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Abstract. This paper discusses the model for a perishable product with two types

of states, a good state and a bad one. The commodities sell well when the good state

occurs at the beginning of a period, but do not when the bad state occurs. An indicator

random variable is de�ned to express the states, and it is a Bernoulli random variable

with unknown parameter which has a conjugate beta prior. We express the maximum

expected pro�t for remaining periods by a dynamic program and obtain the optimal

ordering policy in the �rst period. As a main result, we get a relationship between

the numbers of times at which the good and the bad state occurred and the expected

pro�t for remaining periods. Moreover, numerical examples are given to illustrate an

optimal ordering policy for remaining n > 1 periods.

1. Introduction Many perishable inventorymodels studied since Nahmias[1] and Fries[2]

presented models for commodities with a �xed life time. Nahmias assumes that the cost of

outdating is charged to the period in which the order arrives rather than the period in which

the outdating actually occurs. For this reason, his model is extended to many one-period

models[3-7]. Ishii et al.[3, 4] and Nose et al.[5] have determined an optimal inventory level

under stochastic procurement leadtime is the case of 0 or 1 period. Nose et al.[5] have

also considered two di�erent selling prices. Ishii[6], and Ishii and Nose[7] have generalized

these models by introducing two types of customers although they do not take stochastic

leadtime into consideration. Ishii and Nose[7] have designed more generalized model which

considered two storage facilities.

Fries[2] assumes that the outdating cost is incurred in the period the commodity perishes.

Fries' approach is more eÆcient for actually computing an optimal policy[8].

For n > 1 planning periods, the optimal ordering policy for both Nahmias' and Fries'

approach cannot be characterized in a simple manner. In order to simplify calculation,

good approximations have been developed[9, 10, 11]. Nahmias[9, 10] and Nandakumar[11]

follow the methodology of Nahmias[1] and Fries[2], respectively. However, a demand in each

period does not depend on a past history in these models mentioned above.

On the other hand, for non-perishable inventory model, a Bayesian dynamic inventory

problem was modeled[12]. Azoury[12] presented the periodic review inventory model for

which parameters of the demand distribution are unknown with a known prior distribution

chosen from the natural conjugate family.

In this paper, we propose a Bayesian dynamic perishable inventory model based on Fries'

approach with two types of states. We consider the following method as a way of taking

a past history into consideration: The states at the beginning of the period are classi�ed

into two types, called the "good state" and the "bad state". The commodities sell well

when the good state occurs at the beginning of a period, but do not when the bad state

occurs. For instance, the commodities like beer sell well when temperature is high, but not
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when temperature is not high. We de�ne the indicator random variable Y by Y = 1 if

the good state occurs and Y = 0 otherwise. The probability mass function of a Bernoulli

random variable having unknown parameter � is given by  (Y = ij�) = �
i(1 � �)1�i

for i = 0; 1. The true value of � is unknown and is given the beta prior distribution

with parameters (s; t). Since the beta distribution is a conjugate family for a sample from

a Bernoulli distribution[13], we can state as follows: If the good state occurs, then the

posterior distribution of � becomes beta with parameter (s + 1; t), otherwise the posterior

distribution of � becomes beta with parameter (s; t+ 1).

Using the above method, we �rst formulate the maximum expected pro�t for remaining

periods and obtain the optimal ordering policy in the �rst period. As the main theorem, we

next analyze the relationship between the numbers of times at which the good and the bad

state occurred and the expected pro�t for remaining periods. Moreover, since it is diÆcult

to derive an optimal ordering policy for n > 1 planning periods, numerical examples are

given to illustrate an optimal ordering quantity for remaining n > 1 periods. Finally, we

end this paper with further research problems.

2. The Model We consider the case of a single product and a �nite planning horizon.

We assume that two types of states, the "good state" and the "bad state", and demand

occurs depending on the state at the start of the period. The length of period is arbitrary

but �xed.

We will make the following assumptions:

(i) The planning horizon is divided into �nite periods that are numbered backwards.

(ii) An order is placed at the beginning of a period and the new products arrive instantly.

(iii) Any units that have reached age m are removed from the inventory.

(iv) All demand is ful�lled with available units or by following emergency procurement[2]:

Given a situation in the supermarket, is there not the brand, the consumer selects the

alternative brand, or an employee who have time to spare goes to the neighbor store

belonging to the same chain, in order to procure commodities.

(v) Inventory is depleted according to the FIFO (First-In, First-Out) issuing policy.

(vi) The positive integers s and t are the numbers of times at which the good state and

the bad state have occurred respectively.

(vii) The type 1 demand in the good state D1 and type 2 demand in the bad state D2

are independent nonnegative random variables with known distributions F 1(�), F 2(�),
densities f1(�), f2(�) and means �1, �2 (�1 > �2), respectively.

(viii) All items are sold by price p.

