ON ATOMS OF BCK-ALGEBRAS

DAJUN SUN

Received January 31, 2000

Abstract

Atoms in BCK-algebras are considered. The notions of the star BCKalgebras and the star part of BCK-algebras are introduced. The properties of some substructures which consist of atoms are investigated. Furthermore, by isomorphic view, there are and only $n+1$ BCK-algebras X with $|X|=n+1$ and $\left|S_{t}(X)\right|=n$.

1. Introduction By a BCK-algebra we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the axioms:
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x *(x * y)) * y=0$,
(3) $x * x=0$,
(4) $x * y=y * x=0$ impies $x=y$,
(5) $0 * x=0$
for any x, y and z in X. For any BCK-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X (see [1]).

A BCK-algebra X has the following properties for any $x, y, z \in X$:
(6) $x * 0=x$,
(7) $(x * y) * z=(x * z) * y$,
(8) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$.

In a BCK-algebra X, if an element a satisfying:
(a) $a \neq 0$,
(b) $x \in X \backslash\{0\}$ and $x \leq a$ imply $x=a$
then the element a is called an atom of X. Since 0 is the least element of X, it is obvious that an atom of X is a minimal element of X.

Let $(X ; *, 0)$ be a BCK-algebra. A non-empty subset S of X is called a subalgebra if $x, y \in S$ implies $x * y \in S$. By an ideal I of X we mean $0 \in I$ and $y, x * y \in I$ imply $x \in I$. If an ideal I of X is also a subalgebra of X, then I is called a close ideal of X. It has been known that an ideal of a BCK-algebra is a close ideal (see [2]).
2. Star subalgebras of BCK-algebras Let X be a BCK-algebra. We define

$$
S_{t}(X)=\{a \in X ; a=0 \text { or } a \text { is an atom of } X .\}
$$

[^0]The subset $S_{t}(X)$ is called the star part of X.
Propsition 2.1. Let X be a BCK-algebra. If $a, b \in S_{t}(X)$ and $a \neq b$, then $a * b=a$.
Proof. In case $a=0$ or $b=0$, the proof is trivial. Assume $a \neq 0$ and $b \neq 0$, by $a * b \leq a$ and a is an atom of X, we get $a * b=0$ or $a * b=a$. If $a * b=0$, then $a=0$ or $a=b$ since b is an atom of X. It is a contradiction, hence $a * b=a$. The proof is completed.

By Propsition 2.1 we can immediately get
Theorem 2.2. For any BCK-algebra $X, S_{t}(X)$ is a subalgebra of X.
Let X be a BCK-algebra and S be a subalgebra of $X . S$ is called a star subalgebra of X if $S_{t}(S)=S$. Particularly X is called a star BCK-algebra if $X=S_{t}(X)$.

Remark. $S_{t}(X)$ may be not a maximal star subalgebra.

Example 1. Let $X=\{0, \cdots,-n-1,-n,-n+1, \cdots,-3,-2,-1\}$ and partial order \leq as follows $0 \leq \cdots \leq-n-1 \leq-n \leq-n+1 \leq \cdots-3 \leq-2 \leq-1$. Define operation $*$ by

$$
x * y= \begin{cases}0, & x \leq y \\ x, & \text { others }\end{cases}
$$

for any x, y in X. Then $(X ; *, 0)$ is a BCK-algebra and $S_{t}(X)=\{0\}$. If take the subalgebra $S=\{0,1\}$ of X, then $S_{t}(S)=S$. In this example, $S_{t}(X)$ is not a maximal star subalgebra of X.

Example 2. Let $X=\{0,1,2,3\}$. Take the operation table of X as follows

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Then $(X ; *, 0)$ is a BCK-algebra. $S_{t}(X)=\{0,1,3\}$ is a maximal star subalgebra of X but not the largest star subalgebra of X since $S=\{0,2\}$ is a star subalgebra of X.

Theorem 2.3. Let X be a BCK-algebra and S be a subalgebra of X. Then S is a star subalgebra of X if and only if for any $a, b \in S, a \neq b$ implies $a * b=a$.

