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Abstract. This paper shows how the Lebesgue integral can be obtained as a Riemann

sum and provides an extension of the Morse Covering Theorem to open sets. Let X be

a �nite dimensional normed space; let � be a Radon measure on X and let 
 � X be a

�-measurable set. For � � 1, a �-measurable set S�(a) � X is a �-Morse set with tag

a 2 S�(a) if there is r > 0 such that B(a; r) � S�(a) � B(a; �r) and S�(a) is starlike

with respect to all points in the closed ball B(a; r). Given a gauge Æ : 
 ! (0; 1] we

say S�(a) is Æ-�ne if B(a; �r) � B(a; Æ(a)). If f � 0 is a �-measurable function on 


then
R


f d� = F 2 R if and only if for some � � 1 and all " > 0 there is a gauge

function Æ so that j
P

n
f(xn)�(S(xn))� F j < " for all sequences of disjoint �-Morse

sets that are Æ-�ne and cover all but a �-null subset of 
. This procedure can be

applied separately to the positive and negative parts of a real-valued function on 
.

The covering condition �(
n[nS(xn)) = 0 can be satis�ed due to the Morse Covering

Theorem. The improved version given here says that for a �xed � � 1, if A is the set

of centers of a family of �-Morse sets then A can be covered with the interiors of sets

from at most � pairwise disjoint subfamilies of the original family; an estimate for �

is given in terms of �, X and its norm.

1 Introduction An attractive feature of the Riemann and Henstock integrals is that

they can be de�ned in terms of Riemann sums. Suppose we wish to integrate a real-valued

function f over a set 
 with respect to a measure �. If we have disjoint measurable sets


1; : : : ;
N with union 
 (i.e., a partition of 
), then we may try to de�ne an integral as

the limit of sums
PN

i=1f(zi)�(
i) for appropriate points zi 2 
. One would hope that

taking the sets 
i small enough and N large enough would make these sums close to the

same value, which we then de�ne to be the integral
R


f d�. When 
 � R

d , this is done in

the Riemann case for Lebesgue measure and a bounded function f and bounded set 
 by

choosing for the partition sets 
i uniformly small cubes and then choosing arbitrary points

zi 2 
i. With the Henstock integral, f and 
 need no longer be bounded. For this case, the

sets 
i are intervals satisfying a gauge condition. This means to begin with that we have

a function Æ : 
 ! (0; R) for some positive R; the mapping is called a gauge function,

and we say the pair (zi;
i) is Æ-�ne if zi 2 
i and 
i is contained in the closed ball with

center zi and radius Æ(zi). (When 
 is unbounded, the partition need only cover 
\B(0; R)
where B(0; R) is a ball with center at the origin and large enough radius R determined by

Æ.) We obtain the McShane integral by dropping the restriction that zi 2 
i. See [8] for a

discussion of these integrals.

All of these integration schemes revolve around �nding a partition of 
, which of course

requires rather specialized sets 
i. Breaking this pattern, the Vitali Covering Theorem was

used in [10] to de�ne the Lebesgue integral with respect to Lebesgue measure on a �nite
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interval of the real line. There the idea, given any � > 0, is to use a �nite number of

intervals so that �([a; b] n [Ni=1Ii) < �. Here, we too will apply covering theory, but now to

a measurable set 
 in a �nite dimensional normed space X . We will obtain the Lebesgue

integral with respect to a Radon measure as a series
P

f(zi)�(
i), where the sets 
i � X
are disjoint and cover all but a null set of 
. The sets 
i will be made small with respect

to a gauge function. They can be balls or starlike sets (described in Section 2 below). It is

the Besicovitch Covering Theorem for balls and the Morse Covering Theorem for starlike

sets that enables us to ful�ll the condition �(
 n [i
i) = 0. For this it is essential that we

are working in a �nite dimensional normed space, not just a metric space. These covering

results are discussed below, and simpli�ed proofs of strengthened versions are provided. We

also note that by omitting a small part of the overall sum
P

f(zi)�(
i), we are able to

restrict the points zi to the set of points of approximate continuity of f , de�ned in terms

of Morse covers in Section 3.

In the theory of Henstock andMcShane integration, the appearance of the gauge function

is rather mysterious: For all " > 0 there is a gauge function Æ :
! (0;1) such that for all

Æ-�ne partitions f(zi;
i)g
N
i=1 of 
 we have j

PN
i=1f(zi)�(
i) �

R


f d�j < ". We show in

proving Theorem 12 how the properties of Lebesgue points can be used to determine the

gauge Æ. An even simpler result extending the Riemann integral is obtained in Section 5

for the case that f is continuous at �-almost all points of 
.

2 Covering Theorems Let (X; k�k) be a normed vector space of dimension d <1 over

the real numbers R. Then X is a separable, locally compact Hausdor� space with open sets

determined by the open balls. The open ball with center a 2 X and radius r > 0 is denoted

by U(a; r) := fx 2 X : kx� ak < rg; the closed ball with center a 2 X and radius r > 0 is

B(a; r) := fx 2 X : kx � ak � rg. Since the dimension of X is �nite, its closed balls are

compact.

The integration results to follow will use coverings by balls and sets more general than

balls in (X; k�k), and for this we will need the Besicovitch and Morse covering theorems.

