ON ATOMS OF BCK-ALGEBRAS

DAJUN SUN

Received January 31, 2000

ABSTRACT. Atoms in BCK-algebras are considered. The notions of the star BCKalgebras and the star part of BCK-algebras are introduced. The properties of some substructures which consist of atoms are investigated. Furthermore, by isomorphic view, there are and only n + 1 BCK-algebras X with |X| = n + 1 and $|S_t(X)| = n$.

1. Introduction By a BCK-algebra we mean an algebra (X; *, 0) of type (2, 0) satisfying the axioms:

(1) ((x * y) * (x * z)) * (z * y) = 0,
 (2) (x * (x * y)) * y = 0,
 (3) x * x = 0,
 (4) x * y = y * x = 0 imples x = y,
 (5) 0 * x = 0

for any x, y and z in X. For any BCK-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X (see [1]).

A BCK-algebra X has the following properties for any $x, y, z \in X$:

- (6) x * 0 = x,
- (7) (x * y) * z = (x * z) * y,
- (8) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$.

In a BCK-algebra X, if an element a satisfying:

- (a) $a \neq 0$,
- (b) $x \in X \setminus \{0\}$ and $x \leq a$ imply x = a

then the element a is called an atom of X. Since 0 is the least element of X, it is obvious that an atom of X is a minimal element of X.

Let (X; *, 0) be a BCK-algebra. A non-empty subset S of X is called a subalgebra if $x, y \in S$ implies $x * y \in S$. By an ideal I of X we mean $0 \in I$ and $y, x * y \in I$ imply $x \in I$. If an ideal I of X is also a subalgebra of X, then I is called a close ideal of X. It has been known that an ideal of a BCK-algebra is a close ideal (see [2]).

2. Star subalgebras of BCK-algebras Let X be a BCK-algebra. We define

 $S_t(X) = \{a \in X; a = 0 \text{ or } a \text{ is an atom of } X .\}$

¹⁹⁹¹ Mathematics Subject Classification. 03G25,06F25.

The subject supported by the Educational Committee of Hebei.

Key words and phrases. BCK-algebra, star part, atom.

The subset $S_t(X)$ is called the star part of X.

Propsition 2.1. Let X be a BCK-algebra. If $a, b \in S_t(X)$ and $a \neq b$, then a * b = a.

Proof. In case a = 0 or b = 0, the proof is trivial. Assume $a \neq 0$ and $b \neq 0$, by $a * b \leq a$ and a is an atom of X, we get a * b = 0 or a * b = a. If a * b = 0, then a = 0 or a = b since b is an atom of X. It is a contradiction, hence a * b = a. The proof is completed.

By Propsition 2.1 we can immediately get

Theorem 2.2. For any BCK-algebra $X, S_t(X)$ is a subalgebra of X.

Let X be a BCK-algebra and S be a subalgebra of X. S is called a star subalgebra of X if $S_t(S) = S$. Particularly X is called a star BCK-algebra if $X = S_t(X)$.

Remark. $S_t(X)$ may be not a maximal star subalgebra.

Example 1. Let $X = \{0, \dots, -n-1, -n, -n+1, \dots, -3, -2, -1\}$ and partial order \leq as follows $0 \leq \dots \leq -n-1 \leq -n \leq -n+1 \leq \dots -3 \leq -2 \leq -1$. Define operation * by

$$x * y = \begin{cases} 0, & x \le y \\ x, & others \end{cases}$$

for any x, y in X. Then (X; *, 0) is a BCK-algebra and $S_t(X) = \{0\}$. If take the subalgebra $S = \{0, 1\}$ of X, then $S_t(S) = S$. In this example, $S_t(X)$ is not a maximal star subalgebra of X.

Example 2. Let $X = \{0, 1, 2, 3\}$. Take the operation table of X as follows

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Then (X; *, 0) is a BCK-algebra. $S_t(X) = \{0, 1, 3\}$ is a maximal star subalgebra of X but not the largest star subalgebra of X since $S = \{0, 2\}$ is a star subalgebra of X.

Theorem 2.3. Let X be a BCK-algebra and S be a subalgebra of X. Then S is a star subalgebra of X if and only if for any $a, b \in S, a \neq b$ implies a * b = a.

