. Clearly, every

(p; p; 2)-paranormal operator is p-paranormal operator. That is, the (p; r; q)-paranormality

is a generalization of the p-paranormality. And it is easily seen that the (p; 1; p + 1)-

paranormality is absolute p-paranormality. In [11, Theorem 4.1], Fujii-Nakamoto proved

that the (p; r; q)-paranormality is monotone increasing on q � 1 and the (p; r; 1)-paranor-

mality is monotone increasing on r > 0.

For the sake of convenience, we cite the following H�older-McCarthy inequality.
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H�older-McCarthy inequality. For A � 0 on H, the following inequalities hold for all

x 2 H

(2.5) (Ax; x)r � kxk2(r�1)(Arx; x) if 0 � r � 1

and

(2.6) (Ax; x)r � kxk2(r�1)(Arx; x) if r � 1:

Consequently, if 0 < t � s and kxk = 1, then

(2.7) kAtxks � kAsxkt:

The following theorem gives a monotonicity for the (p; r; q)-paranormality as a general-

ization of [11, Theorem 4.1].

Theorem 2.1. The (p; r; q)-paranormality has monotone increasing property on r > 0.

Proof. Suppose that T is (p; r; q)-paranormal and � > 0, q � 1 with p+r+� � �q. It suÆces

to show that T is (p; r + �; q)-paranormal. For a given unit vector x 2 H, it follows from

(2.5) that

kjT jpU jT jr+�xk

= kjT jpU jT jr jT j�x
kjT j�xkk � kjT j

�xk

� kjT j p+r

q jT j�xkqkjT j�xk1�q

= kjT j p+r+�

q

p+r+q�

p+r+� xkqkjT j�xk1�q

� kjT j p+r+�

q xk q(p+r+q�)

p+r+� kjT j�xk1�q

= kjT j p+r+�

q xkqkjT j p+r+�

q xk (q�1)q�

p+r+� kjT j�xk1�q

� kjT j p+r+�

q xkqkjT j�xk p+r+�

q�

(q�1)q�

p+r+� kjT j�xk1�q

= kjT j p+r+�

q xkq :

Thus T is (p; r + �; q)-paranormal.

Theorem 2.2. If T is (p; r; q)-paranormal, then T is (p0; r0; q0)-paranormal for p0 � p and

q0 � q � 1, r0 � r with

(2.8)
q0

q
� p0 + r0

p+ r + q(r0 � r)

and

(2.9) p0 + r0 � q0r0:

Proof. Suppose that T is (p; r; q)-paranormal and p0 � p, q0 � q � 1, r0 = r + �; � � 0 with
q
0

q
� p

0+r+�
p+r+q�

and p0 + r + � � q0(r + �): For a given unit vector x 2 H, it follows from (2.5)
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that

kjT jp0U jT jr+�xk

= k(jT jp) p
0

p

U jT jr+�x
kU jT jr+�xkk � kU jT j

r+�xk

� kjT jpU jT jr jT j�x
kjT j�xkk

p
0

p kjT jr+�xk1� p
0

p kjT j�xk p
0

p

� kjT j p+r

q jT j�xk p
0

q

p kjT jr+�xk p�p
0

p kjT j�xk p
0(1�q)

p since T is (p; r; q)-paranormal

= kjT j
p
0+r+�

q0

q
0(p+r+q�)

q(p0+r+�) xk p
0

q

p kjT jr+�xk p�p
0

p kjT j�xk p
0(1�q)

p

� kjT j
p
0+r+�

q0 xk
p
0

q
0(p+r+q�)

p(p0+r+�) kjT jr+�xk p�p
0

p kjT j�xk p
0(1�q)

p by
p+ r + �q

p0 + r + �
� q

q0

= kjT j p
0+r+�

q0 xkq0kjT j p
0+r+�

q0 xkq
0(

p
0(p+r+q�)

p(p0+r+�)
�1)kjT jr+�xk p�p

0

p kjT j�xk p
0(1�q)

p :

