MITSUO KANEMITSU, KIYOSHI BABA, AND KEN-ICHI YOSHIDA

Received February 7, 2000

ABSTRACT. Let $R[\alpha, \alpha^{-1}]$ be an extension of a Noetherian integral domain R where α is an element of an algebraic field extension over the quotient field of R. In the case α is an anti-integral element over R we will give a condition for a prime ideal p of R to be $pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$. By making use of this we will proceed mainly with the study of flatness and faithful flatness of the extension $R[\alpha, \alpha^{-1}]/R$. Let η_1, \dots, η_d be the coefficients of the minimal polynomial of α over the quotient field of R. Then we will also investigate the extension $R[\eta_1, \dots, \eta_d]/R$.

§1. Laurent extensions and ideals $J_{[\alpha], i}$.

Let R be a Noetherian integral domain with the quotient field K. Let α be an element which is algebraic over K and set $d = [K(\alpha) : K]$. We denote the minimal polynomial of α over K by

$$\phi_{\alpha}(X) = X^{d} + \eta_{1} X^{d-1} + \dots + \eta_{d},$$

$$\eta_{1}, \dots, \eta_{d} \in K.$$

Set $I_{\eta_i} = R :_R \eta_i$ for $1 \le i \le d$ and $I_{[\alpha]} = \bigcap_{i=1}^d I_{\eta_i}$. We call $I_{[\alpha]}$ the generalized denominator *ideal* of α . Furthermore we will set

$$J_{[\alpha], 0} = I_{[\alpha]}(\eta_1, \cdots, \eta_d)$$

where (η_1, \dots, η_d) is a fractional ideal of R generated by the elements $\eta_1, \dots, \eta_{d-1}, \eta_d$ and

$$J_{[\alpha], i} = I_{[\alpha]}(1, \eta_1, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_d)$$

for $1 \leq i \leq d$. Sometimes we will use the notation $\widetilde{J_{[\alpha]}}$ instead of $J_{[\alpha], d}$. Set $J_{[\alpha]} =$ $I_{[\alpha]} + J_{[\alpha], 0} = I_{[\alpha]}(1, \eta_1, \eta_2, \dots, \eta_d).$ We call $R[\alpha, \alpha^{-1}]$ the Laurent extension of α over R.

Let R[X] be a polynomial ring over R in an indeterminate X and $\pi : R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X) = \alpha$. We say that α is an *anti-integral element* over R of degree d if $\operatorname{Ker}(\pi) = I_{[\alpha]}\phi_{\alpha}(X)R[X]$. Set

$$\Gamma_{J[\alpha]} = \{ p \in \operatorname{Spec}(R) \mid p + J_{[\alpha]} = R \}$$

and

$$\mathcal{V}(\widetilde{J_{[\alpha]}}) = \{ p \in \operatorname{Spec}(R) \mid p \supset \widetilde{J_{[\alpha]}} \}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 13B02, Secondary 13B22, 13C11.

Key words and phrases. denominator ideal, anti-integral element, Laurent extension.

Our notation is standard and our general reference for unexplained technical terms is H.Matsumura: [2].

We will list the following results for later use.

Lemma 1.1 (M. Kanemitsu and K. Yoshida [1, Theorem 7 (2)]). Assume that α is an anti-integral element over R of degree d. Then

$$\{ p \in \operatorname{Spec}(R) \mid pR[\alpha] = R[\alpha] \} = \operatorname{V}(J_{[\alpha]}) \cap \Gamma_{J_{[\alpha]}}$$

An element γ in $R[\alpha]$ is said to be an *excellent element* if there exist elements $c_0, c_1, \dots, c_n \in R$ such that

~

$$\gamma = c_0 + c_1 \alpha + \dots + c_n \alpha^n$$
 and $(c_0, c_1, \dots, c_n)R = R$.

Lemma 1.2 (J. Sato, S. Oda and K. Yoshida [5, Corollary 5]). Assume that α is an anti-integral element over R of degree d. Then the following statements are equivalent.

(i) $R[\alpha]/R$ is a flat extension.

(ii) $R[\alpha, \alpha^{-1}]/R$ is a flat extension.

(iii) $\alpha \in \operatorname{rad}(J_{[\alpha]}R[\alpha]).$

(iv)
$$J_{[\alpha]} = R$$
.

(iv) Every excellent element belongs to $\operatorname{rad}(J_{[\alpha]}R[\alpha])$.

