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MINIMAX NONPARAMETRIC PREDICTION UNDER RANDOM

SAMPLE SIZE
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Abstract. Let U0 be a random vector taking its values in a measurable space and

having an unknown distribution P . Let U1; U2; : : : ; UN and V1; V2; : : : ; Vm be indepen-

dent simple random samples from P of a random size N and a �xed size m, respec-

tively. Further, let z1; z2; : : : ; zk be real valued bounded functions de�ned on the same

space. Assuming that only the �rst sample is observed, we �nd a minimax predictor

d
0(N;U1; : : : ; UN ) of the vector Y

m =
Pm
j=1(z1(Vj); z2(Vj); : : : ; zk(Vj))

T with respect

to a quadratic error loss function.

1. Introduction

Let U0 be a random vector taking its values in a measurable space (Y ;B) whose unknown

distribution P is assumed to be an element of the set

P = f all probability measures on (Y ;B) g:

Let U1; U2; : : : ; UN and V1; V2; : : : ; Vm be independent, simple random samples from P

of a random size N and a �xed size m, respectively. We assume that N is an ancillary

statistics, i.e. a random variable, which takes values in a set f0; 1; 2; : : :g, and whose known

distribution does not depend on P . Further, let z = (z1; z2; : : : ; zk)
T be a measurable,

bounded function on the space (Y ;B) with values in (Rk;BRk). In the paper we consider

the problem of predicting the value of a k-dimensional random vector Y m =
Pm

j=1 z(Vj)

from the data UN = (U1; : : : ; UN ). Assuming that the loss function has the form

L(d; Y m) = (d� Y
m)TC(d� Y

m);(1)

where C = [cij ] is nonnegative de�nite, symmetric k�k matrix, we �nd a minimax solution

of the above problem of prediction. As we show, the minimax predictor d0(N;UN ) of Y m

is an aÆne (inhomogeneous linear) function of the random vector XN =
PN

j=1 z(Uj).

Using this result we �nd, for each n � 1, the predictor d1(n;Un) which is minimax when

the value of Y m is predicted from the sample U1; U2; : : : ; Un of a �xed size n. Then we

show that the decision rule d1(N;UN ) is not minimax when the sample size N is random

and takes at least two di�erent values with positive probabilities. This is an ancillarity

paradox, because d1(N;UN ) seems to be the best candidate for a minimax predictor of

Y
m when the sample size N is random.

The �rst example of such an ancillarity paradox was given by Brown [3]. He showed that

in the multiple linear regression the admissibility of the ordinary estimator of the constant
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term depends on the distribution of the design matrix, which is an ancillary statistics. Next

example of this paradox was presented by Kun He [6] who considered estimation of the

multinomial probabilities p = (p1; p1; : : : ; pk)
T with respect to the loss (1), in which C was

the identity matrix. He proved that the estimator of p, which is minimax when the sample

size is �xed, is neither minimax nor admissible when the sample size is random. Analogous

results were presented by Amrhein [1] who studied minimax estimation of the multivariate

hypergeometric proportion pi =Mi=M; i = 1; : : : ; r with respect to the same loss as in Kun

He.

In the last part of the paper we �nd minimax predictor of Y m when the distribution of

the size N of the observed sample is unknown.

2. Minimax estimate.

Before stating the main result we will introduce the following notation: We denote by

Z, p and R1(P ) the random vector z(U0), its expected value and the sum of the variances

of its components weighted by the matrix C, i.e. we put

Z = z(U0)

p = EPZ;(2)

R1(P ) = EP (Z � p)
T
C (Z � p):

Now, let (Pj) be any sequence of probability measures on (Y ;B) such that

lim
j!1

R1(Pj) = sup
P2P

R1(P )(3)

and let (pj), where

pj = EPj
Z;(4)

be the corresponding sequence of points from the convex k{dimensional cube

M = [�M;M ]k;

where

M2 def
= sup

y2Y

z(y)T z(y):

Because of the boundedness of z, the numberM is �nite andM is compact in Rk. Therefore,

the sequence (pj) has a cluster point, which will be denoted throughout by p0.

Suppose now that the following condition is satis�ed

m[f(0)�

1X
n=1

f(n)

n
] � 1;(5)

where f(n), n � 0, denotes the probability that the random variable N takes the value

n. Then, by the same arguments as in Kun He [6], there exists a positive real number A1
which satis�es the following equation

1X
n=0

(n+A)2 + nm�mA2

(n+A)2
f(n) = 0:(6)

Since the above series is a decreasing function of the variable A > 0 this number is unique.