Strengthened versions of these theorems are as easy to state and prove as the original

results. This was done at a real-analysis meeting in Rolla, Missouri in 1995, and the work

was included in the report of that meeting as the note by the �rst author in [9]. Since all of

that report is now essentially unavailable, we will sketch these improved results and proofs

here for the reader's convenience.

For general �nite dimensional normed vector spaces, the Besicovitch Covering Theorem

uses covers by closed metric balls; it gives a constant that is independent of measure.

Besicovitch's result is much stronger than the familiar Vitali Covering Theorem. It was

originally established for disks in the plane in 1945-46 [1], and was extended by A. P. Morse

[11] in 1947 to more general shapes in �nite dimensional normed spaces. The constructions

used in both the Besicovitch and Morse results are modi�ed here so that better theorems

are obtained. In the modi�ed theorems, the original cover of a set A by closed sets can still

be reduced to a subcover F such that F can be partitioned into n subfamilies of pairwise

disjoint sets and n is bounded above by a global constant depending only on the space. The

construction of F is arranged, however, so that A is actually contained in the union of the

interiors of the sets in F . To obtain this result, we have modi�ed the following de�nition

taken from [2].

De�nition 1 Fix � > 1. Let fSi : 1 � i � ng be an ordered collection of subsets of X with

each Si having �nite diameter �(Si) and containing a point ai in its interior, int(Si). We

say that the ordered collection of sets Si is in �-satellite con�guration with respect to the
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ordered set of points ai if i) For all i � n, Si \ Sn 6= ? and ii) For all pairs i < j � n,
aj =2 int(Si) and �(Sj) < � ��(Si).

Theorem 2 Let A be an arbitrary subset of X. With each point a 2 A, associate a set

S(a) containing a in its interior so that the diameters have a �nite upper bound. Assume

that for some � > 1, there is an upper bound � 2 N to the cardinality of any ordered

set fai : 1 � i � ng � A with respect to which the ordered set fS(ai) : 1 � i � ng
is in �-satellite con�guration. Then for some m � �, there are pairwise disjoint subsets

A1; : : : ; Am of A such that A � [mj=1 [a2Aj int(S (a)) and for each j, 1 � j � m, the

elements of the collection fS(a) : a 2 Ajg are pairwise disjoint.

Proof: Let T be a choice function on the nonempty subsets B of A such that T (B) is a
point b 2 B with � ��(S(b)) > supa2B �(S(a)). Form a one-to-one correspondence between

an initial segment of the ordinal numbers and a subcollection of A as follows. Set B1 = A
and a1 = T (B1). Having chosen a� for � < �, let B� = An[�<� int(S(a�)). If B� 6= ?, set

a� = T (B�). There exists a �rst ordinal  for which B = ?; that is, A � [�< int(S(a�)).
Note that for � < � < , we have a� =2 int(S(a�)) and �(S(a�)) < � � �(S(a�)). Let

Ac = fa� : � < g, and let � denote the well-ordering on Ac inherited from the ordinals.

Given any nonempty subset B of Ac, form a one-to-one correspondence between an

initial segment of the ordinal numbers and a subset V (B) of B as follows. Set B1 = B, and
let a(1) be the �rst element (with respect to �) of B1. Having chosen a(�) for � < �, let

B� = fb 2 B : 8� < �; S(b) \ S(a(�)) = ?g:

If B� 6= ?, let a(�) equal the �rst element (with respect to �) of B� . There exists a �rst

ordinal  for which B = ?. Let V (B) = fa(�) : � < g.
Now for i � 1, form sets Ai � Ac as follows. Set A1 = V (Ac). Having chosen Ai for

1 � i � n, let Bn = Ac n[
n
i=1Ai. Stop if Bn = ?. Otherwise, set An+1 = V (Bn). Note that

for each b 2 Bn and each i between 1 and n, there is a �rst (with respect to �) ai 2 Ai with

S(ai)\S(b) 6= ?; clearly, ai � b in Ac. It now follows that the set fS(a1); : : : ; S(an); S(b)g
is in � -satellite con�guration with respect to the set fa1; : : : ; an; bg when each set is given

the ordering inherited from Ac. Therefore, Bn = ? for some n � �. 2

Corollary 3 For any �nite Borel measure � on X, there is a j with 1 � j � m and a �nite

subset A� � Aj such that

��(A) � 2� �
X
a2A�

�(int(S (a))):

Proof: Take the �rst j � m that maximizes the sum �a2Aj �(int(S (a))). We can then

choose a �nite subset A� � Aj so that 1
2
�
P

a2Aj
�(int(S (a))) �

P
a2A�

�(int(S (a))). 2

What is the upper bound � for our vector space X? For balls and values of � close to

1, there is an upper bound K for � established by Zolt�an F�uredi and the �rst author in [7].

It is the maximum number of points that can be packed into the closed ball B(0; 2) when
one of the points is at 0 and the distance between distinct points is at least 1. That value

is no more than 5d, where d is the dimension of X . Applying Theorem 2 with � = K to

a cover by balls yields an open version of Besicovitch's theorem for X . The constant K is

the best constant for the Besicovitch Theorem in terms of all known proofs. With obvious

modi�cations, the construction in [7] is already appropriate for the improved result that

yields a cover by open balls.
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To use Theorem 2 to establish an open version of Morse's Covering Theorem for (X; k�k),
we need some geometric results. The proofs are modi�cations of arguments in [11] and [2].