Proof. By Propsition 2.1, the necessity part is obvious. In the sufficiency part, for any $b \in S \backslash\{0\}$, if there exists $x_{0} \in S \backslash\{0\}$ such that $x_{0} \leq b$, then we have $x_{0}=b$ or $x_{0} \neq b$. If $x_{0} \neq b$, then we get $x_{0} * b=0$ by $x_{0} \leq b$ and $x_{0} * b=x_{0}$ by the condition of the Theorem, hence $x_{0}=0$. It is contradictory that $x_{0} \in S \backslash\{0\}$. Hence $x_{0}=b$ and b is an atom of S. The proof is completed.

Theorem 2.4. Let X be a BCK-algebra. Then $S_{t}(X)$ is a maximal star subalgebra of X if and only if for any element x in $X \backslash S_{t}(X)$, there exists an element a in $S_{t}(X) \backslash\{0\}$ suh that $a \leq x$.

Proof. Assume S be a star subalgebra of X and $S_{t}(X) \subseteq S$. If there exists an element x_{0} of X in $S \backslash S_{t}(X)$, then there exists an element a in $S_{t}(X) \backslash\{0\} \subseteq S$ such that $a \leq x_{0}$. Hence the element x_{0} is not an atom of S. It is contrdictory that S is a star subalgebra of X. And the sufficient part is proved. On the other hand, if there exists x_{0} in $X \backslash S_{t}(X)$ such that for all a in $S_{t}(X) \backslash\{0\}, a * x_{0} \neq 0$, then we have $a * x_{0}=a$ by $a * x_{0} \leq a$ and $a \in S_{t}(X) \backslash\{0\}$. Assume $x_{0} * a=b$, we get

$$
\left(x_{0} * b\right) * a=\left(x_{0} * a\right) * b=b * b=0
$$

that is $x_{0} * b \leq a$, hence $x_{0} * b=0$ or $x_{0} * b=a$. If $x_{0} * b=a$, then

$$
a * x_{0}=\left(x_{0} * b\right) * x_{0}=\left(x_{0} * x_{0}\right) * b=0 * b=0
$$

It is a contradition. Hence $x_{0} * b=0$. By $b * x_{0}=\left(x_{0} * a\right) * x_{0}=\left(x_{0} * x_{0}\right) * a=0 * a=0$, we have $x_{0}=b=x_{0} * a$. Then we get $x_{0} * a=x_{0}$ and $a * x_{0}=a$ for all $a \in S_{t}(X)$. Therefore $S=S_{t}(X) \bigcup\left\{x_{0}\right\}$ is a star subalgebra of X by Theorem 2.3. It is contradictory that $S_{t}(X)$ is a maximal star subalgebra. The proof is completed.

Corollary 2.5. For a finite BCK-algebra $X, S_{t}(X)$ is a maximal star subalgebra of X.
Theorem 2.6. Let X be a BCK-algebra. $S_{t}(X)$ is the largest star subalgebra of X if and only if $X=S_{t}(X)$.

Proof. The sufficiency part is obvious. Conversely, for any $x \in X \backslash\{0\}, S=\{0, x\}$ is a star subalgebra of X, hence $x \in S_{t}(X)$ since $S_{t}(X)$ is the largest star subalgebra. The proof is completed.

Let $\left(X ; *_{1}, 0\right),\left(Y ; *_{2}, 0\right)$ be two BCK-algebras. The set $X \times Y=\{(x, y) ; x \in X, y \in Y\}$ about operation $*:\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1} *_{1} x_{2}, y_{1} *_{2} y_{2}\right)$ becomes a BCK-algebra, and $(0,0)$ is the zero element of $X \times Y$.

Generally, $S_{t}(X \times Y) \neq S_{t}(X) \times S_{t}(Y)$, but we have
Theorem 2.7. Let X, Y be two BCK-algebras. Then

$$
S_{t}(X \times Y)=\left(S_{t}(X) \times\{0\}\right) \bigcup\left(\{0\} \times S_{t}(Y)\right)
$$

Proof. It is obvious that $S_{t}(X \times Y) \supseteq\left(S_{t}(X) \times\{0\}\right) \bigcup\left(\{0\} \times S_{t}(Y)\right)$. Furthermore, for any $\left(x_{0}, y_{0}\right) \in S_{t}(X \times Y)$, if $x_{0} \neq 0$ and $y_{0} \neq 0$, then we get $\left(x_{0}, 0\right) *\left(x_{0}, y_{0}\right)=(0,0)$. It is contradictory that $\left(x_{0}, y_{0}\right) \in S_{t}(X \times Y)$. Hence we get $x_{0}=0$ or $y_{0}=0$. If $x_{0}=0$, then it is easy to prove that $y_{0} \in S_{t}(Y)$. Similarly, if $y_{0}=0$, then $x_{0} \in S_{t}(X)$. The proof is completed.