Moreover, A1 <1 () m > 1.
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Now, let the number A0 be de�ned by

A0 =

8>>><
>>>:

A1; if m[f(0)�

1X
n=1

f(n)

n
] � 1;

0; if m[f(0)�

1X
n=1

f(n)

n
] > 1:

(7)

Then the following theorem, which is the main result of the paper, holds.

Theorem 1. If m > 1, then

d
0(N;UN ) =

8<
: m

X
N +A0p0

N +A0
; if N > 0;

mp0; if N = 0

(8)

is the minimax predictor of the unobservable vector Y m and its minimax risk equals

sup
P2P

R(d0; P ) = m2

"
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
sup
P2P

R1(P ):

If m = 1, then

d
0(N;UN ) = p0(9)

is the minimax predictor of Y 1 and

sup
P2P

R(d0; P ) = sup
P2P

R1(P ):

3. Proof of the main result

Let D stand for the class of all predictors d of the unobservable vector Y m. For a

predictor d = d(N;UN ) 2 D we denote by R(d; P ) the risk function for d, i.e. we put

R(d; P ) = EPL(d;Y
m) = EP

�
d(N;UN )� Y m

�T
C
�
d(N;UN )� Y m

�
:

Since the vectorsUN and Y m are independent and since z(V1); : : : ; z(Vm) are i.i.d. random

vectors with the expected values equal to p,

EPY
m = EP

mX
j=1

z(Vj) = mp(10)

and

R(d; P ) = EP (d�mp)TC(d�mp) +EP (Y
m �mp)TC(Y m �mp):

Moreover,

EP (Y
m �mp)TC(Y m �mp) = mEP (Z � p)

T
C (Z � p) = mR1(P );(11)

which implies that the risk for any predictor d(N;UN ) 2 D can be rewritten as

R(d; P ) = EP (d�mp)TC(d�mp) +mR1(P ):(12)

According to the de�nition of minimaxity, to prove that the predictor d0(N;UN ) de�ned

in Theorem 1 is minimax it is necessary to show that

sup
P2P

R(d0; P ) = inf
d2D

sup
P2P

R(d; P ):(13)
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To prove this result for m > 1 we use the method which is analogous to that proposed in

Wilczynski [7]. First we show that d0 is minimax if the class of predictors is restricted to

a subset D0 � D which consists of all predictors da, with a 2 M, of the form

d
a(N;UN ) =

8<
: m

X
N +A0a

N +A0
; if N > 0;

ma; if N = 0:
(14)

Next we calculate the upper bound for the risk R(d0; P ) of d0 = d
p0 and then, via nonpara-

metric Bayes approach, we construct a sequence of priors on P for which the corresponding

sequence of Bayes risks converges to this upper bound. From this we deduce minimaxity of

d
0 when m > 1. Then, using a di�erent approach, we prove minimaxity of d0 for m = 1.

We begin the whole proof from the �rst case in which m > 1 and the condition (5) holds,

which implies that A0 2 (0;1). For simplicity we denote the risk function of a predictor

d
a 2 D0 by R(a; P ). Since the number A0 satis�es the equation (6), we obtain, by (12)

and (14),

R(a; P ) = mR1(P ) +m2

1X
n=0

nR1(P ) +A20(a� p)TC(a� p)

(n+A0)2
f(n)

= m

1X
n=0

[(n+A0)
2 +mn]R1(P ) +mA20(a� p)TC(a� p)

(n+A0)2
f(n)

= m2
�
R1(P ) + (a� p)TC(a� p)

� 1X
n=0

A20f(n)

(n+A0)2
;(15)

= m2
�
R1(P ) + (a� p)TC(a� p)

� "
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
;

= m2
�
EPZ

T
CZ � 2aTCEPZ + a

T
Ca

� "
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
:

This results from the equalities (cf. (10) and (11))

EPX
n = np and EP (X

n � np)TC(Xn � np) = nR1(P ); n � 1

and from the boundedness of the random vector Z, which implies that the function R1(P )

can be rewritten as

R1(P ) = EP (Z � p)
T
C (Z � p) = EPZ

T
CZ � pTCp:

Obviously, to prove that the decision rule d0(N;UN ), de�ned by (8), is minimax in D0
it suÆces to show that

sup
P2P

R(p0; P ) = inf
a2M

sup
P2P

R(a; P ):

This can easily be deduced from the paper of Wilczy�nski [7] in which it is proved, using

minmax Nikaido Theorem (cf. Aubin [2]), that the function R(a; P ) ( multiplied by some

constant ) satis�es the following condition

sup
P2P

R(p0; P ) = inf
a2M

sup
P2P

R(a; P ) = sup
P2P

inf
a2M

R(a; P ):(16)

This implies that the predictor d0(N;UN ) is minimax in D0 and its minimax risk equals

inf
a2M

sup
P2P

R(a; P ) = m2

"
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
sup
P2P

R1(P )(17)
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because, for a �xed distribution P 2 P , the convex function R(a; P ) of the variable a

attains its global minimum overM at the point a(P ) = p.

