# THE LAURENT EXTENSION OF A NOETHERIAN INTEGRAL DOMAIN 

Mitsuo Kanemitsu, Kiyoshi Baba, And Ken-ichi Yoshida

Received February 7, 2000


#### Abstract

Let $R\left[\alpha, \alpha^{-1}\right]$ be an extension of a Noetherian integral domain $R$ where $\alpha$ is an element of an algebraic field extension over the quotient field of $R$. In the case $\alpha$ is an anti-integral element over $R$ we will give a condition for a prime ideal $p$ of $R$ to be $p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$. By making use of this we will proceed mainly with the study of flatness and faithful flatness of the extension $R\left[\alpha, \alpha^{-1}\right] / R$. Let $\eta_{1}, \cdots, \eta_{d}$ be the coefficients of the minimal polynomial of $\alpha$ over the quotient field of $R$. Then we will also investigate the extension $R\left[\eta_{1}, \cdots, \eta_{d}\right] / R$.


## §1. Laurent extensions and ideals $J_{[\alpha], i}$.

Let $R$ be a Noetherian integral domain with the quotient field $K$. Let $\alpha$ be an element which is algebraic over $K$ and set $d=[K(\alpha): K]$. We denote the minimal polynomial of $\alpha$ over $K$ by

$$
\begin{gathered}
\phi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d} \\
\eta_{1}, \cdots, \eta_{d} \in K
\end{gathered}
$$

Set $I_{\eta_{i}}=R: R \quad \eta_{i}$ for $1 \leq i \leq d$ and $I_{[\alpha]}=\cap_{i=1}^{d} I_{\eta_{i}}$. We call $I_{[\alpha]}$ the generalized denominator ideal of $\alpha$. Furthermore we will set

$$
J_{[\alpha], 0}=I_{[\alpha]}\left(\eta_{1}, \cdots, \eta_{d}\right)
$$

where $\left(\eta_{1}, \cdots, \eta_{d}\right)$ is a fractional ideal of $R$ generated by the elements $\eta_{1}, \cdots, \eta_{d-1}, \eta_{d}$ and

$$
J_{[\alpha], i}=I_{[\alpha]}\left(1, \eta_{1}, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_{d}\right)
$$

for $1 \leq i \leq d$. Sometimes we will use the notation $\widetilde{J_{[\alpha]}}$ instead of $J_{[\alpha], d}$. Set $J_{[\alpha]}=$ $I_{[\alpha]}+J_{[\alpha], 0}=I_{[\alpha]}\left(1, \eta_{1}, \eta_{2}, \cdots, \eta_{d}\right)$.

We call $R\left[\alpha, \alpha^{-1}\right]$ the Laurent extension of $\alpha$ over $R$.
Let $R[X]$ be a polynomial ring over $R$ in an indeterminate $X$ and $\pi: R[X] \longrightarrow R[\alpha]$ the $R$-algebra homomorphism defined by $\pi(X)=\alpha$. We say that $\alpha$ is an anti-integral element over $R$ of degree $d$ if $\operatorname{Ker}(\pi)=I_{[\alpha]} \phi_{\alpha}(X) R[X]$. Set

$$
\Gamma_{J[\alpha]}=\left\{p \in \operatorname{Spec}(R) \mid p+J_{[\alpha]}=R\right\}
$$

and

$$
\mathrm{V}\left(\widetilde{J_{[\alpha]}}\right)=\left\{p \in \operatorname{Spec}(R) \mid p \supset \widetilde{J_{[\alpha]}}\right\} .
$$

[^0]Our notation is standard and our general reference for unexplained technical terms is H.Matsumura: [2].

We will list the following results for later use.

Lemma 1.1 (M. Kanemitsu and K. Yoshida [1, Theorem 7 (2)]). Assume that $\alpha$ is an anti-integral element over $R$ of degree d. Then

$$
\{p \in \operatorname{Spec}(R) \mid p R[\alpha]=R[\alpha]\}=\mathrm{V}\left(\widetilde{J_{[\alpha]}}\right) \cap \Gamma_{J_{[\alpha]}}
$$

An element $\gamma$ in $R[\alpha]$ is said to be an excellent element if there exist elements $c_{0}, c_{1}, \cdots, c_{n} \in$ $R$ such that

$$
\gamma=c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n} \text { and }\left(c_{0}, c_{1}, \cdots, c_{n}\right) R=R .
$$

Lemma 1.2 (J. Sato, S. Oda and K. Yoshida [5, Corollary 5]). Assume that $\alpha$ is an anti-integral element over $R$ of degree $d$. Then the following statements are equivalent.
(i) $R[\alpha] / R$ is a flat extension.
(ii) $R\left[\alpha, \alpha^{-1}\right] / R$ is a flat extension.
(iii) $\alpha \in \operatorname{rad}\left(J_{[\alpha]} R[\alpha]\right)$.
(iv) $J_{[\alpha]}=R$.
(iv) Every excellent element belongs to $\operatorname{rad}\left(J_{[\alpha]} R[\alpha]\right)$.