The following costs for any given period are speci�ed:

c = purchasing cost per unit.

K = set-up cost per order (K > 0).

h = holding cost per unit.

r = emergency procurement cost per unit.

� = disposal cost per unit.
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The inventory vector at the beginning of a period is x = (xm�1; xm�2; � � � ; x1), where
xi is the amount of product on hand that will outdate exactly i periods into the future.

The decision variable y is the quantity of fresh stock ordered. Also, let 1 be the (m � 1)-

dimensional column vector all of whose elements are 1, and let x1 be product of vectors x

and 1. If u is a realization of demand in a period, the inventory position at the end of the

period is:

zi(x; y; u) �

8<
:

max
h
0;min

�
xi+1;

Pi+1

j=1 xj � u

�i
; if i = 1; 2; � � � ;m� 2

max
h
0;min

�
y;
Pm�1

j=1 xj + y � u

�i
; if i =m� 1

(1)

and let z(x; y; u) = (zm�1(x; y; u); zm�2(x; y; u); � � � ; z1(x; y; u)).
Moreover, The probability mass function of a Bernoulli random variable with an un-

known value of the parameter � is given by  (Y = ij�) = �
i(1� �)1�i for i = 0; 1. And let

g(�js; t) represent the prior beta density function with parameters (s; t).

Then the maximum expected pro�t for remaining n periods, An(xjs; t) is given by

An(xjs; t)

= sup
y�0

�
�KÆ(y) � cy

+

Z 1

0

 (Y = 1j�)

�
L
1 (x; y) +

Z
1

0

An�1 (z(x; y; u)js + 1; t) f1(u)du

�
g(�js; t)d�

+

Z 1

0

 (Y = 0j�)

�
L
2 (x; y) +

Z
1

0

An�1 (z(x; y; u)js; t + 1) f2(u)du

�
g(�js; t)d�

�
;(2)

where

Æ(y) =

�
1; if y > 0,

0; otherwise,
(3)

and

L
i (x; y) = p

Z
1

0

uf
i(u)du� h

Z
x1+y

0

(x1+ y � u)f i(u)du

�r

Z
1

x1+y
(u� x1� y)f i(u)du� �

Z x1

0

(x1 � u)f i(u)du for i = 1; 2.(4)

In the real world, when there are goods left unsold at the end of planning horizon, the

retailer will hold the clearance sale for the goods disposal. In this case, although the goods

are usually sold bellow the purchasing cost, the pro�t of clearance sale will make up for the

disposal cost. Thus, we let A0(xjs; t) = 0 and

A1(xjs; t) = sup
y�0

�
�KÆ(y) � cy +

Z 1

0

 (Y = 1j�)L1 (x; y) g(�js; t)d�

+

Z 1

0

 (Y = 0j�)L2 (x; y) g(�js; t)d�

�
:(5)
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Using basic properties on the beta density function, An(xjs; t) in (2) and A1(xjs; t)
in (5) become, respectively,

An(xjs; t) = sup
y�0

�
�KÆ(y)� cy

+
s

s+ t

�
L
1 (x; y) +

Z
1

0

An�1 (z(x; y; u)js+ 1; t) f1(u)du

�

+
t

s+ t

�
L
2 (x; y) +

Z
1

0

An�1 (z(x; y; u)js; t+ 1) f2(u)du

��
;(6)

and

A1(xjs; t) = sup
y�0

�
�KÆ(y) +B (x; yjs; t)

�
;(7)

where

B (x; yjs; t) = �cy +
s

s + t
L
1 (x; y) +

t

s+ t
L
2 (x; y) :(8)

3. Analysis of the Expected Pro�t

Lemma 1 There exists a unique y = y
�(x) which maximizes �KÆ(y) +B(x; yjs; t).

Proof. By partial di�erentiating B (x; yjs; t) with respect to y, we have

@B(x; yjs; t)

@y
= r � c� (h+ r)

�
s

s+ t
F
1(x1+ y) +

t

s+ t
F
2(x1+ y)

�
:(9)

Then
@B(x;yjs;t)

@y
� 0 agrees with

s

s+ t
F
1(x1+ y) +

t

s + t
F
2(x1+ y) �

r � c

h+ r
(< 1):(10)

Let '1(x; y) express the left-hand-side of Inequality (10), we have

'1(x; 0) =
s

s+ t
F
1(x1) +

t

s + t
F
2(x1);(11)

lim
y!+1

'1(x; y) = 1;(12)

@'1(x; y)

@y
=

s

s+ t
f
1(x1+ y) +

t

s + t
f
2(x1+ y) > 0:(13)

The above equations reveal as follows:

(a) If '1(x; 0) <
r�c
h+r

, then B(x; yjs; t) �rst increases and then decreases with increasing

y. Therefore there exists a unique y = S0(x) > 0 which maximizes B(x; yjs; t).