To show that d0(N;UN ) is minimax in D we make use of the nonparametric Bayes

approach proposed in Ferguson [5]. The structure of the arguments will be analogous to

those appearing in Wilczy�nski [7].

Let �j , j � 1, be a Dirichlet prior process on (Y ;B) with a parameter �j = A0Pj , where

(Pj) is a sequence de�ned by (3). Note �rst that, by (12), the Bayes predictor of Y m is

equal to the Bayes estimator of the parameter mp. Therefore, by Ferguson [5] example b,

the �j Bayes predictor of Y
m is given by

m

2
4A0EPj

Z

n+A0
+

n

n+A0

1

n

nX
j=1

z(Uj)

3
5 = m

X
n +A0pj

n+A0
= d

pj (n;Un);

whenever N = n � 0. This implies that dpj (N;UN ) is the �j Bayes predictor of Y m.

Moreover, the Bayes risk �(j) for this decision rule is given by

�(j)
def
= E�j

R(dpj ; P ) = E�j
R(pj ; P ) = m2

"
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
R1(Pj);

because, by (15), the risk R(pj ; P ) of the predictor d
pj (N;UN ) equals

R(pj ; P ) = m2

"
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
[EPZ

T
CZ � 2pT

j
CEPZ + p

T

j
Cpj ]

and ( cf. Ferguson [5] Theorem 3 )

E�j
[EPZ

T
CZ] = EPj

Z
T
CZ and E�j

[EPZ] = EPj
Z = pj :(18)

Since limj�!1R1(Pj) = supP2P R1(P ), the Bayes risk �(j) converges to

m2

"
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
sup
P2P

R1(P )

which, by (17), is the upper bound for the risk of d0(N;UN ). This implies that d0(N;UN )

is minimax ( see Ferguson [4], Theorem 2, p.91 ), when (5) holds and m > 1.

Now we consider the second case in which m > 1 and the condition (5) is not satis�ed.

Then A0 = 0 and, as it is easy to calculate, the risk function for the predictor d0 is given

by

R(d0; P ) = mR1(P ) +m2

"
(p0 � p)TC(p0 � p)f(0) +R1(P )

1X
n=1

f(n)

n

#
:

Since m[f(0)�

1X
n=1

f(n)

n
] > 1, this risk satis�es the inequality

R(d0; P ) � m2[(p0 � p)TC(p0 � p)+R1(P )]f(0);

which immediately implies that the upper bound for the risk of d0 is given by

sup
P2P

R(d0; P ) � m2f(0) sup
P2P

R1(P );(19)
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because, by (16) and (15),

sup
P2P

�
(p0 � p)TC(p0 � p)+R1(P )

�
=

= inf
a2M

sup
P2P

�
(a� p)TC(a� p)+R1(P )

�
(20)

= sup
P2P

inf
a2M

�
(a� p)TC(a� p)+R1(P )

�
= sup

P2P

R1(P ):

As before, to prove minimaxity of d0 we construct a sequence of priors on P for which

the corresponding sequence of Bayes risk converges to this upper bound. From this we

deduce minimaxity of d0(N; Y N ).

Let �j , j � 1, be a Dirichlet prior process on (Y ;B) with a parameter �j = AjPj , where

(Aj) is a sequence of positive real numbers, which converges to 0 and (Pj) is a sequence of

probability measures on (Y ;B) de�ned by (3). Then, as in the previous case, the �j Bayes

predictor of Y m is given by

d
j(N;UN ) =

8<
: m

X
N +Ajpj

N +Aj

; if N > 0;

mpj ; if N = 0;

where pj is de�ned by (4). Furthermore, the risk function R(dj ; P ) equals, by (15),

R(dj ; P ) = mR1(P ) +m2

1X
n=0

nR1(P ) +A2j(pj � p)TC(pj � p)

(n+Aj)2
f(n):

To calculate the Bayes risk �(j) for this decision rule we note that, by Theorem 4 of Ferguson