Our key result is the following.

Theorem 1.3. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree $d \geq 2$. For a prime ideal $p$ of $R$ the following are equivalent to each other.
(i) $p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$.
(ii) $p+J_{[\alpha]}=R$ and there exists an integer $i(1 \leq i \leq d)$ such that $p \supset J_{[\alpha], i}$.

Proof. Set $A=R\left[\alpha, \alpha^{-1}\right]$.
(i) $\Longrightarrow$ (ii). First we will prove that $p+J_{[\alpha]}=R$. The condition $p A=A$ implies that $\alpha$ is in $\operatorname{rad}(p R[\alpha])$. Then there exists a natural number $n$ such that $\alpha^{n}=a_{0}+a_{1} \alpha+\cdots+a_{m} \alpha^{m}$ and $a_{0}, a_{1}, \cdots, a_{m} \in p$ for some $m$. Let

$$
f(X)=X^{n}-\left(a_{0}+a_{1} X+\cdots+a_{m} X^{m}\right)
$$

Then $f(X)$ is in $\operatorname{Ker}(\pi)$. This shows that there exist elements $b_{0}, \cdots, b_{d} \in J_{[\alpha]}$ and $g(X) \in R[X]$ satisfying

$$
f(X)=\left(b_{0}+b_{1} X+\cdots+b_{d} X^{d}\right) g(X)
$$

Hence 1 is in $p+J_{[\alpha]}$, and so $p+J_{[\alpha]}=R$.
Secondly we will show that there exists an integer $i(1 \leq i \leq d)$ with $p \supset J_{[\alpha], i}$. Suppose that $p \not \supset J_{[\alpha], i}$ for every $i$ with $1 \leq i \leq d$. We will prove that $p R[\alpha] \neq R[\alpha]$. If $p R[\alpha]=R[\alpha]$, then by Lemma 1.1, we get $p \supset \widetilde{J_{[\alpha]}}=J_{[\alpha], d}$. This is a contradiction.

We know that

$$
\alpha^{d}+\eta_{1} \alpha^{d-1}+\cdots+\eta_{d}=0
$$

We will prove that there exists an element $c$ of $I_{[\alpha]}$ such that $c \eta_{i}$ and $c \eta_{j}$ are not in $p$ for some $i \neq j(1 \leq i, j \leq d)$. Note that $J_{[\alpha], 1}=I_{[\alpha]}\left(1, \eta_{2}, \cdots, \eta_{d}\right)$. Since $J_{[\alpha], i} \not \subset p$, there exists an integer $i(2 \leq i \leq d)$ such that $a \in I_{[\alpha]}$ and $a \eta_{i} \notin p$. If we can take an integer $j(j \neq i$ and $1 \leq j \leq d)$ satisfying $a \eta_{j} \notin p$, then the assertion is proved. So we may assume that

$$
a\left(\eta_{1}, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_{d}\right) \subset p
$$

Furthermore, there exsits an integer $j(j \neq i$ and $1 \leq j \leq d)$ such that $b \in I_{[\alpha]}$ and $b \eta_{j} \notin p$. Similarly as above we may assume that

$$
b\left(\eta_{1}, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_{d}\right) \subset p
$$