Furthermore it follows from (2.9) that

jjjT j
p
0+r+�

q0 xjj � jjjT jr+�xjj
p
0+r+�

q0(r+�) ;

so that by p�p
0

p
� 0

jjjT j
p
0+r+�

q0 xjj
q
0(r+�)

p0+r+�
�
p�p

0

p � jjjT jr+�xjj p�p
0

p :

Hence it implies that

jjjT jp0U jT jr+�xjj

� jjjT j
p
0+r+�

q0 xjjq0 jjjT j
p
0+r+�

q0 xjjq
0(

p
0(p+r+q�)

p(p0+r+�)
�1)jjjT j

p
0+r+�

q0 xjj
q
0(r+�)

p0+r+�
�
p�p

0

p jjjT j�xjj p
0(1�q)

p

= jjjT j
p
0+r+�

q0 xjjq0 jjjT j
p
0+r+�

q0 xjj
q
0

p
0

�(q�1)

p(p0+r+�) jjjT j�xjj p
0(1�q)

p :

Since p0 + r + � � q0(r + �) � q0�, we have

jjjT j
p
0+r+�

q0 xjj � jjjT j�xjj
p
0+r+�

q0� ;

so that

jjjT j
p
0+r+�

q0 xjj
q
0

p
0

�(q�1)

p(p0+r+�) � jjjT j�xjj
p
0+r+�

q0�
�
q
0

p
0

�(q�1)

p(p0+r+�) = jjjT j�xjj p
0(q�1)

p

by q � 1. Consequently,

jjjT jp0U jT jr+�xjj � jjjT j
p
0+r+�

q0 xjjq0 jjjT j�xjj p
0(q�1)

p jjjT j�xjj p
0(1�q)

p

= jjjT j
p
0+r+�

q0 xjjq0 ;

which implies that T is (p0; r0; q0)-paranormal.
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Theorem 2.3. If T is (p; r; q)-paranormal, then T is (p0; r; q0)-paranormal for p0 � p and

q0 � q with p+r
q
� p

0+r
q0

� r.

Proof. Suppose that T is (p; r; q)-paranormal and p0 � p, q0 � q with p+r
q
� p

0+r
q0

� r. For

a given unit vector x 2 H,

jjjT jp0U jT jrxjj = jj(jT jp) p
0

p

U jT jrx
jjU jT jrxjj jj � jjU jT j

rxjj

� jjjT jpU jT jrxjj p
0

p

jjU jT jrxjj
jjU jT jrxjj p

0

p

� jjjT j p+r

q xjj p
0

q

p jjjT jrxjj1� p
0

p since T is (p; r; q)-paranormal

= jjjT j
p
0+r

q0

(p+r)q0

(p0+r)q xjj p
0

q

p jjT jrxjj1� p
0

p

� jjjT j
p
0+r

q0 xjj
p
0

q

p

(p+r)q0

(p0+r)q jjjT jrxjj1� p
0

p

= jjjT j
p
0+r

q0 xjjq0 jjjT j
p
0+r

q0 xjjq
0(

p
0(p+r)

p(p0+r)
�1)jjjT jrxjj1� p

0

p

� jjjT j
p
0+r

q0 xjjq0 jjjT jrxjj
p
0+r

rq0
�
q
0

r(p0�p)

p(p0+r) jjjT jrxjj p�p
0

p by
p0 + r

rq0
� 1

= jjjT j
p
0+r

q0 xjjq0 :

Thus T is (p0; r; q0)-paranormal for p0 � p and q0 � q with p+r
q
� p

0+r
q0

� r.

Theorem 2.4. If T is (p; r; q)-paranormal for q � maxfp; rg and p + r � qr, then T is

q-paranormal.

Proof. If q � 1, by [11, Theorem 4.2], T is maxfp; rg-paranormal. Since q � maxfp; rg, T
is q-paranormal. Suppose that T is (p; r; q)-paranormal for q � maxf1; p; rg and p+ r � qr.