Our key result is the following.

Theorem 1.3. Let R be a Noetherian integral domain and α an anti-integral element over R of degree $d \geq 2$. For a prime ideal p of R the following are equivalent to each other. (i) $pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$.

(ii) $p + J_{[\alpha]} = R$ and there exists an integer $i \ (1 \le i \le d)$ such that $p \supset J_{[\alpha], i}$.

Proof. Set $A = R[\alpha, \alpha^{-1}]$.

(i) \Longrightarrow (ii). First we will prove that $p+J_{[\alpha]}=R$. The condition pA = A implies that α is in rad $(pR[\alpha])$. Then there exists a natural number n such that $\alpha^n = a_0 + a_1\alpha + \cdots + a_m\alpha^m$ and $a_0, a_1, \cdots, a_m \in p$ for some m. Let

$$f(X) = X^{n} - (a_{0} + a_{1}X + \dots + a_{m}X^{m})$$

Then f(X) is in Ker (π) . This shows that there exist elements $b_0, \dots, b_d \in J_{[\alpha]}$ and $g(X) \in R[X]$ satisfying

$$f(X) = (b_0 + b_1 X + \dots + b_d X^d)g(X).$$

Hence 1 is in $p + J_{[\alpha]}$, and so $p + J_{[\alpha]} = R$.

Secondly we will show that there exists an integer i $(1 \le i \le d)$ with $p \supset J_{[\alpha], i}$. Suppose that $p \not\supseteq J_{[\alpha], i}$ for every i with $1 \le i \le d$. We will prove that $pR[\alpha] \ne R[\alpha]$. If $pR[\alpha] = R[\alpha]$, then by Lemma 1.1, we get $p \supset \widetilde{J_{[\alpha]}} = J_{[\alpha], d}$. This is a contradiction.

We know that

$$\alpha^d + \eta_1 \alpha^{d-1} + \dots + \eta_d = 0.$$

150

We will prove that there exists an element c of $I_{[\alpha]}$ such that $c\eta_i$ and $c\eta_j$ are not in p for some $i \neq j$ $(1 \leq i, j \leq d)$. Note that $J_{[\alpha], 1} = I_{[\alpha]}(1, \eta_2, \dots, \eta_d)$. Since $J_{[\alpha], i} \not\subset p$, there exists an integer i $(2 \leq i \leq d)$ such that $a \in I_{[\alpha]}$ and $a\eta_i \not\in p$. If we can take an integer j $(j \neq i \text{ and } 1 \leq j \leq d)$ satisfying $a\eta_j \not\in p$, then the assertion is proved. So we may assume that

$$a(\eta_1, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_d) \subset p$$

Furthermore, there exsits an integer j $(j \neq i \text{ and } 1 \leq j \leq d)$ such that $b \in I_{[\alpha]}$ and $b\eta_j \notin p$. Similarly as above we may assume that

$$b(\eta_1, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_d) \subset p.$$

Set c = a + b. Then $c\eta_i \notin p$ and $c\eta_j \notin p$.

From the argument above we see that there are at least two non-zero terms in $c\phi_{\alpha}(\alpha)$ modulo $pR_p[\alpha]$. Since $J_{[\alpha]}R_p = R_p$, the ideal $I_{[\alpha]}R_p$ is invertible, so $I_{[\alpha]}R_p$ is principal. Hence we may assume that c is a generator of $I_{[\alpha]}$. Let π' be the R-algebra homomorphosm of $R_p[X]$ into $R_p[\alpha]$ defined by $\pi'(X) = \alpha$. Then $\operatorname{Ker}(\pi') = I_{[\alpha]}\phi_{\alpha}(X)R_p[X] = (c\phi_{\alpha}(X))$. Hence $R_p[\alpha] \cong R_p[X]/(c\phi_{\alpha}(X))$. On the other hand

$$R_p[\alpha]/pR_p[\alpha] \cong k(p)[\overline{\alpha}] \cong k(p)[X]/(\overline{c\phi_{\alpha(X)}})$$

where k(p) is the residue field of p. Let Q be the prime ideal of $R_p[\alpha]$ which corresponds to the irreducible factor of $\overline{c\phi_{\alpha}(X)}$ different from \overline{X} . Then Q does not contain α and $Q \supset pR_p[\alpha]$. Set $P = Q \cap R[\alpha]$. Then $P \supset pR[\alpha]$ and $P \not\supseteq \alpha$. This is absurd from the fact $P \supset \operatorname{rad}(pR[\alpha]) \ni \alpha$.