The bound obtained is not as simple as the one for balls, but the shapes to which it applies

are more general than balls or even convex sets. For these geometric arguments, we use

boldface to denote points.

For each  � 1, we let N() be an upper bound for the number of points that can be

packed into the closed ball B(0; 1) when the distance between distinct points is at least 1=
and one point is at 0. We write NS() for the similar constant when all points are on the

surface of B(0; 1). Given nonzero points b and c in X , we set V (b; c) :=
 b

kbk
� c

kck

.
Proposition 4 Fix � with 1 < � � 2. Also �x an ordered set fSi : 1 � i � ng of bounded

subsets of X each containing a ball B(ai; ri). Assume that fSi : 1 � i � ng is in �-satellite
con�guration with respect to the ordered set of centers fai : 1 � i � ng. Translate so

that an = 0. Fix � � max1�i�n�(Si)=(2ri). Suppose the resulting con�guration has the

following property in terms of two constants C0 � 1 and C1 � 1 : If ai and aj are centers

with the properties that C0rn < kaik � kajk and V (ai; aj) � 1=C1, then ai must be in

the interior of Sj . It then follows that

n � N(2�C0) +N(8�2) NS(C1):

Proof: Set r := rn and S := Sn. For 1 � i < j � n, we have

kai � ajk � ri � �(Si)=(2�) � �(S)=(4�) � r=(2�):

Scaling by 1=(C0r), one sees that there can be at most N(2�C0) indices i for which kaik �
C0r. We only have to show, therefore, that there are at most N(8�2) NS(C1) indices in the

set J := fj < n : C0r < kajkg. Suppose i 6= j are members of J with ai 2 int(Sj). Then
i < j and

aj 2 B(ai;�(Sj)) � B(ai; 2�(Si)) � B(ai; 4�ri):

Moreover, kaj � aik � ri � ri=(2�). If also j < k in J , and ai 2 int(Sk), then ak 2

B(ai; 4�ri) and

kak � ajk � rj � �(Sj)=(2�) � kaj � aik=(2�) � ri=(2�).

Scaling by 1=(4�ri), it follows that for each i 2 J , the cardinality Cardfj 2 J : ai 2

int(Sj)g � N(8�2). Now construct J 0 � J by induction as follows. Set J1 = J . At the

kth step for k � 1, if Jk is empty, stop. Otherwise, choose the �rst ik 2 Jk so that for all

j 2 Jk, kaikk � kajk. Put ik in J 0. Form the set Jk+1 by discarding from Jk the index

ik and all other indices j such that aik 2 int(Sj). Now, if i 6= j in J 0, V (ai; aj) > 1=C1.

Therefore, Card(J 0) � NS(C1), and so Card(J) � N(8�2) NS(C1). 2

Given � � 1 and a 2 X , we let S�(a) denote the collection of all sets S � X for which

there exists an r > 0 such that B(a; r) � S � B(a; �r) and S is starlike with respect to

every y 2 B(a; r). This means that for each y 2 B(a; r) and each x 2 S, the line segment

�y + (1 � �)x, 0 � � � 1, is contained in S. This is the general shape considered by

Morse in [11]. To improve his result, as well as for work in a later section, we will need the

following fact about such a set S; the result, along with the next theorem, will �nish our

proof of the \open" Morse's Covering Theorem.
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Proposition 5 If ky � ak < r, i.e., if y is in the interior of B(a; r), and x is in the

closure, cl(S), of S, then every point of the form �y + (1 � �)x, 0 < � � 1, is in the

interior of S.

Proof: Fix � > 0 so that B(y; �) � B(a; r), and �x � with 0 < � � 1. Assume �rst

that x 2 S, and translate so that x = 0. Then the ball B(�y; ��) � S since

k�y � zk � ��)
y � 1

�
z
 � �) 1

�
z 2 B(a; r)

) z = �
�
1
�
z
�
+ (1� �)0 2 S.

Now for the case that x 2 cl(S), choose a point w 2 S so that 1��
�
kx�wk < �. The result

follows from the previous case since

�y + (1� �)x = �
�
y + 1��

�
(x�w)

�
+ (1� �)w. 2

Theorem 6 Fix � � 1 and �x � with 1 < � � 2. If fSi : 1 � i � ng is an ordered collection

of subsets of X in �-satellite con�guration with respect to an ordered set fai : 1 � i � ng �

X, and if for 1 � i � n, Si 2 S�(ai), then

n � N(64�3) +N(8�2)NS(16�):

Proof: For 1 � i � n, �x ri > 0 so that B(ai; ri) � Si � B(ai; �ri) and Si is starlike
with respect to every y 2 B(ai; ri). Translate so that an = 0; set r = rn and S = Sn.
Suppose i and j are indices such that 32�2r < kaik � kajk and V (ai; aj) � 1=(16�). By

Proposition 4, we only have to show that ai must be in the interior of Sj . To simplify

notation, let b = ai and c = aj . Fix x 2 S \ Sj . Since kxk � �r < 32�2r < kbk, x 6= b.