Proof. By Propsition 2.1, the necessity part is obvious. In the sufficiency part, for any $b \in S \setminus \{0\}$, if there exists $x_0 \in S \setminus \{0\}$ such that $x_0 \leq b$, then we have $x_0 = b$ or $x_0 \neq b$. If $x_0 \neq b$, then we get $x_0 * b = 0$ by $x_0 \leq b$ and $x_0 * b = x_0$ by the condition of the Theorem, hence $x_0 = 0$. It is contradictory that $x_0 \in S \setminus \{0\}$. Hence $x_0 = b$ and b is an atom of S. The proof is completed.

Theorem 2.4. Let X be a BCK-algebra. Then $S_t(X)$ is a maximal star subalgebra of X if and only if for any element x in $X \setminus S_t(X)$, there exists an element a in $S_t(X) \setminus \{0\}$ sub that $a \leq x$.

Proof. Assume S be a star subalgebra of X and $S_t(X) \subseteq S$. If there exists an element x_0 of X in $S \setminus S_t(X)$, then there exists an element a in $S_t(X) \setminus \{0\} \subseteq S$ such that $a \leq x_0$. Hence the element x_0 is not an atom of S. It is contrdictory that S is a star subalgebra of X. And the sufficient part is proved. On the other hand, if there exists x_0 in $X \setminus S_t(X)$ such that for all a in $S_t(X) \setminus \{0\}$, $a * x_0 \neq 0$, then we have $a * x_0 = a$ by $a * x_0 \leq a$ and $a \in S_t(X) \setminus \{0\}$. Assume $x_0 * a = b$, we get

$$(x_0 * b) * a = (x_0 * a) * b = b * b = 0,$$

that is $x_0 * b \leq a$, hence $x_0 * b = 0$ or $x_0 * b = a$. If $x_0 * b = a$, then

$$a * x_0 = (x_0 * b) * x_0 = (x_0 * x_0) * b = 0 * b = 0.$$

It is a contradition. Hence $x_0 * b = 0$. By $b * x_0 = (x_0 * a) * x_0 = (x_0 * x_0) * a = 0 * a = 0$, we have $x_0 = b = x_0 * a$. Then we get $x_0 * a = x_0$ and $a * x_0 = a$ for all $a \in S_t(X)$. Therefore $S = S_t(X) \bigcup \{x_0\}$ is a star subalgebra of X by Theorem 2.3. It is contradictory that $S_t(X)$ is a maximal star subalgebra. The proof is completed.

Corollary 2.5. For a finite BCK-algebra $X, S_t(X)$ is a maximal star subalgebra of X.

Theorem 2.6. Let X be a BCK-algebra. $S_t(X)$ is the largest star subalgebra of X if and only if $X = S_t(X)$.

Proof. The sufficiency part is obvious. Conversely, for any $x \in X \setminus \{0\}$, $S = \{0, x\}$ is a star subalgebra of X, hence $x \in S_t(X)$ since $S_t(X)$ is the largest star subalgebra. The proof is completed.

Let $(X; *_1, 0)$, $(Y; *_2, 0)$ be two BCK-algebras. The set $X \times Y = \{(x, y); x \in X, y \in Y\}$ about operation $*: (x_1, y_1) * (x_2, y_2) = (x_1 *_1 x_2, y_1 *_2 y_2)$ becomes a BCK-algebra, and (0,0) is the zero element of $X \times Y$.

Generally, $S_t(X \times Y) \neq S_t(X) \times S_t(Y)$, but we have

Theorem 2.7. Let X, Y be two BCK-algebras. Then

$$S_t(X \times Y) = (S_t(X) \times \{0\}) \bigcup (\{0\} \times S_t(Y))$$

Proof. It is obvious that $S_t(X \times Y) \supseteq (S_t(X) \times \{0\}) \bigcup (\{0\} \times S_t(Y))$. Furthermore, for any $(x_0, y_0) \in S_t(X \times Y)$, if $x_0 \neq 0$ and $y_0 \neq 0$, then we get $(x_0, 0) * (x_0, y_0) = (0, 0)$. It is contradictory that $(x_0, y_0) \in S_t(X \times Y)$. Hence we get $x_0 = 0$ or $y_0 = 0$. If $x_0 = 0$, then it is easy to prove that $y_0 \in S_t(Y)$. Similarly, if $y_0 = 0$, then $x_0 \in S_t(X)$. The proof is completed.