Corollary 2.8. For any finite BCK-algebra X, Y, we have $\left|S_{t}(X \times Y)\right|=\left|S_{t}(X)\right|+$ $\left|S_{t}(Y)\right|-1$.

Corollary 2.9. Let X, Y be two BCK-algebras. Then $S_{t}(X \times Y)=S_{t}(X) \times S_{t}(Y)$ if and only if $S_{t}(x)=\{0\}$ or $S_{t}(Y)=\{0\}$

Let X be a BCK-algebra. If an atom b of X satisfies that $b * x=b$ for any $x \in X \backslash\{b\}$, then we call b is a strong atom of X. Take the subset of X

$$
D(X)=\left\{b \in S_{t}(X) ; b \text { is a strong atom of } X \text { or } b=0\right\}
$$

we have
Theorem 2.10. For any BCK-algebra $X, D(X)$ is a closed ideal of X.
Proof. We need to prove that $D(X)$ is an ideal of X only. Assume $y, x * y \in D(X)$, if $x * y=x$, then $x \in D(X)$. If $x * y \neq x$, then $(x * y) * x=x * y$ by the definition of $D(X)$. On the other hand,

$$
(x * y) * x=(x * x) * y=0 * y=0
$$

hence we get $x * y=0$. By $y \in D(X)$ and $x * y=0$, we have $x=0$ or $x=y$, hence $x \in D(X)$. The proof is completed.
3. On star BCK-algebras Suppose $(X ; *, 0)$ be a BCK-algebra. For any $a \in X$, we use a^{-1} denote the selfmap of defined by $x a^{-1}=x * a$. Let $M(X)$ denote the set of all finite
product $a^{-1} \cdots b^{-1}$ of selfmaps with $a, \cdots, b \in X$. It is clear that $M(X)$ becomes a commutative monoid under composition of maps and 0^{-1} is the identity. We difine a relation \leq_{1} on $M(X)$ as follows:

$$
u^{-1} \cdots v^{-1} \leq_{1} a^{-1} \cdots b^{-1} \Longleftrightarrow\left(x u^{-1} \cdots v^{-1}\right) *\left(x a^{-1} \cdots b^{-1}\right)=0
$$

for any $x \in X$. We call $M(X)$ the adjoint semigroup of X (see [3]). It is obvious that $M(S)=\left\{u^{-1} \cdots v^{-1} ; u, \cdots, v \in S\right\}$ becomes a subsemigroup of $M(X)$ for any non-empty subset S of X.

Lemma 3.1. Let X be a BCK-algebra and $\sigma=a_{1}{ }^{-1} \cdots a_{n}{ }^{-1} \in M\left(S_{t}(X)\right)$. If $S_{t}(X)$ is an ideal of X, then $\operatorname{Ker} \sigma=\left\{0, a_{1}, a_{2}, \cdots, a_{n}\right\}$

Proof. It is obvious that $\left\{0, a_{1}, a_{2}, \cdots, a_{n}\right\} \subseteq K e r \sigma$ by Section 1. Conversely, if $\sigma=a_{1}{ }^{-1}$ and $b \in \operatorname{Ker} \sigma$, then $b a_{1}{ }^{-1}=b * a_{1}=0$. We get $b=0$ or $b=a_{1}$ by $a_{1} \in S_{t}(X)$, hence $b \in\left\{0, a_{1}\right\}$ and the Lemma holds for $n=1$. Now we assume the Lemma has already been proved for $n=k$, then we prove the case of $\sigma=a_{1}^{-1} a_{2}^{-1} \cdots a_{k}^{-1} a_{k+1}^{-1}$. If $b \in \operatorname{Ker} \sigma, b \sigma=0$, then we have $b \in S_{t}(X)$ by $S_{t}(X)$ is an ideal of X and $a_{1}, \cdots, a_{k+1} \in S_{t}(X)$. Since $\left(b * a_{k+1}\right) * b=0$ and $b \in S_{t}(X)$, we get $b * a_{k+1}=0$ or $b * a_{k+1}=b$. If $b * a_{k+1}=0$, then $b=a_{k+1}$ or $b=0$ hence $b \in\left\{0, a_{1}, \cdots, a_{k+1}\right\}$. If $b * a_{k+1}=b$, then