Let s = kck=kbk and t = 1=s. Set y = (1 � s)x + sb. Then b = (1 � t)x + ty. To show

that b 2 int(Sj), we only have to show that ky � ck < rj . Now 16��(S) � 32�2r < kbk,

whence kxk � �(S) � min (kbk=(16�); 2�(Sj)). Therefore, since j1� sj = s� 1 < s,

ky � ck =
(1� s)x+ kck

�
b

kbk
� c

kck

�
< skxk+ kck=(16�)

� skbk=(16�) + kck=(16�) = kck=(8�)

� (kc� xk+ kxk) =(8�)

< �(Sj)=(2�) � rj : 2

3 Measures Recall that we are working with a normed vector space (X; k�k) of dimension

d < 1 over the real numbers R. Let � be a measure on a �-algebra M of subsets of X .

We say that � is a Radon measure on X if:

(i) All Borel sets are measurable, i.e., M contains the Borel sets.

(ii) Compact sets have �nite measure.

(iii) � is inner and outer regular, i.e., for all E 2M

�(E) = supf�(K) : K � E and K is compactg;

�(E) = inff�(G) : G � E and G is openg:

We will call a set or function �-measurable, or when � is understood just measurable,

if it is measurable with respect to the �-completion of M.

Since every open set in X is �-compact, inner and outer regularity follow from assuming

merely that � is a Borel measure onX and closed balls have �nite measure; see Theorem 2.18
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in [12]. (For general spaces, the requirement of inner regularity is restricted to open sets

and sets of �nite measure; see Theorem 2.14 in [12].)

Given � � 1 and a 2 X , we say that a set S�(a) � X is a Morse set associated with

a and � if there is an r > 0 such that B(a; r) � S�(a) � B(a; �r) and S�(a) is starlike
with respect to B(a; r). We also say that S�(a) is a �-Morse set. Recall that a gauge

function is a mapping Æ : X ! (0; R) for some R > 0. We will say that the Morse set

S�(a) is Æ-�ne with respect to a gauge function Æ if �r � Æ(a); in this case, we will also

call a the tag for S�(a). Note that putting � = 1 forces a Morse set to be a closed ball.

Also note that the closure cl(S�(a)) of a �-Morse set S�(a) is again a �-Morse set since

when y 2 B(a; r), x 2 cl(S�(a)) and fxng is a sequence converging to x, we have for any
� 2 [0; 1], �y + (1� �) xn ! �y + (1� �)x.

A collection S � P(X) consisting of at least one Morse set associated with each point

a in a set 
 � X is called a Morse cover of 
 provided the same � � 1 is used for each

set in the cover and there is a �nite upper bound to the diameters of the sets in the cover.

We will also call such a cover a �-Morse cover. A �-Morse cover S of 
 is called �ne if

for each a 2 
 and arbitrarily small values of r > 0 there are associated sets S�(a) 2 S

with B(a; r) � S�(a) � B(a; �r) such that S�(a) is starlike with respect to B(a; r). Given
a Radon measure �, a �-Morse cover of a measurable set 
 � X is called a �-a.e. cover of

 if i) it is �ne, ii) each set in the cover is �-measurable, and iii) for any " > 0, and any

strictly positive gauge function Æ there is a �nite or in�nite sequence of disjoint, Æ-�ne sets
Sn 2 S such that �(
 n [nSn) = 0 and �([nSn n
) < ". This concept is similar to that of

Vitali covers, see [5].

We �rst extend Corollary 3 to show that a �ne Morse cover consisting of closed sets is a

�-a.e. cover for any given measurable subset 
 of X . The same is true when the Morse sets

are not necessarily closed provided that for each set E in the cover, it does not increase the

measure of E to adjoin its closure points. For closed balls and sets of �nite measure, the

proof is standard (see [4] or [13]). We reproduce and extend it here.

Lemma 7 Let � be a Radon measure on X. Let 
 � X be measurable, and suppose that

S is a �ne Morse cover of 
 consisting of �-measurable sets. Then S is a � -a.e. cover of


 if S consists of closed sets or if for each set E 2 S, �(
 \ (cl(E) nE)) = 0.

Proof: Fix " > 0, and a gauge function Æ > 0. We suppose �rst that S consists of closed,

Æ-�ne sets. If �(
) < 1, we may �x an open set O � 
 such that �(O n 
) < ", and we

may assume that each set E 2 S is a subset of O. Let � be the upper bound for the Morse

Covering Theorem; recall that it depends only on X and the parameter � for the cover. By

Corollary 3, there is a �nite subcollection F1 � S consisting of pairwise disjoint closed sets

such that �([F1) � �(
)=(2�), whence �(
 n [F1) � (1� 1=(2�))�(
). Let 
0 = 
 n [F1
and S1 = fE 2 S : E \ ([F1) = ?g. Then S1 is a �ne Morse cover of 
0. Again, there

is a �nite disjoint subfamily F2 � S1 such that �(
0 n [F2) � (1 � 1=(2�))�(
0), whence,
�(
 n [(F1 [ F2)) � (1� 1=(2�))2�(
). Continuing in this manner, we have �(
 n F) = 0

where F = [iFi. Important for the next step, however, is the fact that for any  > 0, there

is a �nite, pairwise disjoint family F 0 � S such that �(
 n F 0) < .