(ii) \Longrightarrow (i). Assume that $pA \neq A$. Then there exists a prime ideal P of A such that $P \supset pA$. By the condition $p + J_{[\alpha]} = R$, there exists elements b of p and c of $J_{[\alpha]}$ such that b + c = 1. Since c is in $J_{[\alpha]} = J_{[\alpha]}(1, \eta_1, \dots, \eta_d)$, we can write

$$c = c_0 + c_1 \eta_1 + \dots + c_d \eta_d$$
 and $c_0, c_1, \dots, c_d \in I_{[\alpha]}$.

By the condition (ii), there exists an integer i $(1 \le i \le d)$ such that $p \supset J_{[\alpha], i}$. Multiplying the equality

$$\alpha^d + \eta_1 \alpha^{d-1} + \dots + \eta_d = 0.$$

by c_i , we have

$$c_i \alpha^d + c_i \eta_1 \alpha^{d-1} + \dots + c_i \eta_d = 0.$$

We know that $c_i, c_i\eta_1, \cdots, c_i\eta_d$ other than $c_i\eta_i$ are in $J_{[\alpha], i}$, and so in P. Hence $c_i\eta_i\alpha^{d-i}$ is in P. Then in the equation

$$c\alpha^{d-i} = c_0 \alpha^{d-i} + c_1 \eta_1 \alpha^{d-i} + \dots + c_d \eta_d \alpha^{d-i},$$

 $c_0, c_1\eta_1, \dots, c_d\eta_d$ other than $c_i\eta_i$ are in $J_{[\alpha], i}$, and so in P. Therefore $c\alpha^{d-i}$ is in P. Using c = 1 - b, we get $\alpha^{d-i} \in P$. If $p \supset J_{[\alpha], d} = \widetilde{J}_{[\alpha]}$, then by Lemma 1.1, we know $pR[\alpha] = R[\alpha]$. This claims that pA = A. This is absurd. Hence $i \neq d$. This shows that α is in P. This contardicts to the fact α is a unit of A. \Box

Remark 1.4. (1) By Theorem 1.3, we obtain:

 $\{ p \in \operatorname{Spec}(R) \mid pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \} = (\cup_{i=1}^{d} \operatorname{V}(J_{[\alpha], i})) \cap \Gamma_{J_{[\alpha]}}.$

If $J_{[\alpha]} = R$, then we have

$$\{ p \in \operatorname{Spec}(R) \mid pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \} = \bigcup_{i=1}^{d} \operatorname{V}(J_{[\alpha], i}).$$

It is a closed set.

(2) In the case d = 1, we have the following Theorem 1.3['].

Theorem 1.3[']. Let R be a Noetherian integral domain and α an anti-integral element over R of degree 1. For a prime ideal p of R, the following are equivalent to each other: (i) $nR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$

)
$$pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}],$$

(ii) $p + J_{[\alpha]} = R$ and there exists an integer i (i = 0, 1) such that $p \supset J_{[\alpha], i}$.

Proof. We will prove that $p \supset J_{[\alpha], i}$ for some i (i = 0, 1) in the proof (i) \Longrightarrow (ii) because the rest of the proof is the same argument as in Theorem 1.3. Assume that $p \not\supseteq I_{[\alpha]}\eta_1 \cap I_{[\alpha]}$. Then there exists an element c of $I_{[\alpha]}$ such that $c\eta_1 \not\in p$ and $c\eta_1 \in I_{[\alpha]}$. The fact $c\eta_1 \in I_{[\alpha]}$ implies $c\eta_1^2 \in R$. Since $c \cdot c\eta_1^2 = (c\eta_1)^2$ is not in p, we see that c is not in p. Hence $\alpha = -c\eta_1/c$ is in R_p . Furthermore, $\alpha^{-1} = -c/c\eta_1$ is in R_p because $c\eta_1 \not\in p$. Therefore $R_p \supset R[\alpha, \alpha^{-1}] = A$. Thus $pR_p \supset pA = A$. This is a contradiction. \square

(3) For another characterization of $pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ in the case d = 1, see [1, p. 55, Remark].

(4) From now on we will assume $d \ge 2$.