Corollary 2.8. For any finite BCK-algebra X, Y, we have $|S_t(X \times Y)| = |S_t(X)| + |S_t(Y)| - 1$.

Corollary 2.9. Let X, Y be two BCK-algebras. Then $S_t(X \times Y) = S_t(X) \times S_t(Y)$ if and only if $S_t(x) = \{0\}$ or $S_t(Y) = \{0\}$

Let X be a BCK-algebra. If an atom b of X satisfies that b * x = b for any $x \in X \setminus \{b\}$, then we call b is a strong atom of X. Take the subset of X

$$D(X) = \{ b \in S_t(X); b \text{ is a strong atom of } X \text{ or } b = 0 \}$$

we have

Theorem 2.10. For any BCK-algebra X, D(X) is a closed ideal of X.

Proof. We need to prove that D(X) is an ideal of X only. Assume $y, x * y \in D(X)$, if x * y = x, then $x \in D(X)$. If $x * y \neq x$, then (x * y) * x = x * y by the definition of D(X). On the other hand,

$$(x * y) * x = (x * x) * y = 0 * y = 0,$$

hence we get x * y = 0. By $y \in D(X)$ and x * y = 0, we have x = 0 or x = y, hence $x \in D(X)$. The proof is completed.

3. On star BCK-algebras Suppose (X; *, 0) be a BCK-algebra. For any $a \in X$, we use a^{-1} denote the selfmap of defined by $xa^{-1} = x * a$. Let M(X) denote the set of all finite

product $a^{-1} \cdots b^{-1}$ of selfmaps with $a, \cdots, b \in X$. It is clear that M(X) becomes a commutative monoid under composition of maps and 0^{-1} is the identity. We diffuse a relation \leq_1 on M(X) as follows:

$$u^{-1} \cdots v^{-1} \le a^{-1} \cdots b^{-1} \iff (xu^{-1} \cdots v^{-1}) * (xa^{-1} \cdots b^{-1}) = 0$$

for any $x \in X$. We call M(X) the adjoint semigroup of X (see [3]). It is obvious that $M(S) = \{u^{-1} \cdots v^{-1}; u, \cdots, v \in S\}$ becomes a subsemigroup of M(X) for any non-empty subset S of X.

Lemma 3.1. Let X be a BCK-algebra and $\sigma = a_1^{-1} \cdots a_n^{-1} \in M(S_t(X))$. If $S_t(X)$ is an ideal of X, then $Ker\sigma = \{0, a_1, a_2, \cdots, a_n\}$

Proof. It is obvious that $\{0, a_1, a_2, \dots, a_n\} \subseteq Ker\sigma$ by Section 1. Conversely, if $\sigma = a_1^{-1}$ and $b \in Ker\sigma$, then $ba_1^{-1} = b * a_1 = 0$. We get b = 0 or $b = a_1$ by $a_1 \in S_t(X)$, hence $b \in \{0, a_1\}$ and the Lemma holds for n = 1. Now we assume the Lemma has already been proved for n = k, then we prove the case of $\sigma = a_1^{-1}a_2^{-1}\cdots a_k^{-1}a_{k+1}^{-1}$. If $b \in Ker\sigma$, $b\sigma = 0$, then we have $b \in S_t(X)$ by $S_t(X)$ is an ideal of X and $a_1, \dots, a_{k+1} \in S_t(X)$. Since $(b * a_{k+1}) * b = 0$ and $b \in S_t(X)$, we get $b * a_{k+1} = 0$ or $b * a_{k+1} = b$. If $b * a_{k+1} = 0$, then $b = a_{k+1}$ or b = 0 hence $b \in \{0, a_1, \cdots, a_{k+1}\}$. If $b * a_{k+1} = b$, then

$$0 = b\sigma = ba_1^{-1} \cdots a_k^{-1} a_{k+1}^{-1} = (ba_{k+1}^{-1})a_1^{-1} \cdots a_k^{-1} = ba_1^{-1} \cdots a_k^{-1}$$

we have $b \in \{0, a_1, \cdots, a_k\} \subseteq \{0, a_1, \cdots, a_k, a_{k+1}\}$ by our assumption. The proof is completed.