Now suppose that �(
) = +1. Then since � is a Radon measure, 
 = [1i=1
i where

each 
i is a set of �nite measure and 
i \ 
j = ? for i 6= j. For each i, �x an open set

Oi � 
i with � (Oi n
i) < "=2i. We apply the above result to obtain a �nite (or empty)

family F1 covering all but a set of measure 1 of 
1 with all sets contained in O1. At the

nth stage, n > 1, we obtain a �nite (or empty) family Fn covering all but a set of measure

1=n of ([ni=1
i) n [
n�1
i=1

�
[F i

�
with all sets contained in ([ni=1Oi) n [

n�1
i=1

�
[F i

�
. Clearly,

[1i=1F
i is the desired collection of disjoint sets in S.
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In the case that for each set E 2 S , �(
 \ (cl(E) n E)) = 0, we apply the above result

to the Morse cover formed by the closures of the sets in S. We then replace each set cl(Sn)
in the resulting disjoint sequence with the original set Sn. 2

When dealing with Morse sets that are not closed, the conditions in Lemma 7 are easily

ful�lled when the Morse cover S is scaled. This means that for each S�(a) 2 S and each

p 2 (0; 1], the set S
(p)
� (a) is also in S where S

(p)
� (a) = fa+ px : a+ x 2 S�(a)g.

Proposition 8 Let � be a Radon measure on X. Let 
 be a measurable subset of X and

suppose S is a scaled Morse cover of 
 consisting of �-measurable sets. Then S is a �-a.e.
cover of 
.

Proof: Since S is a scaled Morse cover of 
, it is certainly a �ne cover of 
. Let � be

the parameter for the Morse cover S. Let a 2 
 and �x S�(a) 2 S; we write S for S�(a).
We will show that for 0 < p < q � 1, @S(p) \ @S(q) = ?. The result will then follow since

for all but a countable number of values p, �(@S(p)) = 0. Since S(p) =
�
S(q)

�(p=q)
, we may

simplify notation by assuming that S(q) = S; we may further simplify by translating so that

a = 0. The result now follows from Proposition 5 since for each x 2 cl(S(p)), (1=p)x 2 cl(S),
so x 2 int(S). 2

Example 9 Take all closed balls or all open balls in X of radius at most 1. For each

center x and radius r, let a(x; r) in the interior of the ball be the tag of that ball, and set

!(x; r) := kx � a(x; r)k=r. Assume that !0 = supx;r !(x; r) < 1. Given a Radon measure

�, we have a �-a.e. cover of any �-measurable set in X , and (1+!0)=(1�!0) is the smallest

permissible value of �. As a special case, we may take each tag a(x; r) = x.

Example 10 Let fe1; : : : ; edg be a basis for X . Let a =
Pd

i=1 aiei 2 X . Let b, c 2
R
d
+ = f(x1; : : : ; xd) 2 R

d : xi > 0; 1 � i � dg with c21 + � � � + c2d < 1. De�ne a tagged

interval by setting I(a; b; c) := f
Pd

i=1(ai + ti)ei : 0 < ti � bi; 1 � i � dg with tag atPd
i=1(ai+ bici)ei. Fix c as above and take k � 1. Given a Radon measure �, the collection

S = fI(a; b; c) : a 2 X; b 2 Rd+ such that max1�i�d bi=min1�i�d bi � kg is a scaled, �-a.e.
Morse cover of X .

Let K be a compact subset of X and let � be a Radon measure such that each open ball

with center at a point of K has positive �-measure. We will want to use the fact that given

a � � 1, any �-a.e., �-Morse cover S of K forms a di�erentiation basis on K with respect

to �. For our purposes here this means that if � is a radon measure absolutely continuous

with respect to �, i.e., � << �, and S(a) is the collection of sets in S associated with a 2 K,

then

lim
S2S(a)
�(S)!0

�(S)

�(S)
=

d�

d�
(a) for �-a.e. a 2 K;

where d�
d�

denotes the Radon-Nikod�ym derivative of � with respect to �.

By the principal result in [2], the above equality follows from the fact that if E is a

measurable subset of K and � is a �nite Radon measure with � << � and �(E) = 0, then

for �-a.e. a 2 E, lim supS2S(a);�(S)!0 �(S)=�(S) � 1. As in [2], we can see that this is in

fact the case by letting A be the subset of E where the reverse inequality holds, and letting

� be the upper bound given by the Morse Covering Theorem. We �x " > 0 and a nonempty

compact set C � X n E with �(X n C) < "= (2�). By assumption, for each a 2 A, there
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is a set S(a) 2 S(a) with S(a) \ C = ? and �(S(a)) � �(S(a)). For the �nite, disjoint

subcollection hSni of these sets given by Corollary 3 , we have

��(A) � 2� ��n�(Sn) � 2� � �n�(Sn) � 2� � �(X n C) < ".

In the next section, we will want to exploit the fact that measurable functions are

approximately continuous almost everywhere with respect to a given Radon measure �.
That is, let 
 be a �-measurable subset of X , and let f :
! R be �-measurable; set f � 0

on X n
. Suppose S is a �ne �-Morse cover of 
, so that the sets in S form a di�erentiation

basis with respect to � at points x 2 
 for which all balls B(x; r) have positive �-measure.