Set $c=a+b$. Then $c \eta_{i} \notin p$ and $c \eta_{j} \notin p$.
From the argument above we see that there are at least two non-zero terms in $c \phi_{\alpha}(\alpha)$ modulo $p R_{p}[\alpha]$. Since $J_{[\alpha]} R_{p}=R_{p}$, the ideal $I_{[\alpha]} R_{p}$ is invertible, so $I_{[\alpha]} R_{p}$ is principal. Hence we may assume that $c$ is a generator of $I_{[\alpha]}$. Let $\pi^{\prime}$ be the $R$-algebra homomorphosm of $R_{p}[X]$ into $R_{p}[\alpha]$ defined by $\pi^{\prime}(X)=\alpha$. Then $\operatorname{Ker}\left(\pi^{\prime}\right)=I_{[\alpha]} \phi_{\alpha}(X) R_{p}[X]=\left(c \phi_{\alpha}(X)\right)$. Hence $R_{p}[\alpha] \cong R_{p}[X] /\left(c \phi_{\alpha}(X)\right)$. On the other hand

$$
R_{p}[\alpha] / p R_{p}[\alpha] \cong k(p)[\bar{\alpha}] \cong k(p)[X] /\left(\overline{c \phi_{\alpha(X)}}\right)
$$

where $k(p)$ is the residue field of $p$. Let $Q$ be the prime ideal of $R_{p}[\alpha]$ which corresponds to the irreducible factor of $\overline{c \phi_{\alpha}(X)}$ different from $\bar{X}$. Then $Q$ does not contain $\alpha$ and $Q \supset p R_{p}[\alpha]$. Set $P=Q \cap R[\alpha]$. Then $P \supset p R[\alpha]$ and $P \not \supset \alpha$. This is absurd from the fact $P \supset \operatorname{rad}(p R[\alpha]) \ni \alpha$.
(ii) $\Longrightarrow$ (i). Assume that $p A \neq A$. Then there exists a prime ideal $P$ of $A$ such that $P \supset p A$. By the condition $p+J_{[\alpha]}=R$, there exists elements $b$ of $p$ and $c$ of $J_{[\alpha]}$ such that $b+c=1$. Since $c$ is in $J_{[\alpha]}=J_{[\alpha]}\left(1, \eta_{1}, \cdots, \eta_{d}\right)$, we can write

$$
c=c_{0}+c_{1} \eta_{1}+\cdots+c_{d} \eta_{d} \text { and } c_{0}, c_{1}, \cdots, c_{d} \in I_{[\alpha]} .
$$

By the condition (ii), there exists an integer $i(1 \leq i \leq d)$ such that $p \supset J_{[\alpha], i}$. Multiplying the equality

$$
\alpha^{d}+\eta_{1} \alpha^{d-1}+\cdots+\eta_{d}=0
$$

by $c_{i}$, we have

$$
c_{i} \alpha^{d}+c_{i} \eta_{1} \alpha^{d-1}+\cdots+c_{i} \eta_{d}=0
$$

We know that $c_{i}, c_{i} \eta_{1}, \cdots, c_{i} \eta_{d}$ other than $c_{i} \eta_{i}$ are in $J_{[\alpha], i}$, and so in $P$. Hence $c_{i} \eta_{i} \alpha^{d-i}$ is in $P$. Then in the equation

$$
c \alpha^{d-i}=c_{0} \alpha^{d-i}+c_{1} \eta_{1} \alpha^{d-i}+\cdots+c_{d} \eta_{d} \alpha^{d-i}
$$

$c_{0}, c_{1} \eta_{1}, \cdots, c_{d} \eta_{d}$ other than $c_{i} \eta_{i}$ are in $J_{[\alpha], i}$, and so in $P$. Therefore $c \alpha^{d-i}$ is in $P$. Using $c=1-b$, we get $\alpha^{d-i} \in P$. If $p \supset J_{[\alpha], d}=\widetilde{J}_{[\alpha]}$, then by Lemma 1.1, we know $p R[\alpha]=R[\alpha]$. This claims that $p A=A$. This is absurd. Hence $i \neq d$. This shows that $\alpha$ is in $P$. This contardicts to the fact $\alpha$ is a unit of $A$.

Remark 1.4. (1) By Theorem 1.3, we obtain:

$$
\left\{p \in \operatorname{Spec}(R) \mid p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]\right\}=\left(\cup_{i=1}^{d} \mathrm{~V}\left(J_{[\alpha], i}\right)\right) \cap \Gamma_{J_{[\alpha]}}
$$

If $J_{[\alpha]}=R$, then we have

$$
\left\{p \in \operatorname{Spec}(R) \mid p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]\right\}=\cup_{i=1}^{d} \mathrm{~V}\left(J_{[\alpha], i}\right)
$$

It is a closed set.
(2) In the case $d=1$, we have the following Theorem $1.3^{\prime}$.