$$
0=b \sigma=b a_{1}^{-1} \cdots a_{k}^{-1} a_{k+1}^{-1}=\left(b a_{k+1}^{-1}\right) a_{1}^{-1} \cdots a_{k}^{-1}=b a_{1}^{-1} \cdots a_{k}^{-1}
$$

we have $b \in\left\{0, a_{1}, \cdots, a_{k}\right\} \subseteq\left\{0, a_{1}, \cdots, a_{k}, a_{k+1}\right\}$ by our assumption. The proof is completed.

Theorem 3.2. Let X be a BCK-algebra. Then X is a star BCK-algebra if and only if for all $\sigma=a_{1}{ }^{-1} \cdots a_{n}{ }^{-1} \in M(X), \operatorname{Ker} \sigma=\left\{0, a_{1}, \cdots, a_{n}\right\}$.

Proof. By Lemma 3.1, the necessity part is obvious. In sufficiency part, for any element $a \in X \backslash\{0\}$, if there exists $x \in X$ such that $x \leq a$, then $x \in$ Kera $^{-1}=\{0, a\}$, hence $x=0$ or $x=a$, and a is an atom of X. The proof is completed.

By a positive implicative BCK-algebra, we mean a BCK-algebra ($X ; *, 0$) such that for all $x, y, z \in X,(x * y) * z=(x * z) *(y * z)$. If for all $x, y \in X, y *(y * x)=x *(x * y)$, then X is said to be a commutative BCK-algebra. It is alse noteworthy that X is a positive implicative BCK-algebra if and only if $(x * y) * y=x * y$ for all $x, y \in X$ (see [4]). By using these results, we have

Theorem 3.3. If X is a star BCK-algebra, then the following results hold:
(a) X is a positive implicative BCK-algebra;
(b) X is a commutative BCK-algebra.

Proof. (a) For any $x, y \in X$, if $x * y=0$, it is obvious that $(x * y) * y=x * y$. Assume $x * y \neq 0$, then we have $x * y=x$ by $x * y \leq x$ and x is an atom of X. Hence $(x * y) * y=x * y$.
(b) For any $x, y \in X$, if $x * y=0$ or $y * x=0$, then we get $x=0$ or $x=y$ or $y=0$, hence it is obvious that $y *(y * x)=x *(x * y)$. Assume $x * y \neq 0$ and $y * x \neq 0$, then we get $x * y=x$ and $y * x=y$ by $x * y \leq y$ and $y * x \leq y$, hence $x *(x * y)=0=y *(y * x)$. The proof is completed.
4. The count of a class finite BCK-algebras Let u be an element in BCK-algebra X. If for any $x \in X, u * x=0$ implies $u=x$, then u is called a maximal element of X.

Theorem 4.1. Let X be a BCK-algebra. If $u \in X \backslash D(X)$ is a maximal element of X, then for any $b \in D(X), u * b=u$.

Proof. It is trivial to see the case $b=0$. If $b \neq 0$, then we have $(u *(u * b)) * b=0$ by BCK axiom (2), hence $u *(u * b)=0$ or b, since b is an atom of X. If $u *(u * b)=b$, then we can get

$$
b * u=(u *(u * b)) * u=(u * u) *(u * b)=0 *(u * b)=0
$$

it is contradictory that b is a strong atom of X. Hence $u *(u * b)=0$. Therefore $u * b=u$ by u is a maximal element of X. The proof is completed.

Lemma 4.2. If $X=\left\{0, a_{1}, \cdots, a_{n}\right\}$ is a BCK-algebra with $S_{t}(X)=\left\{0, a_{1}, \cdots, a_{n-1}\right\}$ and $D(X)=\left\{0, a_{1}, \cdots, a_{i}\right\}(0 \leq i \leq n-2)$, then for all $a_{k} \in S_{t}(X) \backslash D(X), a_{k} * a_{n}=0$.