Let x 2 H be a unit vector. Then we have

kjT jqU jT jqxk

= k(jT jp) qp U jT jqx
kU jT jqxk jj � jjU jT j

qxk

� kjT jpU jT jqxk q

p kjT jqxk1� q

p

= jjjT jpU jT jr jT jq�rx
jjjT jq�rxjj jj

q

p jjjT jqxjj p�q

p jjjT jq�rxjj qp

� kjT j p+r

q jT jq�rxk q
2

p kjT jq�rxk q

p
(1�q)kjT jqxk p�q

p since T is (p; r; q)-paranormal

= jjjT j q
2+p+r�qr

q xjj q
2

p jjjT jq�rxjj q(1�q)

p jjjT jqxjj p�q

p

� kjT jqxk q
2+p+r�qr

p kjT jq�rxk q(1�q)

p kjT jqxk p�q

p

= kjT jqxk2kjT jqxk q
2
�q+r�qr

p kjT jq�rxk q(1�q)

p :

Moreover we have

jjjT jq�rxjj � jjjT jqxjj q�r

q

and so q � 1 implies

jjjT jq�rxjj q(1�q)

p � jjjT jqxjj q�r

q
�
q(1�q)

p = jjjT jqxjj (q�r)(1�q)

p :
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Therefore it follows that

jjjT jqU jT jqxjj � jjjT jqxjj2jjjT jqxjj q
2
�q+r�qr

p
+

(q�r)(1�q)

p = jjjT jqxjj2:

Remark 2.5. It is not known that the monotonicity of (p; r; q)-paranormality on p by

Theorem 2.2. Indeed, if p0 > p > 0; r = r0 and q = q0, then such p; p0; r; and q do not satisfy

the conditions (2.8) and (2.9) of Theorem 2.2.

3. Absolute (p; r)-paranormal operators. In this section, we will give some relations

between absolute p-paranormality and absolute (p; r)-paranormality. The following is a

generalization of [11].

Theorem 3.1.

(1) For r > 1, if T is absolute p-paranormal, then T is absolute (p; r)-paranormal.

(2) For 0 < r < 1 and 1 � p+ r, if T is absolute (p; r)-paranormal, then T is absolute

p-paranormal.

Proof. (1) Suppose that T is absolute p-paranormal and r > 1. For a given unit vector

x 2 H,

kjT jpU jT jrxk = kjT jpU jT j jT j
r�1x

kjT jr�1xkk � kjT j
r�1xk

� kjT jjT jr�1xkp+1kjT jr�1xk�p since T is absolute p-paranormal

= kjT jrxk p+r

r kjT jrxk(p+r)(1� 1
r
)jjjT jrxjj1�rkjT jr�1xk�p

= kjT jrxk p+r

r kjT jrxk (r�1)p

r kjT jr�1xk�p

� kjT jxkp+rkjT jr�1xk r

r�1

(r�1)p

r kjT jr�1xk�p by r > 1 and
r

r � 1
� 1

= kjT jxkp+r:

(2) Suppose that T is absolute (p; r)-paranormal and 0 < r < 1. For a given unit vector

x 2 H,

kjT jpTxk
= kjT jpU jT jxk

= kjT jpU jT jr jT j1�rx
kjT j1�rxkk � kjT j

1�rxk

� kjT jjT j1�rxkp+rkjT j1�rxk1�p�r since T is absolute (p; r)-paranormal

= kjT j2�rxk p+1
2�r kjT j2�rxk(p+1)(1� 1

2�r
)kjT j2�rxkr�1kjT j1�rxk1�p�r

= kjT j2�rxk p+1
2�r kjT j 2�r

1�r
(1�r)xk (1�r)(p+r�1)

2�r kjT j1�rxk1�p�r

� kjT jxkp+1kjT j1�rxk 2�r

1�r

(1�r)(p+r�1)

2�r kjT j1�rxk1�p�r by 2� r > 1 and
2� r

1� r
� 1

= kTxkp+1:

In [11, Theorem 4.3], it is proved that every (p; r; 1)-paranormal for p+ r � 1 is absolute

(p; r)-paranormal. Next we prove that every (p; r; q)-paranormal operator for p + r � q is

absolute (p; r)-paranormal.



ON CLASSES OF OPERATORS RELATED TO PARANORMAL OPERATORS 187

Theorem 3.2.