Then x 2 
 is called a point of approximate continuity of f if for all positive " and �
there is an R > 0 such that if S(x) is a set in S with tag x and S(x) � B(x;R), then for

E(x; �) := fy 2 S(x) : jf(x)� f(y)j > �g we have �(E(x; �)) � " �(S(x)). It is known that

�-almost all points of 
 are points of approximate continuity of f (see [5], 2.9.13). A related

notion, de�ned and used below in the proof of Theorem 12, is the notion of a Lebesgue

point for f ; these also �ll the space except for a set of measure 0.

Remark 11 Clearly, a nonnegative, measurable, real-valued function f is approximately

continuous �-a.e. if for each n 2 N, min (f; n+ 1) is approximately continuous �-a.e. on the

set where f � n. That this is the case follows from the discussion of Lebesgue points in

Section 3 of [3], since the constant for a Lebesgue point x equals f(x) for �-almost all x (cf.

Equation (2) below).

4 Integration Again, we let (X; k �k) be a normed vector space of dimension d <1 over

the real numbers R. Using our covering results we can formulate the Lebesgue integral as a

type of Riemann sum de�ned by �-a.e.Morse covers. We do this �rst for nonnegative func-

tions and later apply the result to measurable functions taking both positive and negative

values.

Theorem 12 Let � be a Radon measure on X. Let 
 be a measurable subset of X, and

let f be a nonnegative, real-valued, measurable function on 
. Then
R


f d� is �nite and

equals F if the following condition holds for some � � 1 and some �-a.e., �-Morse cover

S of 
 : For all " > 0 there is a gauge function Æ : 
 ! (0; 1] such that for any �nite or

countably in�nite disjoint sequence hSn(xn)i of Æ-�ne sets from S covering all but a set of

measure 0 of 
 we have ���X
n
f(xn)�(Sn)� F

��� < ":(1)

Conversely, if
R


f d� is �nite and equals F , then the condition holds for any � � 1 and

any �-a.e., �-Morse cover S of 
.

Proof: We note �rst that for a given set A � 
 with �(A) = 0, we may set our gauge to

force an arbitrarily small sum for points xi 2 A, and also force, in the case that f is assumed

to be integrable, an arbitrarily small integral of f over the union of the corresponding sets

Si. To show this, we �x " > 0, and for each n 2 N we set An = fx 2 A : n� 1 � f(x) < ng.
The sets An are disjoint and �-null with union A. In the case that f is assumed to be

integrable, we may choose an open set G � A so that
R
G
f < "; otherwise, set G = X .

For each n 2 N, �x an open set Gn with G � Gn � An and �(Gn) < "= (n � 2n). (This is
possible since � is outer regular.) For each x 2 An, we choose Æ(x) < supfs : B(x; s) � Gng.

Then a sum over Æ-�ne, disjoint sets Si with all tags in A satis�es the inequality

X
i

f(xi)�(Si) <

1X
n=1

 
n
X

xi2An

�(Si)

!
�

1X
n=1

" 2�n = ";
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and if f is assumed to be integrable, its integral over [iSi is at most ".

Now suppose that
R


f d� exists and equals F . Fix � � 1, a �-a.e., �-Morse cover S

of 
, and an " > 0. Set f � 0 on X n 
. Suppose x 2 
 is a Lebesgue point for f with

respect to the Morse cover S. This means that there is a constant, which (after rede�ning

f on a �-null set) we may assume is f(x), such that the following condition holds: For any

"1 > 0 there is an R > 0 so that if S(x) is a set in S with tag x and S(x) � B(x;R), thenZ
y2S(x)

jf(x)� f(y)j d�(y) � "1 �(S(x)):(2)

For such an x, let k(x) be the �rst integer strictly larger than kxk. Set Æ(x) = R where R is

chosen to be at most 1 and satisfy Equation (2) with "1 = " 2�k(x)�1 = [1 + �(B(0; k(x) + 1))].

Since S forms a di�erentiation basis, it follows that the non-Lebesgue points form a �-null
set. (See, for example, Section 3 of [3].) We may, as just noted, choose positive values

Æ(x) � 1 for such points x so that their contribution to the sum in Equation (1) can be at

most "=4 and the integral of f over the union of the corresponding sets S(x) will be at most

"=4.

With this choice for the gauge Æ, we now let hSn(xn)i be any �nite or countably in�nite

disjoint sequence of Æ-�ne sets from S covering all but a set of measure 0 of 
. Let L denote

the set of Lebesgue points of 
. Then

�����
Z



f d��
X
n

f(xn)�(Sn)

����� =
������
Z

[nSn

f d��
X
n

f(xn)�(Sn)

������(3)

�
X
xn2L

Z
Sn

jf(xn)� f(y)j d�(y) +
"

2

�

1X
`=1

" 2�`�1

1 + �(B(0; `+ 1))

X
`�1�kxnk<`

�(Sn) +
"

2

� ":

Now �x a � � 1 and a �-a.e., �-Morse cover S of 
 so that for any " > 0 there is an

appropriate gauge Æ � 1 for f and F ; that is, for any �nite or countably in�nite disjoint

sequence hSn(xn)i of Æ-�ne sets from S covering all but a set of measure 0 of 
, Equation

(1) holds for ". For each x 2 
, let k(x) be the �rst integer strictly larger than kxk, and set

�(x) :=
2�k(x)

[1 + �(B(0; k(x) + 1))][1 + f(x)]
:

For each m 2 N, �x Æm � 1 to work for f and F with " = 1=m in Equation (1). Let

hSmn (xmn )i be a �nite or countably in�nite disjoint sequence of Æm-�ne sets from S covering

all but a set of measure 0 of 
. We may assume that each tag xmn is a point of approximate

continuity of f and �(Em
n ) � �m(x

m
n )�(S

m
n ) where �m(x

m
n ) = �(xmn )=m and

Em
n := fx 2 Smn : jf(xmn )� f(x)j > �m(x

m
n )g.