Theorem 3.2. Let X be a BCK-algebra. Then X is a star BCK-algebra if and only if for all $\sigma = a_1^{-1} \cdots a_n^{-1} \in M(X)$, $Ker\sigma = \{0, a_1, \cdots, a_n\}$.

Proof. By Lemma 3.1, the necessity part is obvious. In sufficiency part, for any element $a \in X \setminus \{0\}$, if there exists $x \in X$ such that $x \leq a$, then $x \in Kera^{-1} = \{0, a\}$, hence x = 0 or x = a, and a is an atom of X. The proof is completed.

By a positive implicative BCK-algebra, we mean a BCK-algebra (X; *, 0) such that for all $x, y, z \in X$, (x * y) * z = (x * z) * (y * z). If for all $x, y \in X$, y * (y * x) = x * (x * y), then X is said to be a commutative BCK-algebra. It is also noteworthy that X is a positive implicative BCK-algebra if and only if (x * y) * y = x * y for all $x, y \in X$ (see [4]). By using these results, we have

Theorem 3.3. If X is a star BCK-algebra, then the following results hold:

(a) X is a positive implicative BCK-algebra;

(b) X is a commutative BCK-algebra.

Proof. (a) For any $x, y \in X$, if x * y = 0, it is obvious that (x * y) * y = x * y. Assume $x * y \neq 0$, then we have x * y = x by $x * y \leq x$ and x is an atom of X. Hence (x * y) * y = x * y.

(b) For any $x, y \in X$, if x * y = 0 or y * x = 0, then we get x = 0 or x = y or y = 0, hence it is obvious that y * (y * x) = x * (x * y). Assume $x * y \neq 0$ and $y * x \neq 0$, then we get x * y = x and y * x = y by $x * y \leq y$ and $y * x \leq y$, hence x * (x * y) = 0 = y * (y * x). The proof is completed.

4. The count of a class finite BCK-algebras Let u be an element in BCK-algebra X. If for any $x \in X$, u * x = 0 implies u = x, then u is called a maximal element of X.

Theorem 4.1. Let X be a BCK-algebra. If $u \in X \setminus D(X)$ is a maximal element of X, then for any $b \in D(X)$, u * b = u.

Proof. It is trivial to see the case b = 0. If $b \neq 0$, then we have (u * (u * b)) * b = 0 by BCK axiom (2), hence u * (u * b) = 0 or b, since b is an atom of X. If u * (u * b) = b, then we can get

$$b * u = (u * (u * b)) * u = (u * u) * (u * b) = 0 * (u * b) = 0,$$

it is contradictory that b is a strong atom of X. Hence u * (u * b) = 0. Therefore u * b = u by u is a maximal element of X. The proof is completed.

Lemma 4.2. If $X = \{0, a_1, \dots, a_n\}$ is a BCK-algebra with $S_t(X) = \{0, a_1, \dots, a_{n-1}\}$ and $D(X) = \{0, a_1, \dots, a_i\} \ (0 \le i \le n-2)$, then for all $a_k \in S_t(X) \setminus D(X)$, $a_k * a_n = 0$.

Proof. By $(a_k * a_n) * a_k = (a_k * a_k) * a_n = 0 * a_n = 0$, we get $a_k * a_n = 0$ or $a_k * a_n = a_k$ since a_k is an atom of X. If $a_k * a_n = a_k$, then we have $a_k \in D(X)$ by Propsition 2.1, it is contradictory that $a_k \notin D(X)$. Hence $a_k * a_n = 0$. The proof is completed.

Corollary 4.3. In Lemma 4.2, the element a_n is a maximal element of X.

Let X be a BCK-algebra with |X| = n + 1, $|S_t(X)| = n$ and |D(X)| = i + 1 $(0 \le i \le n - 2)$. Assuming $X = \{0, a_1, a_2, \cdots, a_n\}$, $S_t(X) = \{0, a_1, \cdots, a_{n-1}\}$ and $D(X) = \{0, a_1, \cdots, a_i\}$, by above discussing, the operation table of X must be as table one.

In table one, $a_{nk} = a_n * a_k (i + 1 \le k \le n - 1)$. After, we shall give the number of this class BCK-algebras by determining the value of a_{nk} in table one.