Proposition 1.5. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Let $A = R[\alpha, \alpha^{-1}]$ and ϕ the contraction mapping of Spec(A) into Spec(R). Then the following are equivalent.

(i) The contraction mapping ϕ is surjective.

(ii) For every *i* with $1 \le i \le d$, the equality $\operatorname{rad}(J_{[\alpha]}) = \operatorname{rad}(J_{[\alpha], i})$ holds.

Proof. (i) \Longrightarrow (ii). Suppose that there exists an integer i $(1 \leq i \leq d)$ such that $\operatorname{rad}(J_{[\alpha]}) \neq \operatorname{rad}(J_{[\alpha], i})$. By the definitions of $J_{[\alpha]}$ and $J_{[\alpha], i}$, we have $J_{[\alpha], i} \subset J_{[\alpha]}$. Hence $\operatorname{rad}(J_{[\alpha], i}) \subset \operatorname{rad}(J_{[\alpha]})$. Then there exists a prime ideal p of R such that $J_{[\alpha], i} \subset p$ and $J_{[\alpha]} \notin p$. This implies that $pR_p \supset J_{[\alpha], i}R_p$ and $pR_p + J_{[\alpha]}R_p = R_p$. Applying Theorem 1.3 to $A_p = R_p[\alpha, \alpha^{-1}]$, we obtain $pA_p = A_p$. This shows that $p \notin \operatorname{Im}(\phi)$. This is a contradiction.

(ii) \Longrightarrow (i). We have only to prove that $pA_p \neq A_p$ for arbitrary prime ideal p of R. Assume that $pA_p = A_p$. Then Theorem 1.3 asserts that $pR_p + J_{[\alpha]}R_p = R_p$. Hence $J_{[\alpha]}R_p = R_p$. Besides, there exists an integer i $(1 \leq i \leq d)$ such that $pR_p \supset J_{[\alpha], i}R_p$ by Theorem 1.3. Hence we see that $\operatorname{rad}(J_{[\alpha]}R_p) \supset \operatorname{rad}(J_{[\alpha], i}R_p)$, hence $\operatorname{rad}(J_{[\alpha]}) \supset \operatorname{rad}(J_{[\alpha], i})$.

This is absurd. \Box

Corollary 1.6. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $A = R[\alpha, \alpha^{-1}]$. Then A/R is a faithfully flat extension if and only of $J_{[\alpha], i} = R$ for every i $(1 \le i \le d)$.

Proof. Let ϕ the contraction mapping of Spec(A) into Spec(R).

 (\Longrightarrow) . Since A/R is faithfully flat, the homomorphism ϕ is surjective by H. Matsumura [2, (4D) Theorem 3]. Then Proposition 1.5 implies that $\operatorname{rad}(J_{[\alpha]}) = \operatorname{rad}(J_{[\alpha], i})$ for every integer i $(1 \leq i \leq d)$. Furthermore, by Lemma 1.2, $J_{[\alpha]} = R$ because A/R is a flat extension. Hence $J_{[\alpha], i} = R$ for every i $(1 \leq i \leq d)$.

(\Leftarrow). It is easily verified that $J_{[\alpha]} = R$ because $J_{[\alpha]} \supset J_{[\alpha], i}$. Then A/R is a flat extension by Lemma 1.2. Moreover, we know that $\operatorname{rad}(J_{[\alpha]}) = R = \operatorname{rad}(J_{[\alpha], i})$. By Proposition 1.5, the contraction mapping ϕ is surjective. Hence A/R is a faithfully flat extension by H. Matsumura [2, (4D) Theorem 3]. \Box

The following holds about $R[\alpha]$.

Theorem 1.7. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $B = R[\alpha]$. Then the following are equivalent.

(i) $J_{[\alpha]} = R.$ (ii) $J_{[\alpha]}B = B.$ (iii) $\widetilde{J_{[\alpha]}B} = B.$

Proof. (i) \implies (ii) is obvious.

(ii) \implies (i). Since $J_{[\alpha]}B = B$, we know that α is in rad $(J_{[\alpha]}B)$ by Lemma 1.2, we have $J_{[\alpha]} = R$.

(iii) \implies (ii) is clear from the fact $J_{[\alpha]} \supset J_{[\alpha]}$.