[5],

E�j
p
T
Cp = E�j

(EPZ)
T
C(EPZ) =

EPj
Z
T
CZ +Aj(EPj

Z)TC(EPj
Z)

Aj + 1

=
EPj

Z
T
CZ +Ajp

T

j
Cpj

Aj + 1
=

R1(Pj)

Aj + 1
+ p

T

j
Cpj :

From this and (18) we conclude that

E�j
R1(P ) = E�j

�
EPZ

T
CZ � pTCp

�
=

Aj

Aj + 1
R1(Pj);

and

E�j
(pj � p)TC(pj � p) = E�j

p
T
Cp� pT

j
Cpj =

R1(Pj)

Aj + 1
:

Therefore,

�(j) = m
Aj

Aj + 1
R1(Pj) +m2 Aj

Aj + 1
R1(Pj)

1X
n=0

f(n)

n+Aj

and

lim
j�!1

�(j) = m2f(0) sup
P2P

R1(P );

because Aj �! 0 and R1(Pj) �! supP2P R1(P ). Since m
2f(0) supP2P R1(P ) is, by (19),

the upper bound for the risk of d0(N;UN ), this implies that d0(N;UN ) is minimax when

m > 1 and the condition (5) is not satis�ed.
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Now we consider the last case in which m = 1 and thus the predictor d0(N;UN ) is

de�ned by (9). Then, for any d 2 D, we obtain, by (12) and (20),

sup
P2P

R(d; P ) � m sup
P2P

R1(P ) = sup
P2P

R1(P )

= sup
P2P

�
R1(P ) + (p0 � p)TC(p0 � p)

�
= sup

P2P

R(d0; P );

which implies minimaxity of d0(N;UN ) in that case. The proof of Theorem 1 is complete.

4. The failure of the minimax predictor for a fixed sample size

Suppose now that we want to predict Y m, m > 1, from the sample U1; U2; : : : ; Un of a

�xed size n. Then, from Theorem 1, the minimax predictor has the form

d
1(n;Un) = m

X
n +A(n)p0

n+A(n)
(21)

where the positive real number A(n) solves the equation (6) with f(n) = 1 and f(j) =

0; j 6= n, i.e.

A(n) =
n+

p
nm(n+m� 1)

m� 1
:(22)

It seems that the predictor d1(N;UN ) should be minimax when the sample size is

random. Obviously, if N is not random and takes only one value, say n, then A0 = A(n)

and d1(N;UN ) has this optimal property. Otherwise, the following theorem holds:

Theorem 2. If an ancillary statistics N is not concentrated on one point, then d1(N;UN )

is not minimax.

Proof. Assume that d1 is minimax, i.e. sup
P2P

R(d1; P ) = sup
P2P

R(d2; P ), and, for �xed 0 <

� < 1, consider the predictor d2 = �d0 + (1� �)d1. Then, as it is easy to calculate,

R(d2; P ) = �R(d0; P ) + (1� �)R(d1; P )� �(1� �)EP (d
1
� d

0)TC(d1 � d
0)

= �R(d0; P ) + (1� �)R(d1; P )

� �(1� �)

1X
n=1

(A0 �A(n))2[nR1(P ) + n2(p0 � p)TC(p0 � p)]

(n+A(n))2(n+A0)2
f(n):

Since the ancillary statisticsN is not concentrated on one point, the real number maxn�1(A0�

A(n))2f(n) is greater than zero. Therefore, there must exist a sequence (Pj) of probability

measures for which the following two conditions are satis�ed

lim
j!1

R(d0; Pj) = lim
j!1

R(d1; Pj) = sup
P2P

R(d0; P )

and

lim
j!1

R1(Pj) = lim
j!1

(p0 � pj)
T
C(p0 � pj) = 0; with pj = EPj

Z:

Otherwise, minimaxity of d0 and d1 implies that

sup
P2P

R(d2; P ) < sup
P2P

R(d0; P );

which is impossible. However, such a sequence (Pj) does not exist, because the risk function

R(d0; P ) equals, by (15),

R(d0; P ) = m2
�
R1(P ) + (p0 � p)TC(p0 � p)

� "
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
;
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and the above two conditions immediately imply that

sup
P2P

R(d0; P ) = lim
j!1

R(d0; Pj) =

= lim
j!1

m2
�
R1(Pj) + (p0 � pj)

T
C(p0 � pj)

� "
f(0) +

1X
n=1

A20f(n)

(n+A0)2

#
= 0;

which is impossible. Therefore, d1 can't be minimax, which completes the proof of the

theorem.