Theorem 1.3'. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree 1. For a prime ideal $p$ of $R$, the following are equivalent to each other:
(i) $p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$,
(ii) $p+J_{[\alpha]}=R$ and there exists an integer $i(i=0,1)$ such that $p \supset J_{[\alpha], i}$.

Proof. We will prove that $p \supset J_{[\alpha], i}$ for some $i(i=0,1)$ in the proof (i) $\Longrightarrow$ (ii) because the rest of the proof is the same argument as in Theorem 1.3. Assume that $p \not \supset I_{[\alpha]} \eta_{1} \cap I_{[\alpha]}$. Then there exists an element $c$ of $I_{[\alpha]}$ such that $c \eta_{1} \notin p$ and $c \eta_{1} \in I_{[\alpha]}$. The fact $c \eta_{1} \in I_{[\alpha]}$ implies $c \eta_{1}^{2} \in R$. Since $c \cdot c \eta_{1}^{2}=\left(c \eta_{1}\right)^{2}$ is not in $p$, we see that $c$ is not in $p$. Hence $\alpha=-c \eta_{1} / c$ is in $R_{p}$. Furthermore, $\alpha^{-1}=-c / c \eta_{1}$ is in $R_{p}$ because $c \eta_{1} \notin p$. Therefore $R_{p} \supset R\left[\alpha, \alpha^{-1}\right]=A$. Thus $p R_{p} \supset p A=A$. This is a contradiction.
(3) For another characterization of $p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$ in the case $d=1$, see $[1$, p. 55, Remark].
(4) From now on we will assume $d \geq 2$.

Proposition 1.5. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree $d$. Let $A=R\left[\alpha, \alpha^{-1}\right]$ and $\phi$ the contraction mapping of $\operatorname{Spec}(A)$ into $\operatorname{Spec}(R)$. Then the following are equivalent.
(i) The contraction mapping $\phi$ is surjective.
(ii) For every $i$ with $1 \leq i \leq d$, the equality $\operatorname{rad}\left(J_{[\alpha]}\right)=\operatorname{rad}\left(J_{[\alpha], i}\right)$ holds.

Proof. (i) $\Longrightarrow$ (ii). Suppose that there exists an integer $i(1 \leq i \leq d)$ such that $\operatorname{rad}\left(J_{[\alpha]}\right) \neq \operatorname{rad}\left(J_{[\alpha], i}\right)$. By the definitions of $J_{[\alpha]}$ and $J_{[\alpha], i}$, we have $J_{[\alpha], i} \subset J_{[\alpha]}$. Hence $\operatorname{rad}\left(J_{[\alpha], i}\right) \subsetneq \operatorname{rad}\left(J_{[\alpha]}\right)$. Then there exists a prime ideal $p$ of $R$ such that $J_{[\alpha], i} \subset p$ and $J_{[\alpha]} \not \subset p$. This implies that $p R_{p} \supset J_{[\alpha], i} R_{p}$ and $p R_{p}+J_{[\alpha]} R_{p}=R_{p}$. Applying Theorem 1.3 to $A_{p}=R_{p}\left[\alpha, \alpha^{-1}\right]$, we obtain $p A_{p}=A_{p}$. This shows that $p \notin \operatorname{Im}(\phi)$. This is a contradiction.
(ii) $\Longrightarrow$ (i). We have only to prove that $p A_{p} \neq A_{p}$ for arbitrary prime ideal $p$ of $R$. Assume that $p A_{p}=A_{p}$. Then Theorem 1.3 asserts that $p R_{p}+J_{[\alpha]} R_{p}=R_{p}$. Hence $J_{[\alpha]} R_{p}=R_{p}$. Besides, there exists an integer $i(1 \leq i \leq d)$ such that $p R_{p} \supset J_{[\alpha], i} R_{p}$ by Theorem 1.3. Hence we see that $\operatorname{rad}\left(J_{[\alpha]} R_{p}\right) \underset{\neq}{ } \operatorname{rad}\left(J_{[\alpha], i} R_{p}\right)$, hence $\operatorname{rad}\left(J_{[\alpha]}\right) \supsetneqq \underset{\ngtr}{ } \operatorname{rad}\left(J_{[\alpha], i}\right)$. This is absurd.

Corollary 1.6. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree d. Set $A=R\left[\alpha, \alpha^{-1}\right]$. Then $A / R$ is a faithfully flat extension if and only of $J_{[\alpha], i}=R$ for every $i(1 \leq i \leq d)$.