De�ne a measurable function fm on 
 as follows: If for some n 2 N, x 2 Smn n Em
n , set

fm(x) = max(f(xmn )��m(x
m
n ); 0); otherwise, set fm(x) = 0. Now the functions fm converge
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to f in measure since,

�

��
x 2 
 : jf(x) � fm(x)j >

1

m

��

�
X
n

�(Em
n ) �

X
n

�m(x
m
n )�(S

m
n )

�
1

m

1X
`=1

2�`

1 + �(B(0; `+ 1))

X
`�1�kxmn k<`

�(Smn )

�
1

m
:

Since any subsequence of the sequence hfmi has in turn a subsequence converging �-a.e. to
f , it follows from Fatou's lemma thatZ




f d� � lim inf
m

Z



fm d�

� lim inf
m

X
n

f(xmn )�(S
m
n )

� lim inf
m

(F + 1=m)

= F < +1:

On the other hand, each fm � f , so for each m,Z



f d� �

Z



fm d�

�
X
n

[f(xmn )� �m(x
m
n )] �(S

m
n nEm

n )

=
X
n

f(xmn )�(S
m
n )�

X
n

f(xmn )�(E
m
n )�

X
n

�m(x
m
n )�(S

m
n nEm

n )

� F � 1=m�
X
n

�m(x
m
n ) f(x

m
n )�(S

m
n )�

X
n

�m(x
m
n )�(S

m
n )

� F � 1=m�
1

m

X
`

2�`

1 + �(B(0; `+ 1))

X
`�1�kxmn k<`

2�(Smn )

� F � 3=m;

whence
R


f d� = F . 2

Remark 13 With no loss of generality, we can restrict the points xn in Equation (1) to

be points of approximate continuity or to be points outside of any given �-null set. Also,

while we could work with the cover formed by all �-measurable �-Morse sets, the gauge Æ
can in general be chosen larger when given a smaller �-a.e. Morse cover.

Let f be a real-valued function on 
 taking both positive and negative values. As usual,

we set f+ := max(f; 0) and f� := max(�f; 0); given �, we say that f is integrable if both

f+ and f� have �nite integrals with respect to �. Suppose now that S is the set of all

closed balls in X with tags at the center; i.e., � = 1. Even for this case, we cannot force

the integrability of f with the inequality�����
1X
n=1

f(xn)�(Bn)� F

����� < ":(4)
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The inequality does imply that
P
jf(xn)j�(Bn) will be bounded for any appropriate se-

quence hBni, but the sums need not be uniformly bounded. The condition given by

(4) will allow principal value integrals. For example, in R
d let e1 be the unit vector

in the positive direction along the �rst axis. For each n 2 N, let An be the open ball

U
�
((�1)n=n) � e1; 1=(2n

2)
�
. The balls An are disjoint. Let 
 be the union of the balls An

together with the origin, and let � be the sum of the Dirac measure supported at the origin

and Lebesgue measure restricted to 
. Set f(x) = ((�1)n=n) � � (An) if x 2 An, and let

f(0) = 0. Take the gauge function Æ :Rd ! (0; 1) so that if x 2 An then B(x; Æ(x)) � An.

Let F =
P1

n=1(�1)
n=n, i.e., F = � ln 2. Given " > 0, if we take Æ small enough at 0,

then for any sequence of disjoint, Æ-�ne balls Bn satisfying �(
= [n Bn) = 0, we have

j
P

f(xn)�(Bn) � F j < ". Any such sequence must contain a ball having the origin as its

center. As we choose di�erent sequences so that the radius of this ball shrinks to 0 we haveP
jf(xn)j�(Bn)!1.

It is the case, as we now show, that a real-valued, measurable f is integrable if the sumsP
n jf(xn)j �(Sn) are uniformly bounded.

Corollary 14 Given � and 
 as in the theorem, let f be an arbitrary, measurable, real-

valued function on 
. Then f is integrable if the following condition holds for some � � 1

and some �-a.e., �-Morse cover S of 
 : There is a number M � 0 and a gauge function

Æ : 
 ! (0; 1] such that for any �nite or countably in�nite disjoint sequence hSn(xn)i of
Æ-�ne sets from S covering all but a set of measure 0 of 
 we haveX

n
jf(xn)j �(Sn) �M .(5)

Conversely, if f is integrable, then the condition holds for all � � 1 and all �-a.e., �-Morse

covers S of 
. In this case, for each such �-Morse cover S and each " > 0, there is a gauge

function Æ :
! (0; 1] so that for any �nite or countably in�nite disjoint sequence hSn(xn)i
of Æ-�ne sets from S covering all but a set of measure 0 of 
 we have����Xn

f(xn)�(Sn)�

Z



f d�

���� < ":

Proof: Fix a � � 1 and a �-a.e., �-Morse cover S of 
, and suppose there is an M � 0

and a gauge Æ � 1 satisfying our condition including Equation (5). For each x 2 
, let k(x)
be the �rst integer strictly larger than kxk, and set �(x) := 2�k(x)= (1 + �(B(0; k(x) + 1))).