(ii) \Longrightarrow (iii). Let p be a prime divisor of $\widetilde{J_{[\alpha]}}$. By (ii) \Longrightarrow (i), we get $J_{[\alpha]} = R$. Therefore Lemma 1.1 implies that pB = B. Hence $\operatorname{rad}(\widetilde{J_{[\alpha]}}B) = B$, and so $\widetilde{J_{[\alpha]}}B = B$.

An analogous result to Theorem 1.7 holds in the case $R[\alpha, \alpha^{-1}]$.

Theorem 1.8. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $A = R[\alpha, \alpha^{-1}]$. Then the following are equivalent. (i) $J_{[\alpha]} = R$, i.e., the extension A/R is a flat extension.

(ii) $J_{[\alpha]}A = A$. (iii) $\widetilde{J_{[\alpha]}}A = A$.

Proof. (i) \implies (ii) is immediate.

(ii) \implies (i). We will prove that A/R is a flat extension. Let P be a prime ideal of A and set $p = P \cap R$. Then $p \not\supseteq J_{[\alpha]}$ because $J_{[\alpha]}A = A$. Hence $J_{[\alpha]}R_p = R_p$. By Lemma 1.2 we see that $A_p = R_p[\alpha, \alpha^{-1}]/R_p$ is a flat extension. Moreover, A_P/A_p is also a flat extension. Therefore A_P/R_p is a flat extension. So is A/R.

(iii) \implies (ii) is clear from $\widetilde{J_{[\alpha]}} \subset J_{[\alpha]}$.

(ii) \Longrightarrow (iii). Let p be a prime divisor of $\widetilde{J_{[\alpha]}}$. Then $J_{[\alpha]} = R$ by (ii) \Longrightarrow (i). Hence Lemma 1.1 shows that $\alpha R[\alpha] = R[\alpha]$. This means that pA = A. Therefore $\operatorname{rad}(\widetilde{J_{[\alpha]}})A = A$, and so $\widetilde{J_{[\alpha]}}A = A$. \Box

Remark 1.9. $\widetilde{J_{[\alpha]}} = R$ does not hold necessarily even if $J_{[\alpha]} = R$.

Corollary 1.10. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $A = R[\alpha, \alpha^{-1}]$. Then the following are equivalent to the conditions in Theorem 1.8.

(iv) There exists an integer $i \ (1 \le i \le d)$ such that $J_{[\alpha], i}A = A$.

(v) $J_{[\alpha], i}A = A$ for every $i \ (1 \le i \le d)$.

Proof. (iv) \Longrightarrow (ii) is clear from $J_{[\alpha], i} \subset J_{[\alpha]}$.

(iii) \implies (iv) is immediate from $J_{[\alpha]} = J_{[\alpha], d}$.

 $(v) \implies (iv)$ is obvious.

(i) \implies (v). Let p be a prime divisor of $J_{[\alpha], i}$. By the condition (i) we know that $J_{[\alpha]} = R$. Hence by Lemma 1.1, we get $pR[\alpha] = R[\alpha]$. Hence pA = A. This implies that $J_{[\alpha], i}A = A$. \square

\S 2. Shifting a generator by an element of A.

We denote by U(A) the unit group of A. We will find a condition for A to coincide with $R[a\alpha, (a\alpha)^{-1}]$.

Lemma 2.1. Let R be a Noetherian integral domain with the quotient field K. Let α be an element of an algebraic field extension over K and set $A = R[\alpha, \alpha^{-1}]$. If a is an element of A and $A = R[\alpha, \alpha^{-1}]$, then a is in U(A).

Proof. Since $a^{-1} = \alpha(a\alpha)^{-1}$ is in A, we know that a is in U(A).

Proposition 2.2. Let R be a Noetherian domain and α an anti-integral element over R of degree d. Set $A = R[\alpha, \alpha^{-1}]$. If $\operatorname{grade}(J_{[\alpha], i}) > 1$ for every $i \ (1 \leq i \leq d)$, then $U(A) \cap R = U(R)$.