Proof. Let $\phi$ the contraction mapping of $\operatorname{Spec}(A)$ into $\operatorname{Spec}(\mathrm{R})$.
$(\Longrightarrow)$. Since $A / R$ is faithfully flat, the homomorphism $\phi$ is surjective by H. Matsumura [2, (4D) Theorem 3]. Then Proposition 1.5 implies that $\operatorname{rad}\left(J_{[\alpha]}\right)=\operatorname{rad}\left(J_{[\alpha], i}\right)$ for every integer $i(1 \leq i \leq d)$. Furthermore, by Lemma $1.2, J_{[\alpha]}=R$ because $A / R$ is a flat extension. Hence $J_{[\alpha], i}=R$ for every $i(1 \leq i \leq d)$.
$(\Longleftarrow)$. It is easily verified that $J_{[\alpha]}=R$ because $J_{[\alpha]} \supset J_{[\alpha], i}$. Then $A / R$ is a flat extension by Lemma 1.2. Moreover, we know that $\operatorname{rad}\left(J_{[\alpha]}\right)=R=\operatorname{rad}\left(J_{[\alpha], i}\right)$. By Proposition 1.5 , the contraction mapping $\phi$ is surjective. Hence $A / R$ is a faithfully flat extension by $H$. Matsumura [2, (4D) Theorem 3].

The following holds about $R[\alpha]$.
Theorem 1.7. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree $d$. Set $B=R[\alpha]$. Then the following are equivalent.
(i) $J_{[\alpha]}=R$.
(ii) $J_{[\alpha]} B=B$.
(iii) $\overline{J_{[\alpha]}} B=B$.

Proof. (i) $\Longrightarrow$ (ii) is obvious.
(ii) $\Longrightarrow$ (i). Since $J_{[\alpha]} B=B$, we know that $\alpha$ is in $\operatorname{rad}\left(J_{[\alpha]} B\right)$ by Lemma 1.2 , we have $J_{[\alpha]}=R$.
(iii) $\Longrightarrow$ (ii) is clear from the fact $J_{[\alpha]} \supset \widetilde{J_{[\alpha]}}$.
(ii) $\Longrightarrow$ (iii). Let $p$ be a prime divisor of $\widetilde{J_{[\alpha]}}$. By (ii) $\Longrightarrow$ (i), we get $J_{[\alpha]}=R$. Therefore Lemma 1.1 implies that $p B=B$. Hence $\operatorname{rad}\left(\widetilde{J_{[\alpha]}} B\right)=B$, and so $\widetilde{J_{[\alpha]}} B=B$.

An analogous result to Theorem 1.7 holds in the case $R\left[\alpha, \alpha^{-1}\right]$.
Theorem 1.8. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree $d$. Set $A=R\left[\alpha, \alpha^{-1}\right]$. Then the following are equivalent.
(i) $J_{[\alpha]}=R$, i.e., the extension $A / R$ is a flat extension.
(ii) $J_{[\alpha]} A=A$.
(iii) $\widetilde{J_{[\alpha]}} A=A$.

Proof. (i) $\Longrightarrow$ (ii) is immediate.
(ii) $\Longrightarrow$ (i). We will prove that $A / R$ is a flat extension. Let $P$ be a prime ideal of $A$ and set $p=P \cap R$. Then $p \not \supset J_{[\alpha]}$ because $J_{[\alpha]} A=A$. Hence $J_{[\alpha]} R_{p}=R_{p}$. By Lemma 1.2 we see that $A_{p}=R_{p}\left[\alpha, \alpha^{-1}\right] / R_{p}$ is a flat extension. Moreover, $A_{P} / A_{p}$ is also a flat extension. Therefore $A_{P} / R_{p}$ is a flat extension. So is $A / R$.
(iii) $\Longrightarrow$ (ii) is clear from $\widetilde{J_{[\alpha]}} \subset J_{[\alpha]}$.
(ii) $\Longrightarrow$ (iii). Let $p$ be a prime divisor of $\widetilde{J_{[\alpha]}}$. Then $J_{[\alpha]}=R$ by (ii) $\Longrightarrow$ (i). Hence Lemma 1.1 shows that $\alpha R[\alpha]=R[\alpha]$. This means that $p A=A$. Therefore $\operatorname{rad}\left(\stackrel{\left(J_{[\alpha]}\right)}{ }\right) A=A$, and so $\widetilde{J_{[\alpha]}} A=A$.