Proof. By $\left(a_{k} * a_{n}\right) * a_{k}=\left(a_{k} * a_{k}\right) * a_{n}=0 * a_{n}=0$, we get $a_{k} * a_{n}=0$ or $a_{k} * a_{n}=a_{k}$ since a_{k} is an atom of X. If $a_{k} * a_{n}=a_{k}$, then we have $a_{k} \in D(X)$ by Propsition 2.1, it is contradictory that $a_{k} \notin D(X)$. Hence $a_{k} * a_{n}=0$. The proof is completed.

Corollary 4.3. In Lemma 4.2, the element a_{n} is a maximal element of X.
Let X be a BCK-algebra with $|X|=n+1,\left|S_{t}(X)\right|=n$ and $|D(X)|=i+1(0 \leq i \leq n-2)$. Assuming $X=\left\{0, a_{1}, a_{2}, \cdots, a_{n}\right\}, S_{t}(X)=\left\{0, a_{1}, \cdots, a_{n-1}\right\}$ and $D(X)=\left\{0, a_{1}, \cdots, a_{i}\right\}$, by above discussing, the operation table of X must be as table one.

In table one, $a_{n k}=a_{n} * a_{k}(i+1 \leq k \leq n-1)$. After, we shall give the number of this class BCK-algebras by determining the value of $a_{n k}$ in table one.

Lemma 4.4. Let BCK-algebra $X=\left\{0, a_{1}, a_{2}, \cdots, a_{n}\right\}$ with $S_{t}(X)=\left\{0, a_{1}, a_{2}, \cdots, a_{n-1}\right\}$ and $D(X)=\left\{0, a_{1}, a_{2}, \cdots, a_{i}\right\}$. If $\left|S_{t}(X) \backslash D(X)\right| \geq 2$, then the following conclusions hold:
(a) For any $a_{k} \in S_{t}(X) \backslash D(X), a_{n} * a_{k} \neq a_{k}$;
(b) If there exists $a_{k} \in S_{t}(X) \backslash D(X)$ such that $a_{n} * a_{k}=a_{l}$ and $a_{l} \neq a_{n}$, then $a_{n} * a_{l}=a_{k}$;
(c) If there exists $a_{k}, a_{l} \in S_{t}(X) \backslash D(X)$ and $a_{k} \neq a_{l}$ such that $a_{n} * a_{k}=a_{l}, a_{n} * a_{l}=a_{k}$, then for all $a_{p} \in S_{t}(X) \backslash\left\{D(X) \bigcup\left\{a_{k}, a_{l}\right\}\right\}, a_{n} * a_{p}=a_{n}$.

Proof. (a) If there exists $a_{k} \in S_{t}(X) \backslash D(X)$, such that $a_{n} * a_{k}=a_{k}$, then take $a_{l} \in S_{t}(X) \backslash D(X)$, $a_{l} \neq a_{k}$, we have

$$
\begin{aligned}
0 & =\left(\left(a_{l} * a_{k}\right) *\left(a_{l} * a_{n}\right)\right) *\left(a_{n} * a_{k}\right) & & (\text { by axiom }(1)) \\
& =\left(a_{l} *\left(a_{l} * a_{n}\right)\right) *\left(a_{n} * a_{k}\right) & & (\text { by Proposition 2.1) } \\
& =\left(a_{l} * 0\right) *\left(a_{n} * a_{k}\right) & & (\text { by Lemma 4.2) } \\
& =a_{l} *\left(a_{n} * a_{k}\right) & & \\
& =a_{l} * a_{k} & & \text { (by our assumption) } \\
& =a_{l} & & \text { (by Propsition 2.1) }
\end{aligned}
$$

It is a contradiction. Hence (a) holds.
(b) By BCK axioms (2), we have $0=\left(a_{n} *\left(a_{n} * a_{k}\right)\right) * a_{k}=\left(a_{n} * a_{l}\right) * a_{k}$. Hence $a_{n} * a_{l}=0$ or $a_{n} * a_{l}=a_{k}$. If $a_{n} * a_{l}=0$, then we get $a_{n}=a_{l}$ by Lemma 4.2. It is contradictory that $a_{l} \neq a_{n}$. Therefore $a_{n} * a_{l}=a_{k}$, and the proof of (b) is completed.
(c) If there exists $a_{p} \in S_{t}(X) \backslash\left\{D(X) \bigcup\left\{a_{k}, a_{l}\right\}\right\}$ such that $a_{n} * a_{p}=a_{q}$ and $a_{q} \neq a_{n}$, then by BCK axioms (1) we have $0=\left(\left(a_{n} * a_{p}\right) *\left(a_{n} * a_{k}\right)\right) *\left(a_{k} * a_{p}\right)=\left(a_{q} * a_{l}\right) * a_{k}$. If $a_{q} \neq a_{l}$, then $a_{q} * a_{l}=a_{q}$ by Propsition 2.1. Hence $0=a_{q} * a_{k}$ and $a_{q}=a_{k}$, therefore we get