For eachm 2 N, let hSmn (xmn )i be a �nite or countably in�nite disjoint sequence of Æ-�ne sets
from S covering all but a set of measure 0 of 
. We may assume that each tag xmn is a point

of approximate continuity of jf j and �(Em
n ) � �m(x

m
n )�(S

m
n ) where �m(x

m
n ) = �(xmn )=m

and

Em
n := fx 2 Smn : jjf(xmn )j � jf(x)jj > �m(x

m
n )g.

De�ne a measurable function fm on 
 as follows: If for some n 2 N, x 2 Smn n Em
n , set

fm(x) = max(jf(xmn )j � �m(x
m
n ); 0); otherwise, set fm(x) = 0. As in the theorem, we have

fm ! jf j in measure andZ



jf j d� � lim inf

Z



fm d� � lim inf
X
n

jf(xmn )j�(S
m
n ) �M;

whence f is integrable.

Now assume that f is integrable, and set F1 =
R


jf j d�. Applying the theorem, it

follows that for any � � 1 and any �-a.e., �-Morse cover S of 
, the function jf j satis�es
our condition including Equation (5) with M = F1+1. The rest follows for any given " > 0

by applying the theorem separately to f+and f� with respect to "=2 and taking the smaller

of the two gauges at each point. 2
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5 An Extension of the Riemann Integral For the case that f is real-valued and

continuous almost everywhere, we can easily calculate the gauge Æ, and in the process obtain
an extension of the Riemann integral that integrates some unbounded functions with respect

to Radon measures on unbounded domains. Here too, we say that f is integrable only when

this is true for f+ and f�.

Theorem 15 Let � be a Radon measure on X. Let 
 be a measurable subset of X, and

let f be a measurable, real-valued function on 
. Set f � 0 on Xn 
, and let 
c be the set

of points in 
 where f is continuous. Let us suppose that �(
 n 
c) = 0. For x 2 
c, let

k(x) be the smallest integer strictly greater than kxk, and for each  > 0 �x �(x; ) with

0 < �(x; ) � 1 so that for all y with jy � xj < �(x; ), we have jf(y) � f(x)j < . If

�(
) <1, then for each " > 0 and each x 2 
c set Æ"(x) = �(x; " � [1+�(
)]�1); otherwise
for each " > 0 and each x 2 
c set Æ"(x) = �(x; " � 2�k(x) � [1 + �(B(0; k(x) + 1))]�1). Now,

if f is integrable, then for any � � 1, any " with 0 < " � 1 and any �nite or countably

in�nite disjoint sequence hSn(xn)i of Æ"-�ne, �-Morse sets covering all but a set of measure

0 of 
 and having tag points xn 2 
c we have

����Xn
f�(xn)�(Sn(xn))�

Z



f� d�

���� < ";

whence

����Xn
f(xn)�(Sn(xn))�

Z



f d�

���� < 2":

On the other hand, f is integrable if for some � � 1 and some �nite or countably in�nite

disjoint sequence hSn(xn)i of Æ1-�ne Morse sets, associated with � and tag points xn 2 
c,

and covering all but a set of measure 0 of 
, we have

X
n
jf(xn)j �(Sn) < +1:

Proof: Note that if �(x; ) works for f , then it works for f+ and f�. Assume f is

integrable, and �x � � 1 and " > 0. Let hSn(xn)i be any �nite or countably in�nite disjoint
sequence of Æ"-�ne, �-Morse sets with tag points xn in 
c and covering all but a set of

measure 0 of 
. Then for the case that �(
) =1 we have

�����
Z



f+ d��
X
n

f+(xn)�(Sn)

����� �
X
n

Z
Sn

jf+(y)� f+(xn)j d�(y)

�

1X
`=1

" 2�`

1 + �(B(0; `+ 1))

X
`�1�kxnk<`

�(Sn) � ";

with the obvious simpli�cation for the case that �(
) <1. A similar calculation works for

f�.

Now �x � � 1, and assume there is a �nite or countably in�nite disjoint sequence

hSn(xn)i of Æ1-�ne Morse sets associated with � and tag points xn 2 
c covering all but

a set of measure 0 of 
 such that
P

n jf(xn)j �(Sn) = M 2 R. Then for the case that
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�(
) =1, Z



jf j d� =
X
n

Z
Sn

jf j d�

�
X
`

�
jf(xn)j+

2�`

1 + �(B(0; `+ 1))

� X
`�1�kxnk<`

�(Sn)

�M + 1.

Again, we have the obvious simpli�cation for the case that �(
) <1. 2

Note added in proof: It follows from Lusin's Theorem and the Lebesgue Di�erentiation

Theorem for characteristic functions that this theory can be extended to Banach space

valued functions. This will be the subject of a subsequent paper.
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