(1) For p+ r � q, if T is (p; r; q)-paranormal, then T is absolute (p; r)-paranormal.

(2) For p+ r � q, if T is absolute (p; r)-paranormal, then T is (p; r; q)-paranormal.

Proof. For a given unit vector x 2 H,

kjT jpU jT jrxk � kjT j p+r

q xkq � kjT jxkp+r;

and

kjT jpU jT jrxk � kjT jxkp+r = kjT jxkq p+r

q � kjT j p+r

q xkq:
Thus the proofs are completed.

Theorem 3.3.

(1) If T is (p; r; q)-paranormal, then T is absolute (p; s)-paranormal for r � s � r + 1

and q � 1 with p+ r � q(1� s+ r). Consequently, T is absolute (p; s0)-paranormal

for s0 � s.

(2) If T is (p; r; q)-paranormal, then T is absolute (p; s)-paranormal for s � r + 1 and

q � 1.

Proof. (1) Suppose that T is (p; r; q)-paranormal and r � s � r + 1. Then T is absolute

(p; s)-paranormal for q � 1 with p+ r � q(1 � s + r) by [11, Theorem 4.5]. Since p + s �
q(1� s+ r)� r+ s = (q � 1)(1+ r� s) + 1 � 1, T is absolute (p; s0)-paranormal for s0 � s.

(2) Suppose that T is (p; r; q)-paranormal and s � r+1 and q � 1. Then, it follows from

the H�older-McCarthy inequality that for a given unit vector x 2 H,

kjT jpU jT jsxk = kjT jpU jT jrjT js�rxk
� kjT j p+r

q jT js�rxkqkjT js�rxk1�q

� kjT jxkq(p+r

q
+s�r)xkqkjT js�rxk1�q

= kjT jxkp+s:

Question 3.4. Is every (p; r; q)-paranormal operator normaloid?

4. Examples. In this section, we will give a characterization of (p; r; q)-paranormal opera-

tors. Using this characterization, we will give some examples showing that the monotonicity

of section 2 and 3 are all strict. In [2], Ando proved that an operator T is paranormal if

and only if

T �2T 2 � 2�T �T + �2 � 0

for all � > 0. As a generalization of Ando's result, we will give the characterization of

(p; r; q)-paranormal and absolute (p; r)-paranormal.

The following lemma is clear by the simple calculation.

Lemma 4.1. If a; b � 0, then a�b� � �a+ �b for �; � > 0; �+ � = 1.
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Theorem 4.2. Let T = U jT j be the polar decomposition of T . An operator T is (p; r; q)-

paranormal if and only if

(4.1) jT jrU�jT j2pU jT jr � q�q�1jT j 2(p+r)

q + (q � 1)�q � 0

for all � > 0:

Proof. Suppose that T = U jT j is (p; r; q)-paranormal. Then

jjjT j p+r

q xjj � jjjT jpU jT jrxjj 1q

for every unit vector x in H. It is equivalent to

(4.2) (jT j 2(p+r)

q x; x) � (jT jrU�jT j2pU jT jrx; x) 1q (x; x) q�1
q

for every vector x in H. By Lemma 4.1,

(jT jrU�jT j2pU jT jrx; x) 1q (x; x) q�1
q = f�1�q(jT jrU�jT j2pU jT jrx; x)g 1

q f�(x; x)g q�1
q

� 1

q
�1�q(jT jrU�jT j2pU jT jrx; x) + q � 1

q
�(x; x)(4.3)

for all � > 0. This implies that

1

q
�1�q jT jrU�jT j2pU jT jr � jT j 2(p+r)

q +
q � 1

q
� � 0

for every � > 0. Thus it implies (4.1).

Conversely, let

(4.4) � = f (jT j
rU�jT j2pU jT jrx; x)

(x; x)
g 1
q

(If x 2 ker jT jpU jT jr; put � is suÆciently small positive). Then it is satis�es (4.2) and hence

T is (p; r; q)-paranormal.

Corollary 4.3. An operator T = U jT j is absolute (p; r)-paranormal if and only if

jT jrU�jT j2pU jT jr � (p+ r)�p+r�1jT j2 + (p+ r � 1)�p+r � 0

for all � > 0:

The following proposition is obtained from Theorem 4.2.