$$
0=\left(a_{n} *\left(a_{n} * a_{p}\right)\right) * a_{p}=\left(a_{n} * a_{q}\right) * a_{p}=\left(a_{n} * a_{k}\right) * a_{p}=a_{l} * a_{p}=a_{l}
$$

It is a contradiction. If $a_{q}=a_{l}$, then it is contradictory that

$$
0=\left(a_{n} *\left(a_{n} * a_{p}\right)\right) * a_{p}=\left(a_{n} * a_{q}\right) * a_{p}=\left(a_{n} * a_{l}\right) * a_{p}=a_{k} * a_{p}=a_{k}
$$

Hence (c) holds. And the proof of the Lemma is completed.
Theorem 4.5. By isomorphic view, there are total $n+1$ BCK-algebras X with $|X|=$ $n+1$ and $\left|S_{t}(X)\right|=n$.

Proof. Assuming $X=\left\{0, a_{1}, a_{2}, \cdots, a_{n}\right\}$ with $S_{t}(X)=\left\{0, a_{1}, a_{2}, \cdots, a_{n-1}\right\}$ and $D(X)=\left\{0, a_{1}, a_{2}, \cdots, a_{i}\right\}(0 \leq i \leq n-2)$, we determine the operation tables of X according to the order of $D(X)$.

Case 1. $|D(X)|=n-1$, that is $D(X)=\left\{0, a_{1}, a_{2}, \cdots, a_{n-2}\right\}$. In this case, we only need to determine the value of $a_{n(n-1)}=a_{n} * a_{n-1}$ in table one. By $a_{n} * a_{n-1} \neq 0$ and $a_{n} * a_{n-1} \leq a_{n}$, we have $a_{n} * a_{n-1}=a_{n-1}$ or $a_{n} * a_{n-1}=a_{n}$. Taking $a_{n(n-1)}=a_{n-1}$ and $a_{n(n-1)}=a_{n}$ each, we get two different operation tables-table two and table three

By BCK-algebra axioms (1)—(5) we can verify that table two and table three indeed give two BCK-algebras. Hence, there are and only two BCK-algebras in Case 1.

Case 2. $|D(X)|=n-2$, that is $\left|S_{t}(X) \backslash D(X)\right|=2$. In this case, if $a_{n} * a_{n-2}=a_{n} * a_{n-1}=$ a_{n}, then by table one we get the operation table of X as table four

If the operation table of X is different from table four, then we have $a_{n} * a_{n-2}=a_{n-1}$ and $a_{n} * a_{n-1}=a_{n-2}$ by Lemma 4.4. Hence by table one the operation table must be as table five

By BCK-algebra axioms (1)-(5) we can verify X which are given by table four and table five are BCK-algebras. Hence, there are and only two BCK-algebras in Case 2.

Case 3. $|D(X)|<n-2$, that is $\left|S_{t}(X) \backslash D(X)\right|>2$. In this case, if $a_{n} * a_{k}=a_{n}$, $k=i+1, \cdots, n-1$, then by table one we get the operation table of X as table six

By BCK-algebra axioms (1)-(5) we can verify X which is given by table six is BCKalgebra. If the operation table of X is different from table six, then by Lemma 4.4, there are two elements $a_{k}, a_{l} \in S_{t}(X) \backslash D(X)$ such that $a_{n} * a_{k}=a_{l}$ and $a_{n} * a_{l}=a_{k}$. Assume $a_{k}=a_{n-2}$ and $a_{l}=a_{n-1}$. We get $a_{n} * a_{p}=a_{n}, p=i+1, \cdots, n-3$ by Lemma 4.4. Hence by table one the operation table must be as follows