Remark 1.9. $\widetilde{J_{[\alpha]}}=R$ does not hold necessarily even if $J_{[\alpha]}=R$.
Corollary 1.10. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree d. Set $A=R\left[\alpha, \alpha^{-1}\right]$. Then the following are equivalent to the conditions in Theorem 1.8.
(iv) There exists an integer $i(1 \leq i \leq d)$ such that $J_{[\alpha], i} A=A$.
(v) $J_{[\alpha], i} A=A$ for every $i(1 \leq i \leq d)$.

Proof. (iv) $\Longrightarrow$ (ii) is clear from $J_{[\alpha], i} \subset J_{[\alpha]}$.
(iii) $\Longrightarrow$ (iv) is immediate from $\widetilde{J_{[\alpha]}}=J_{[\alpha], d}$.
(v) $\Longrightarrow$ (iv) is obvious.
(i) $\Longrightarrow$ (v). Let $p$ be a prime divisor of $J_{[\alpha], i}$. By the condition (i) we know that $J_{[\alpha]}=R$. Hence by Lemma 1.1, we get $p R[\alpha]=R[\alpha]$. Hence $p A=A$. This implies that $J_{[\alpha], i} A=A$.

## § 2. Shifting a generator by an element of $A$.

We denote by $\mathrm{U}(A)$ the unit group of $A$. We will find a condition for $A$ to coincide with $R\left[a \alpha,(a \alpha)^{-1}\right]$.

Lemma 2.1. Let $R$ be a Noetherian integral domain with the quotient field $K$. Let $\alpha$ be an element of an algebraic field extension over $K$ and set $A=R\left[\alpha, \alpha^{-1}\right]$. If $a$ is an element of $A$ and $A=R\left[a \alpha, a \alpha^{-1}\right]$, then $a$ is in $\mathrm{U}(A)$.

Proof. Since $a^{-1}=\alpha(a \alpha)^{-1}$ is in $A$, we know that $a$ is in $\mathrm{U}(A)$.
Proposition 2.2. Let $R$ be a Noetherian domain and $\alpha$ an anti-integral element over $R$ of degree d. Set $A=R\left[\alpha, \alpha^{-1}\right]$. If $\operatorname{grade}\left(J_{[\alpha], i}\right)>1$ for every $i(1 \leq i \leq d)$, then $\mathrm{U}(A) \cap R=\mathrm{U}(R)$.

Proof. It is clear that $\mathrm{U}(A) \cap R \supset \mathrm{U}(R)$. Assume that

$$
\mathrm{U}(A) \cap R \supsetneqq \mathrm{U}(R) .
$$

Then there exists an element $a$ of $\mathrm{U}(A) \cap R$ such that $a \notin \mathrm{U}(R)$. Since $a$ is in $\mathrm{U}(A)$, we have $a A=A$. Hence there exists a prime divisor $p$ of $\operatorname{rad}(a R)$ such that $p A=A$. Then by Theorem 1.3, we see that $p \supset J_{[\alpha], i}$ for some $i$ with $1 \leq i \leq d$. By K.Yoshida [ 6 , Proposition 1.10], we obtain depth $\left(R_{p}\right)=1$ because $p$ is a prime divisor of $\operatorname{rad}(a R)$. On the other hand $\operatorname{grade}\left(J_{[\alpha], i}\right)>1$ and $p \supset J_{[\alpha], i}$. This shows that depth $\left(R_{p}\right)>1$, and we reach a contradiction.

Theorem 2.3. Let $R$ be a Noetherian domain and $\alpha$ an anti-integral element over $R$ of degree d. Let a be an element of $R$. Set $A=R\left[\alpha, \alpha^{-1}\right]$ and assume that grade $\left(J_{[\alpha], i}\right)>1$ for every $i$ with $1 \leq i \leq d$. Then $A=R\left[a \alpha,\left(a \alpha^{-1}\right)\right]$ if and only if $a$ is in $\mathrm{U}(R)$.