5. The minimax predictor when the distribution of N is unknown.

We have derived minimax predictor of Y m assuming that the distribution of the ancillary

statistics N is known. Now we drop this assumption and prove the following theorem.

Theorem 3. Suppose that the distribution of the ancillary statistics N is unknown. Then,

for m > 1,

d
�(N;UN ) =

8<
:

X
N

N
if N > 0

p0 if N = 0
(23)

is the minimax predictor of the unobservable vector Y m and its minimax risk equals

sup
P2P

R(d�; P ) = m2 sup
P2P

R1(P ):

Proof. Obviously, the decision rule d� coincide with the minimax predictor of Y m derived

under the assumptions that the distribution of N is known and the inequality (5) is not

satis�ed. Therefore, from (19), the risk of d� is bounded from above by m2 supP2P R1(P ),

because f(0) � 1. Moreover, this upper bound is the minimax risk of d0 when the ancillary

statistic N is concentrated on the point zero. Therefore, this bound must be attained by

any decision rule used to predict Y m under the unknown distribution of N . This completes

the proof.

6. Examples

As an application of the results obtained in the paper we consider the following three ex-

amples in which we assume that m > 1. In each of them the minimax predictor d0(N;UN )

is given by (8). The number A0 is de�ned by (7), if the distribution of the ancillary statistics

N is known, and is equal to zero otherwise. The form of the vector p0 will be found below.

Example 1. Suppose that the set Y is centrosymmetric about 0 and that, for each y 2 Y ,

z(y) = �z(�y). Let (Pj) be a sequence for which (3) holds and let P�j denotes the

distribution of the random vector �U0, whenever U0 is distributed according to Pj . Then

the sequence (P
0

j ), with P
0

j = (1=2)(Pj + P�j ), satis�es (3), because

R1(P
0

j ) = E
P

0

j
Z
T
CZ � (E

P
0

j
Z)TC(E

P
0

j
Z) = EPj

Z
T
CZ � 0

� EPj
Z
T
CZ � (EPj

Z)TC(EPj
Z) = R1(Pj):

Therefore, we may assume that pj = E
P

0

j
Z = 0, which implies that p0 = 0.

Example 2. Suppose that C = [cij ] is a diagonal matrix and that there exist two sequences�
yj
	
and

�
yj
	
of points from Y such that, for each 1 � i � k,

lim
j�!1

zi(yj) = inf
y2Y

zi(y); lim
j�!1

zi(yj) = sup
y2Y

zi(y):
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Let the distribution Pj of U0, j � 1, be de�ned by:

Pj(U0 = yj) = Pj(U0 = yj) = 0:5:

Then, as it is easy to verify, for each 1 � i � k,

sup
P2P

h
EP (zi(U0))

2
� (EP zi(U0))

2
i

= lim
j�!1

h
EPj

(zi(U0))
2
�
�
EPj

zi(U0)
�2i

= lim
j�!1

jzi(yj)� zi(yj)j
2

4
:

This implies that (Pj) is a sequence of distributions de�ned in (3), because C is assumed

to be a diagonal matrix and thus

R1(P ) =

kX
i=1

cii

h
EP (zi(U0))

2
� (EP zi(U0))

2
i
:

Therefore, the coordinates of the point p0 = (p01; p02; : : : ; p0k)
T are given by

p0i = lim
j�!1

zi(yj) + zi(yj)

2
=

infy2Y zi(y) + supy2Y zi(y)

2
; 1 � i � k:

Example 3. Let fAig
k
i=1 be a measurable partition of Y , i.e. let A1; : : : ; Ak be measur-

able, pairwise disjoint, subsets of Y whose union equals Y . Furthermore, let zi(y) = 1Ai
(y),

1 � i � k, be the indicator function of the set Ai. Then the random vectors Z = z(U0),X
n

and Y m have (1;p), (n;p) and (m;p) multinomial distributions in which the parameter p =

EPZ takes its values in a simplex S =
n
(s1; s2; : : : ; sk) :

V
1�i�k si � 0 and s1 + s2 + : : :+ sk = 1

o
:

Furthermore, as it is easy to calculate, R1(P ) = c
T
p� p

T
Cp; where c = (c11; c22; : : : ; ckk)

T

stands for the diagonal of the matrix C = [cij ]. Therefore, the vector p0 satis�es the equa-

tion

c
T
p0 � p

T

0
Cp0 = max

p2S

�
c
T
p� p

T
Cp

�
:
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