Proposition 4.4. Let K = �1

�1
H. For a given two positive operators A;B on H, de�ne

the operator T = TA;B on K as follows:

(4.5) T =

0
BBBBBBBBBBBB@

. . .

. . . 0 0 0

B 0 0

0 B 0

0 0 B 0

0 A 0

0 A 0
. . .

. . .

1
CCCCCCCCCCCCA
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where � is the (0,0)-element. The following statements are hold:

(1) T is absolute p-paranormal if and only if

(4.6) BA2pB � (p+ 1)�pB2 + p�p+1 � 0

for all � > 0:

(2) T is absolute (p; r)-paranormal if and only if

(4.7) BrA2pBr � (p+ r)�p+r�1B2 + (p+ r � 1)�p+r � 0

for all � > 0:

(3) T is (p; r; q)-paranormal if and only if

(4.8) BrA2pBr � q�q�1B
2(p+r)

q + (q � 1)�q � 0

for all � > 0:

Proof. It is enough to show that the operator T is (p; r; q)-paranormal if and only if

BrA2pBr � q�q�1B
2(p+r)

q + (q � 1)�q � 0

for all � > 0: Let U be the unilateral shift and P = Diag(� � � ; B; B ;A;A;A; � � � ). Then

T = UP is the polar decomposition of T . By the simple calculation, the inequality (4.2)

jT jrU�jT j2pU jT jr � q�q�1jT j 2(p+r)

q + (q � 1)�q � 0

is equivalent to

BrA2pBr � q�q�1B
2(p+r)

q + (q � 1)�q � 0

for all � > 0: Hence the proof is completed.

From Proposition 4.4, we give an example as follows:

Example 4.5. (An example for Theorem 2.2)

Put A =

�
17 7

7 5

�
and B =

�
1 0

0 4

�
on C2. De�ne TA;B on K as (4.5) and denote

(4.9) Xp;r;q(�) = BrA2pBr � q�q�1B
2(p+r)

q + (q � 1)�q

in Proposition 4.4. Then, we have TA;B is (6,3,3)-paranormal, non (2,2,1)-paranormal.

Since

X6;3;3(�) = B3A12B3 � 3�2B6 + 2�3

=

�
3854061109710848� 3�2 + 2�3 113447507052199936

113447507052199936 3339422103077126144� 196608�2 + 2�3

�

and

X2;2;1(�) = B2A4B2 �B8 =

�
137959 1015168

1015168 7407612

�
;

we have X2;2;1(�) is not positive. It is easy that 3854061109710848� 3�2 + 2�3 is positive

for all � > 0. Since the determinant of X6;3;3(�) has no positive real solution and since

3339422103077126144� 196608�2 + 2�3 > 0 for all � > 0, we have X6;3;3(�) is positive for

all � > 0.

The following example shows that the (p; r; q)-paranormality has no monotonicity on p.
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Example 4.6. Put

A =

�
2 1

1 2

�
and B =

�p
6 0

0 0

�

on C2: Then TA;B is (2,2,2)-paranormal, non (1,2,2)-paranormal. And, we put

C =

�
2 1

1 6

� 1
2

and D =

�
1 2

2 5

� 1
2

on C2: Then TC;D is (1,1,1)-paranormal, non (2,1,1)-paranormal.

Proof. since

B2A4B2 � 2�B4 + �2 =

�
1476� 72�+ �2 0

0 �2

�

and

B2A2B2 � 2�B3 + �2 =

�
180� 12

p
6�+ �2 0

0 �2

�
;

we have TA;B is (2,2,2)-paranormal, non (1,2,2)-paranormal. And since D is invertible,

DC2D � D4 � 0 is equivalent to C2 � D2 � 0 and DC4D � D6 � 0 is equivalent to

C4 �D4 � 0. Thus

C2 �D2 =

�
1 �1
�1 1

�

and

C4 �D4 =

�
0 �4
�4 8

�
:

Hence TC;D is (1,1,1)-paranormal, non (2,1,1)-paranormal.
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