Proof. ( $\Longrightarrow$ ) Lemma 2.1 implies that $a$ is in $\mathrm{U}(A)$. Hence $a$ is in $\mathrm{U}(A) \cap R$. By Proposition 2.2, we know that $\mathrm{U}(A) \cap R=\mathrm{U}(R)$. Therefore $a$ is in $\mathrm{U}(R)$.
$(\Longleftarrow)$ Since $a$ is in $\mathrm{U}(R)$, we see that $(a \alpha)^{-1}$ is in $A$. Hence

$$
R\left[a \alpha,\left(a \alpha^{-1}\right)\right] \subset A .
$$

Note that $\alpha=(a \alpha) a^{-1}$ and $\alpha^{-1}=(a \alpha)^{-1} a$. Then we get $A \subset R\left[a \alpha,\left(a \alpha^{-1}\right)\right]$. Therefore $A=R\left[a \alpha,\left(a \alpha^{-1}\right)\right]$.

## §3. Generalized denominator ideals.

We will consider the ring $R\left[\eta_{1}, \cdots, \eta_{d}\right]$. We can refer to S.Oda and K.Yoshida [3, Corollary 15.2] and S.Oda and K.Yoshida [4, Corollary 1.2] for the condition $I_{[\alpha]} R[\alpha]=R[\alpha]$ and the ring $R\left[\eta_{1}, \cdots, \eta_{d}\right]$. In this section we will study the $\operatorname{ring} R\left[\eta_{1}, \cdots, \eta_{d}\right]$ in the case the condition $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$ holds.

Lemma 3.1. Set $C=R\left[\eta_{1}, \cdots, \eta_{d}\right]$. If $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$, then $C \subset R\left[\alpha, \alpha^{-1}\right]$.
Proof. By definition of $I_{[\alpha]}$, it is easily seen that $\eta_{1}, \cdots, \eta_{d}$ are in $I_{[\alpha]}^{-1}$. We know that

$$
I_{[\alpha]}^{-1} \subset I_{[\alpha]}^{-1} R\left[\alpha, \alpha^{-1}\right]=I_{[\alpha]}^{-1} I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right] \subset R\left[\alpha, \alpha^{-1}\right]
$$

Hence $C \subset R\left[\alpha, \alpha^{-1}\right]$.
Proposition 3.2. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree d. If $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$, then $J_{[\alpha]}=R$ and $R\left[\alpha, \alpha^{-1}\right] / R$ is a flat extension.

Proof. We will show that $R\left[\alpha, \alpha^{-1}\right] / R$ is a flat extension. Let $P$ be a prime ideal of $R\left[\alpha, \alpha^{-1}\right]$ and set $p=P \cap R$. By the condition $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$, we know that $I_{[\alpha]} \not \subset p$. So $J_{[\alpha]} \not \subset p$ because $I_{[\alpha]} \subset J_{[\alpha]}$. Hence $J_{[\alpha]} R_{p}=R_{p}$. Then Lemma 1.2 shows that $R_{p}\left[\alpha, \alpha^{-1}\right] / R_{p}$ is a flat extension. Hence $R\left[\alpha, \alpha^{-1}\right] / R$ is also a flat extension. By Lemma 1.2 , we get $J_{[\alpha]}=R$.

The following is an analogous result to S. Oda and K. Yoshida [3, Theorem 11].
Theorem 3.3. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree $d$. Set $C=R\left[\eta_{1}, \cdots, \eta_{d}\right]$. If $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$, then the following conditions hold.
(1) $C \subset R\left[\alpha, \alpha^{-1}\right]$.
(2) $I_{[\alpha]} C=C$.
(3) $C / R$ is a birational and flat extension.

Proof. We have already proved (1) in Lemma 3.1.
(2) Proposition 3.2 says that $J_{[\alpha]}=R$.

Moreover, $J_{[\alpha]}=I_{[\alpha]}\left(1, \eta_{1}, \cdots, \eta_{d}\right)$. Then we get $I_{[\alpha]} C=C$.
(3) It is clear that $C / R$ is a birational extension. Let $p$ be a prime ideal $p$ of $R$. Then we will show that $p C=C$ or $C \subset R_{p}$. From this fact it is easily seen that $C / R$ is a flat extension. If $p \supset I_{[\alpha]}$, then $I_{[\alpha]} C=C$ means that $p C=C$. If $p \not \supset I_{[\alpha]}$, then $\eta_{1}, \cdots, \eta_{d}$ are in $R_{p}$ because $I_{[\alpha]}=\cap_{i=1}^{d} I_{\eta_{i}}$. Hence $C \subset R_{p}$.