Lemma 4.4. Let BCK-algebra $X = \{0, a_1, a_2, \dots, a_n\}$ with $S_t(X) = \{0, a_1, a_2, \dots, a_{n-1}\}$ and $D(X) = \{0, a_1, a_2, \dots, a_i\}$. If $|S_t(X) \setminus D(X)| \ge 2$, then the following conclusions hold:

(a) For any $a_k \in S_t(X) \setminus D(X)$, $a_n * a_k \neq a_k$;

(b) If there exists $a_k \in S_t(X) \setminus D(X)$ such that $a_n * a_k = a_l$ and $a_l \neq a_n$, then $a_n * a_l = a_k$;

(c) If there exists $a_k, a_l \in S_t(X) \setminus D(X)$ and $a_k \neq a_l$ such that $a_n * a_k = a_l, a_n * a_l = a_k$, then for all $a_p \in S_t(X) \setminus \{D(X) \bigcup \{a_k, a_l\}\}, a_n * a_p = a_n$.

Proof. (a) If there exists $a_k \in S_t(X) \setminus D(X)$, such that $a_n * a_k = a_k$, then take $a_l \in S_t(X) \setminus D(X)$, $a_l \neq a_k$, we have

0 =	$((a_l \ast a_k) \ast (a_l \ast a_n)) \ast (a_n \ast a_k)$	$(by \ axiom \ (1) \)$
=	$(a_l \ast (a_l \ast a_n)) \ast (a_n \ast a_k)$	(by Proposition 2.1)
=	$(a_l * 0) * (a_n * a_k)$	$(by \ Lemma \ 4.2)$
=	$a_l * (a_n * a_k)$	
=	$a_l * a_k$	$(by \ our \ assumption \)$
=	a_l	(by Propsition 2.1)

It is a contradiction. Hence (a) holds.

(b) By BCK axioms (2), we have $0 = (a_n * (a_n * a_k)) * a_k = (a_n * a_l) * a_k$. Hence $a_n * a_l = 0$ or $a_n * a_l = a_k$. If $a_n * a_l = 0$, then we get $a_n = a_l$ by Lemma 4.2. It is contradictory that $a_l \neq a_n$. Therefore $a_n * a_l = a_k$, and the proof of (b) is completed.

(c) If there exists $a_p \in S_t(X) \setminus \{D(X) \bigcup \{a_k, a_l\}\}$ such that $a_n * a_p = a_q$ and $a_q \neq a_n$, then by BCK axioms (1) we have $0 = ((a_n * a_p) * (a_n * a_k)) * (a_k * a_p) = (a_q * a_l) * a_k$. If $a_q \neq a_l$, then $a_q * a_l = a_q$ by Propisition 2.1. Hence $0 = a_q * a_k$ and $a_q = a_k$, therefore we get

$$0 = (a_n * (a_n * a_p)) * a_p = (a_n * a_q) * a_p = (a_n * a_k) * a_p = a_l * a_p = a_l$$

It is a contradiction. If $a_q = a_l$, then it is contradictory that

$$0 = (a_n \ast (a_n \ast a_p)) \ast a_p = (a_n \ast a_q) \ast a_p = (a_n \ast a_l) \ast a_p = a_k \ast a_p = a_k$$

DAJUN SUN

Hence (c) holds. And the proof of the Lemma is completed.

Theorem 4.5. By isomorphic view, there are total n + 1 BCK-algebras X with |X| = n + 1 and $|S_t(X)| = n$.

Proof. Assuming $X = \{0, a_1, a_2, \dots, a_n\}$ with $S_t(X) = \{0, a_1, a_2, \dots, a_{n-1}\}$ and $D(X) = \{0, a_1, a_2, \dots, a_i\}$ $(0 \le i \le n-2)$, we determine the operation tables of X according to the order of D(X).

Case 1. |D(X)| = n - 1, that is $D(X) = \{0, a_1, a_2, \dots, a_{n-2}\}$. In this case, we only need to determine the value of $a_{n(n-1)} = a_n * a_{n-1}$ in table one. By $a_n * a_{n-1} \neq 0$ and $a_n * a_{n-1} \leq a_n$, we have $a_n * a_{n-1} = a_{n-1}$ or $a_n * a_{n-1} = a_n$. Taking $a_{n(n-1)} = a_{n-1}$ and $a_{n(n-1)} = a_n$ each, we get two different operation tables—table two and table three

By BCK-algebra axioms (1)—(5) we can verify that table two and table three indeed give two BCK-algebras. Hence, there are and only two BCK-algebras in Case 1.