Proof. It is clear that $U(A) \cap R \supset U(R)$. Assume that

$$\mathrm{U}(A) \cap R \mathop{\supset}_{\neq} \mathrm{U}(R)$$

Then there exists an element a of $U(A) \cap R$ such that $a \notin U(R)$. Since a is in U(A), we have aA = A. Hence there exists a prime divisor p of rad(aR) such that pA = A. Then by Theorem 1.3, we see that $p \supset J_{[\alpha], i}$ for some i with $1 \leq i \leq d$. By K.Yoshida [6, Proposition 1.10], we obtain depth $(R_p) = 1$ because p is a prime divisor of rad(aR). On the other hand $grade(J_{[\alpha], i}) > 1$ and $p \supset J_{[\alpha], i}$. This shows that $depth(R_p) > 1$, and we reach a contradiction. \Box

Theorem 2.3. Let R be a Noetherian domain and α an anti-integral element over R of degree d. Let a be an element of R. Set $A = R[\alpha, \alpha^{-1}]$ and assume that grade $(J_{[\alpha], i}) > 1$ for every i with $1 \le i \le d$. Then $A = R[\alpha\alpha, (\alpha\alpha^{-1})]$ if and only if a is in U(R).

Proof. (\Longrightarrow) Lemma 2.1 implies that *a* is in U(*A*). Hence *a* is in U(*A*) \cap *R*. By Proposition 2.2, we know that U(*A*) \cap *R* = U(*R*). Therefore *a* is in U(*R*).

(\Leftarrow) Since a is in U(R), we see that $(a\alpha)^{-1}$ is in A. Hence

 $R[a\alpha, (a\alpha^{-1})] \subset A.$

Note that $\alpha = (a\alpha)a^{-1}$ and $\alpha^{-1} = (a\alpha)^{-1}a$. Then we get $A \subset R[a\alpha, (a\alpha^{-1})]$. Therefore $A = R[a\alpha, (a\alpha^{-1})]$.

§3. Generalized denominator ideals.

We will consider the ring $R[\eta_1, \dots, \eta_d]$. We can refer to S.Oda and K.Yoshida [3, Corollary 15.2] and S.Oda and K.Yoshida [4, Corollary 1.2] for the condition $I_{[\alpha]}R[\alpha] = R[\alpha]$ and the ring $R[\eta_1, \dots, \eta_d]$. In this section we will study the ring $R[\eta_1, \dots, \eta_d]$ in the case the condition $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ holds.

Lemma 3.1. Set $C = R[\eta_1, \dots, \eta_d]$. If $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then $C \subset R[\alpha, \alpha^{-1}]$.

Proof. By definition of $I_{[\alpha]}$, it is easily seen that η_1, \dots, η_d are in $I_{[\alpha]}^{-1}$. We know that

$$I_{[\alpha]}^{-1} \subset I_{[\alpha]}^{-1} R[\alpha, \ \alpha^{-1}] = I_{[\alpha]}^{-1} I_{[\alpha]} R[\alpha, \ \alpha^{-1}] \subset R[\alpha, \ \alpha^{-1}].$$

Hence $C \subset R[\alpha, \alpha^{-1}]$.

Proposition 3.2. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. If $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then $J_{[\alpha]} = R$ and $R[\alpha, \alpha^{-1}]/R$ is a flat extension.

Proof. We will show that $R[\alpha, \alpha^{-1}]/R$ is a flat extension. Let P be a prime ideal of $R[\alpha, \alpha^{-1}]$ and set $p = P \cap R$. By the condition $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, we know that $I_{[\alpha]} \not\subset p$. So $J_{[\alpha]} \not\subset p$ because $I_{[\alpha]} \subset J_{[\alpha]}$. Hence $J_{[\alpha]}R_p = R_p$. Then Lemma 1.2 shows that $R_p[\alpha, \alpha^{-1}]/R_p$ is a flat extension. Hence $R[\alpha, \alpha^{-1}]/R$ is also a flat extension. By Lemma 1.2, we get $J_{[\alpha]} = R$. \square

The following is an analogous result to S. Oda and K. Yoshida [3, Theorem 11].

Theorem 3.3. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $C = R[\eta_1, \dots, \eta_d]$. If $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then the following conditions hold.

(1) $C \subset R[\alpha, \alpha^{-1}].$

(2) $I_{[\alpha]}C = C.$

(3) C/R is a birational and flat extension.

Proof. We have already proved (1) in Lemma 3.1.

(2) Proposition 3.2 says that $J_{[\alpha]} = R$.

Moreover, $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \cdots, \eta_d)$. Then we get $I_{[\alpha]}C = C$.