Theorem 3.4. Let $R$ be a Noetherian integral domain and $\alpha$ an anti-integral element over $R$ of degree d. Assume that $J_{[\alpha]}=R$. Then the following two statements hold.
(1) $I_{[\alpha]} R[\alpha]=R[\alpha]$ if and only if $\operatorname{rad}\left(I_{[\alpha]}\right)=\operatorname{rad}\left(J_{[\alpha], d}\right)$.
(2) $I_{[\alpha]} R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$ if and only if $\operatorname{rad}\left(I_{[\alpha]}\right)=\operatorname{rad}\left(\cap_{i=1}^{d} J_{[\alpha], i}\right)$.

Proof. (1) $(\Longrightarrow)$ It is immediate from $\operatorname{rad}\left(I_{[\alpha]}\right) \subset \operatorname{rad}\left(J_{[\alpha], d}\right)$ that $I_{[\alpha]} \subset J_{[\alpha], d}$. Let $p$ be a prime divisor of $I_{[\alpha]}$. Then we have $p R[\alpha]=R[\alpha]$ because $I_{[\alpha]} R[\alpha]=R[\alpha]$. By Lemma 1.1, we get $p \supset J_{[\alpha], d}$, hence $p \supset \operatorname{rad}\left(J_{[\alpha], d}\right)$. Therefore $\operatorname{rad}\left(J_{[\alpha]}, d\right) \subset \operatorname{rad}\left(I_{[\alpha]}\right)$, and so $\operatorname{rad}\left(I_{[\alpha]}\right)=\left(J_{[\alpha], d}\right)$.
$(\Longleftarrow)$ Let $p$ be a prime divisor of $I_{[\alpha]}$. Then

$$
p \supset \operatorname{rad}\left(I_{[\alpha]}\right)=\operatorname{rad}\left(J_{[\alpha], d}\right) \supset J_{[\alpha], d}
$$

Hence by Lemma 1.1, we obtain $p R[\alpha]=R[\alpha]$. Therefore $\operatorname{rad}\left(I_{[\alpha]}\right) R[\alpha]=R[\alpha]$. This means that $I_{[\alpha]} R[\alpha]=R[\alpha]$.
(2) Since $J_{[\alpha]}=R$, by Lemma 1.3, the following holds.
$p R\left[\alpha, \alpha^{-1}\right]=R\left[\alpha, \alpha^{-1}\right]$ if and only if there exists an integer $i(1 \leq i \leq d)$ such that $p \supset J_{[\alpha], i}$.

Note that $p \supset \cap_{i=1}^{d} J_{[\alpha], i}$ if and only if there exists an integer $i(1 \leq i \leq d)$ satisfying $p \supset J_{[\alpha], i}$. By making use of these facts we can prove the assertion (2) in a similar way to the proof of (1).

Remark 3.5. In the case $d=1$, Proposition 1.5, Corollary 1.6, 1.10, Proposition 2.2 and Theorem 2.3 hold by rewriting $i=0,1$ instead of $i=1, \cdots, d$. Theorem 3.4 (2) does not hold even if we rewrite $i=0,1$ because $I_{[\alpha]} \not \subset I_{[\alpha]} \eta_{1}$.

## References

[1] M. Kanemitsu and K. Yoshida, Anti-integral extensions and unramified extensions, Math. J. Okayama Univ., 36 (1994) 51-62.
[2] H. Matsumura, Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
[3] S. Oda and K. Yoshida, The behaviour of generalized denominator ideals in anti-integral extensions, Mathematical J. Ibaraki Univ., 29 (1997) 1-7.
[4] S. Oda and K. Yoshida, On conditions for denominator ideals to diffuse and conditions for elements to be exculusive in anti-integral extensions, to appear in Mathematical J. Ibaraki Univ.
[5] J. sato, S. Oda and K. Yoshida, On excellent elements of anti-integral extensions, Mathematics J. Toyama Univ., 18 (1995) 163-168.
[6] K. Yoshida, On birational-integral extensions of rings and prime ideals of depth one, Japan. J. Math., 18 (1982) 49-70.

Mitsuo Kanemitsu
Department of Mathematics
Aichi University of Education
Igaya-cho, Kariya, 448-8542, JAPAN
Kiyoshi Baba
Department of Mathematics Faculty of Education and Welfare Science
Oita University
Oita 870-1192, JAPAN
Ken-ichi Yoshida
Department of Applied Mathematics
Okayama University of Science Okayama 700-0005, JAPAN


[^0]:    1991 Mathematics Subject Classification. Primary 13B02, Secondary 13B22, 13C11.
    Key words and phrases. denominator ideal, anti-integral element, Laurent extension.