Case 2. |D(X)| = n-2, that is $|S_t(X) \setminus D(X)| = 2$. In this case, if $a_n * a_{n-2} = a_n * a_{n-1} = a_n$, then by table one we get the operation table of X as table four

If the operation table of X is different from table four, then we have $a_n * a_{n-2} = a_{n-1}$ and $a_n * a_{n-1} = a_{n-2}$ by Lemma 4.4. Hence by table one the operation table must be as table five

By BCK-algebra axioms (1)—(5) we can verify X which are given by table four and table five are BCK-algebras. Hence, there are and only two BCK-algebras in Case 2.

Case 3. |D(X)| < n-2, that is $|S_t(X) \setminus D(X)| > 2$. In this case, if $a_n * a_k = a_n$, $k = i+1, \dots, n-1$, then by table one we get the operation table of X as table six

By BCK-algebra axioms (1)—(5) we can verify X which is given by table six is BCKalgebra. If the operation table of X is different from table six, then by Lemma 4.4, there are two elements $a_k, a_l \in S_t(X) \setminus D(X)$ such that $a_n * a_k = a_l$ and $a_n * a_l = a_k$. Assume $a_k = a_{n-2}$ and $a_l = a_{n-1}$. We get $a_n * a_p = a_n, p = i + 1, \dots, n-3$ by Lemma 4.4. Hence by table one the operation table must be as follows

*	0	a_1	a_2	• • •	a_i	a_{i+1}	• • •	a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0	•••	0	0	• • •	0	0	0	0
a_1	a_1	0	a_1	• • •	a_1	a_1	• • •	a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	•••	a_2	a_2	• • •	a_2	a_2	a_2	a_2
÷											
a_i	a_i	a_i	a_i		0	a_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	•••	a_{i+1}	0		a_{i+1}	a_{i+1}	a_{i+1}	0
÷											
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}		a_{n-3}	a_{n-3}	• • •	0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	• • •	a_{n-2}	a_{n-2}	• • •	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n		a_n	a_n	• • •	a_n	a_{n-1}	a_{n-2}	0
a_{n-1} a_n	a_{n-1} a_n	a_{n-1} a_n	$a_{n-1} a_n$	· · · ·	$a_{n-1} a_n$	$a_{n-1} a_n$	· · · ·	a_{n-1} a_n	$a_{n-1} \\ a_{n-1}$	$\begin{array}{c} 0\\ a_{n-2} \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$

(table seven)

But the algebra defined by table seven is not a BCK-algebra, for, we have

$$((a_{n-3} * a_{n-1}) * (a_{n-3} * a_n)) * (a_n * a_{n-1}) = (a_{n-3} * 0) * a_{n-2} = a_{n-3} \neq 0,$$

namely, the BCK-algebra axiom (1) does not hold. Hence, there exists and only one BCKalgebra X with |D(X)| = i + 1 < n - 2 in Case 3 by table six. Since the order of D(X)

can take $1, 2, \dots, n-3$, the proof is completed by combining Case 1, Case 2, Case 3, and the operation tables are given by table two — table six.

*	0	a_1	a_2	• • •	a_i	a_{i+1}	• • •	a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0	• • •	0	0		0	0	0	0
a_1	a_1	0	a_1	• • •	a_1	a_1	• • •	a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	• • •	a_2	a_2	• • •	a_2	a_2	a_2	a_2
÷											
a_i	a_i	a_i	a_i	• • •	0	a_i	• • •	a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	• • •	a_{i+1}	0	• • •	a_{i+1}	a_{i+1}	a_{i+1}	0
÷		•									
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	• • •	a_{n-3}	a_{n-3}	• • •	0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	• • •	a_{n-2}	a_{n-2}	• • •	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n	• • •	a_n	$a_{n(i+1)}$	• • •	$a_{n(n-3)}$	$a_{n(n-2)}$	$a_{n(n-1)}$	0