(3) It is clear that C/R is a birational extension. Let p be a prime ideal p of R. Then we will show that pC = C or $C \subset R_p$. From this fact it is easily seen that C/R is a flat extension. If $p \supset I_{[\alpha]}$, then $I_{[\alpha]}C = C$ means that pC = C. If $p \not\supseteq I_{[\alpha]}$, then η_1, \dots, η_d are in R_p because $I_{[\alpha]} = \bigcap_{i=1}^d I_{\eta_i}$. Hence $C \subset R_p$. \square

Theorem 3.4. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Assume that $J_{[\alpha]} = R$. Then the following two statements hold.

- (1) $I_{[\alpha]}R[\alpha] = R[\alpha]$ if and only if $\operatorname{rad}(I_{[\alpha]}) = \operatorname{rad}(J_{[\alpha], d})$.
- (2) $I_{[\alpha]}R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ if and only if $\operatorname{rad}(I_{[\alpha]}) = \operatorname{rad}(\bigcap_{i=1}^{d} J_{[\alpha], i})$.

Proof. (1) (\Longrightarrow) It is immediate from $\operatorname{rad}(I_{[\alpha]}) \subset \operatorname{rad}(J_{[\alpha], d})$ that $I_{[\alpha]} \subset J_{[\alpha], d}$. Let p be a prime divisor of $I_{[\alpha]}$. Then we have $pR[\alpha] = R[\alpha]$ because $I_{[\alpha]}R[\alpha] = R[\alpha]$. By Lemma 1.1, we get $p \supset J_{[\alpha], d}$, hence $p \supset \operatorname{rad}(J_{[\alpha], d})$. Therefore $\operatorname{rad}(J_{[\alpha], d}) \subset \operatorname{rad}(I_{[\alpha]})$, and so $\operatorname{rad}(I_{[\alpha]}) = (J_{[\alpha], d})$.

(\Leftarrow) Let p be a prime divisor of $I_{[\alpha]}$. Then

$$p \supset \operatorname{rad}(I_{[\alpha]}) = \operatorname{rad}(J_{[\alpha], d}) \supset J_{[\alpha], d}.$$

Hence by Lemma 1.1, we obtain $pR[\alpha] = R[\alpha]$. Therefore $rad(I_{[\alpha]})R[\alpha] = R[\alpha]$. This means that $I_{[\alpha]}R[\alpha] = R[\alpha].$

(2) Since $J_{[\alpha]} = R$, by Lemma 1.3, the following holds. $pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ if and only if there exists an integer $i \ (1 \le i \le d)$ such that $p \supset J_{[\alpha], i}$

Note that $p \supset \bigcap_{i=1}^{d} J_{[\alpha], i}$ if and only if there exists an integer $i \ (1 \le i \le d)$ satisfying $p \supset J_{[\alpha], i}$. By making use of these facts we can prove the assertion (2) in a similar way to the proof of (1). \Box

Remark 3.5. In the case d = 1, Proposition 1.5, Corollary 1.6, 1.10, Proposition 2.2 and Theorem 2.3 hold by rewriting i = 0, 1 instead of $i = 1, \dots, d$. Theorem 3.4 (2) does not hold even if we rewrite i = 0, 1 because $I_{[\alpha]} \not\subset I_{[\alpha]} \eta_1$.

References

[1] M. Kanemitsu and K. Yoshida, Anti-integral extensions and unramified extensions, Math. J. Okayama Univ., 36 (1994) 51-62.

[2] H. Matsumura, Commutative Algebra (2nd ed.), Benjamin, New York, 1980.

[3] S. Oda and K. Yoshida, The behaviour of generalized denominator ideals in anti-integral extensions, Mathematical J. Ibaraki Univ., 29 (1997) 1-7.

[4] S. Oda and K. Yoshida, On conditions for denominator ideals to diffuse and conditions for elements to be exculusive in anti-integral extensions, to appear in Mathematical J. Ibaraki Univ.

[5] J. sato, S. Oda and K. Yoshida, On excellent elements of anti-integral extensions, Mathematics J. Toyama Univ., 18 (1995) 163-168.

[6] K. Yoshida, On birational-integral extensions of rings and prime ideals of depth one, Japan. J. Math., 18 (1982) 49-70.

Mitsuo Kanemitsu Department of Mathematics Aichi University of Education Igaya-cho, Kariya, 448-8542, JAPAN

Kivoshi Baba Department of Mathematics Faculty of Education and Welfare Science Oita University Oita 870-1192, JAPAN

Ken-ichi Yoshida Department of Applied Mathematics Okayama University of Science Okayama 700-0005, JAPAN