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	.	.	\cdots
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	0
\vdots	\cdot	\cdot	\cdot	\cdots	.	.	\cdots	.	.	\cdot	.
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n-1}	a_{n-2}	0

(table seven)

But the algebra defined by table seven is not a BCK-algebra, for, we have

$$
\left(\left(a_{n-3} * a_{n-1}\right) *\left(a_{n-3} * a_{n}\right)\right) *\left(a_{n} * a_{n-1}\right)=\left(a_{n-3} * 0\right) * a_{n-2}=a_{n-3} \neq 0
$$

namely, the BCK-algebra axiom (1) does not hold. Hence, there exists and only one BCKalgebra X with $|D(X)|=i+1<n-2$ in Case 3 by table six. Since the order of $D(X)$
can take $1,2, \cdots, n-3$, the proof is completed by combinig Case 1, Case 2, Case 3 , and the operation tables are given by table two - table six.

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	.	\cdot	\cdots	.	.	.	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	0
\vdots	\cdot	\cdot	\cdot	\cdots	.	\cdot	\cdots
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	$a_{n(i+1)}$	\cdots	$a_{n(n-3)}$	$a_{n(n-2)}$	$a_{n(n-1)}$	0

(table one)

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	.	.	\cdots	\cdot	.	.	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
\vdots	\cdot	\cdot	\cdot	\cdots	.	\cdot	\cdots	.	.	\cdot	\cdot
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	a_{n-2}
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	a_{n-1}	0

(table two)

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	.	\cdot	\cdots	\cdot	\cdot	\cdot	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
\vdots	\cdot	\cdot	\cdot	\cdots	.	\cdot	\cdots	\cdot	\cdot	\cdot	\cdot
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	a_{n-2}
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	a_{n}	0

(table three)

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	.	.	\cdots	\cdot	\cdot	\cdot	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
\vdots	\cdot	\cdot	\cdot	\cdots	\cdot	\cdot	\cdots	\cdot	\cdot	\cdot	\cdot
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	a_{n}	0

(table four)

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	\cdot	\cdot	\cdots	\cdot	\cdot	\cdot	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
\vdots	\cdot	\cdot	\cdot	\cdots	\cdot	\cdot	\cdots	.	.	\cdot	\cdot
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n-1}	a_{n-2}	0

(table five)

$*$	0	a_{1}	a_{2}	\cdots	a_{i}	a_{i+1}	\cdots	a_{n-3}	a_{n-2}	a_{n-1}	a_{n}
0	0	0	0	\cdots	0	0	\cdots	0	0	0	0
a_{1}	a_{1}	0	a_{1}	\cdots	a_{1}	a_{1}	\cdots	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{2}	a_{2}	0	\cdots	a_{2}	a_{2}	\cdots	a_{2}	a_{2}	a_{2}	a_{2}
\vdots	\cdot	\cdot	\cdot	\cdots	\cdot	\cdot	\cdots	\cdot	\cdot	\cdot	\cdot
a_{i}	a_{i}	a_{i}	a_{i}	\cdots	0	a_{i}	\cdots	a_{i}	a_{i}	a_{i}	a_{i}
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	\cdots	a_{i+1}	0	\cdots	a_{i+1}	a_{i+1}	a_{i+1}	0
\vdots	\cdot	\cdot	\cdot	\cdots	\cdot	\cdot	\cdots	\cdot	.	\cdot	.
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	\cdots	a_{n-3}	a_{n-3}	\cdots	0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	a_{n-2}	\cdots	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	\cdots	a_{n-1}	a_{n-1}	0	0
a_{n}	a_{n}	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	\cdots	a_{n}	a_{n}	a_{n}	0

(table six)

References

[1] K.Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29
[2] Wenping Huang, Nil-radical in BCI-algebras, Math. Japonica 37, No. 2 (1992), 363-366
[3] Wenping Huang, Adjoint semigroups of BCI-algebras, SEA Bull. Math., Vol.19, No. 3 (1995) 95-98
[4] K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebra, Math. Japonica 23, No.1(1978), 1-26

Department of Mathematics
Langfang Teacher's College
Langfang 065000, Hebei, P.R.China

[^0]: 1991 Mathematics Subject Classification. 03G25,06F25.
 The subject supported by the Educational Committee of Hebei.
 Key words and phrases. BCK-algebra, star part, atom.