*	0	a_1	a_2		a_i	a_{i+1}		a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0		0	0		0	0	0	0
a_1	a_1	0	a_1	• • •	a_1	a_1		a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	• • •	a_2	a_2		a_2	a_2	a_2	a_2
:											
				•••	0						
a_i	u_i	a_i	a_i		0	u_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	• • •	a_{i+1}	0	• • •	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
:										•	
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}		a_{n-3}	a_{n-3}		0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}		a_{n-2}	a_{n-2}		a_{n-2}	0	a_{n-2}	a_{n-2}
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n		a_n	a_n		a_n	a_n	a_{n-1}	0
					(table	two)					

(table one)

(ta	ble	e two`)
1			/

*	0	a_1	a_2	• • •	a_i	a_{i+1}	• • •	a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0	• • •	0	0		0	0	0	0
a_1	a_1	0	a_1		a_1	a_1		a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	• • •	a_2	a_2		a_2	a_2	a_2	a_2
÷											
a_i	a_i	a_i	a_i		0	a_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}		a_{i+1}	0		a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
÷											
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}	• • •	a_{n-3}	a_{n-3}		0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	• • •	a_{n-2}	a_{n-2}		a_{n-2}	0	a_{n-2}	a_{n-2}
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n	• • •	a_n	a_n		a_n	a_n	a_n	0

(table three)

*	0	a_1	a_2		a_i	a_{i+1}		a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0	• • •	0	0		0	0	0	0
a_1	a_1	0	a_1	• • •	a_1	a_1		a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	• • •	a_2	a_2	• • •	a_2	a_2	a_2	a_2
÷		•									
a_i	a_i	a_i	a_i		0	a_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	• • •	a_{i+1}	0	• • •	a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
:											
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}		a_{n-3}	a_{n-3}		0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	• • •	a_{n-2}	a_{n-2}		a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n	• • •	a_n	a_n	• • •	a_n	a_n	a_n	0

(table four)

*	0	a_1	a_2		a_i	a_{i+1}		a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0		0	0		0	0	0	0
a_1	a_1	0	a_1		a_1	a_1	• • •	a_1	a_1	a_1	a_1
a_2	a_2	a_2	0	• • •	a_2	a_2	• • •	a_2	a_2	a_2	a_2
÷											
a_i	a_i	a_i	a_i		0	a_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}	• • •	a_{i+1}	0		a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}
÷											
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}		a_{n-3}	a_{n-3}		0	a_{n-3}	a_{n-3}	a_{n-3}
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}	• • •	a_{n-2}	a_{n-2}	• • •	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n		a_n	a_n	• • •	a_n	a_{n-1}	a_{n-2}	0

(table five)

*	0	a_1	a_2		a_i	a_{i+1}		a_{n-3}	a_{n-2}	a_{n-1}	a_n
0	0	0	0		0	0	• • •	0	0	0	0
a_1	a_1	0	a_1		a_1	a_1	• • •	a_1	a_1	a_1	a_1
a_2	a_2	a_2	0		a_2	a_2	• • •	a_2	a_2	a_2	a_2
a_i	a_i	a_i	a_i		0	a_i		a_i	a_i	a_i	a_i
a_{i+1}	a_{i+1}	a_{i+1}	a_{i+1}		a_{i+1}	0		a_{i+1}	a_{i+1}	a_{i+1}	0
a_{n-3}	a_{n-3}	a_{n-3}	a_{n-3}		a_{n-3}	a_{n-3}		0	a_{n-3}	a_{n-3}	0
a_{n-2}	a_{n-2}	a_{n-2}	a_{n-2}		a_{n-2}	a_{n-2}	• • •	a_{n-2}	0	a_{n-2}	0
a_{n-1}	a_{n-1}	a_{n-1}	a_{n-1}		a_{n-1}	a_{n-1}	• • •	a_{n-1}	a_{n-1}	0	0
a_n	a_n	a_n	a_n	•••	a_n	a_n	• • •	a_n	a_n	a_n	0

(table six)

ON ATOMS OF BCK-ALGEBRAS

References

- [1] K.Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29
- [2] Wenping Huang, Nil-radical in BCI-algebras, Math. Japonica 37, No.2 (1992), 363-366
- [3] Wenping Huang, Adjoint semigroups of BCI-algebras, SEA Bull. Math., Vol.19, No.3 (1995) 95-98
 [4] K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebra, Math. Japonica 23, No.1(1978),
- 1-26

Department of Mathematics

Langfang Teacher's College

Langfang 065000, Hebei, P.R.China