(b) If '1(x; 0) �
r�c
h+r

, then y = S0(x) = 0 makes B(x; yjs; t) maximize since B(x; yjs; t)
is non-increase function with respect to y.

If an order is placed, then an expected pro�t is �K+B (x; S0(x)js; t), otherwise B(x; 0js; t).
Hence, there exists a unique optimal ordering quantity y = y

�(x) in the �rst period (n = 1).

This is given by:

y
�(x) =

�
S0(x); if B (x; 0js; t) � B (x; S0(x)js; t) �K,

0; otherwise.
(14)
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Remark. When F
1(x) � F

2(x) for all x(such as both demands distribution are exponen-

tially distributed), y = y
�(x) tends to become large if the number of times at which the good

state occurred in the past (i.e. s) becomes large, but do not if t becomes large.

Proof. When y = y
�(x) > 0, y�(x) is the unique solution of

s

s + t
F
1 (x1+ y) +

t

s + t
F
2 (x1+ y) =

r � c

h+ r
:(15)

Since the left-hand-side of (15) decreases in s for any �xed x1+y, y�(x) increases gradually

in s. On the contrary, since left-hand-side of (15) increases in t, y�(x) decreases in t.

In this kind of perishable inventory model, it is known that the ordering region becomes

much more complex when K > 0[14]. Although we tried to derive an optimal ordering

policy explicitly which maximizes the expected pro�t for remaining n > 1 periods when

the demands D1, D2 are well-known random variables such as a uniform, an exponential

and a Weibull, it turned out that it is quite diÆcult. Thus, some properties of An(xjs; t)
is analyzed by assuming that there exists a y = y

�(x) for n > 1 periods. We also use a

shorthand notation as follows:

�
j
n(x; yjs; t) = �

Z
1

0

@An (z(x; y; u)js; t)

@u
F
j(u)du:(16)

Theorem 1 If L2(x; y) � (� resp.)L1(x; y), then we have following relations for positive

integer k.

(i) Case n = k = 1.

Then it holds A1(xjs; t + 1) � (�)A1(xjs; t) � (�)A1(xjs+ 1; t).

(ii) Case n = k > 1.

When �2k�1(x; yjs; t + 1) � (�)�2k�1(x; yjs; t) � (�)�1k�1(x; yjs; t) � (�)�1k�1(x; yjs +
1; t) , we obtain Ak(xjs; t + 1) � (�)Ak(xjs; t) � (�)Ak(xjs+ 1; t).

Proof. First, we consider the case of L2(x; y) � L
1(x; y).

(i) From Lemma 1, there exists a unique y = y
�(x) which attains the sup of A1(xjs; t). Let

S1(x) be this y
�(x), then A1(xjs; t) and A1(xjs+ 1; t) are respectively

A1(xjs; t)

= �KÆ (S1(x)) � cS1(x) +
s

s + t
L
1 (x; S1(x)) +

t

s + t
L
2 (x; S1(x)) ;(17)

A1(xjs+ 1; t)

� �KÆ (S1(x)) � cS1(x) +
s+ 1

s + t+ 1
L
1 (x; S1(x)) +

t

s+ t+ 1
L
2 (x; S1(x)) :(18)

Let J1(x; yjs; t) be the inside of braces, f g, in right-hand-side of (7).

J1(x; yjs; t) = �KÆ (y)� cy +
s

s+ t
L
1 (x; y) +

t

s + t
L
2 (x; y) :(19)

Subtract the right-hand-side of (17) from the right-side-hand of (18), we have

J1(x; S1(x)js+ 1; t) � J1(x; S1(x)js; t)

=

�
s+ 1

s + t+ 1
�

s

s + t

�
L
1 (x; S1(x)) +

�
t

s+ t+ 1
�

t

s + t

�
L
2 (x; S1(x))

=
t

(s+ t)(s + t+ 1)

�
L
1 (x; S1(x)) � L

2 (x; S1(x))
�
(� 0):(20)
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Therefore, we get A1(xjs; t) � A1(xjs+1). Also, we use same way to show that A1(xjs; t+
1) � A1(xjs; t).

J1(x; S2(x)js; t) � J1(x; S2(x)js; t + 1)

=
s

(s + t)(s + t+ 1)

�
L
1 (x; S2(x))� L

2 (x; S2(x))
�
(� 0);(21)

where S2(x) is an optimal ordering quantity which attains the sup of A1(xjs; t+ 1). From

(20), (21), we have

A1(xjs; t+ 1) � A1(xjs; t) � A1(xjs+ 1; t):(22)

(ii) The proof is by induction on k. We now consider the case of L2(x; y) � L
1(x; y) and

�
2
k�1(x; yjs; t + 1) � �

2
k�1(x; yjs; t) � �

1
k�1(x; yjs; t) � �

1
k�1(x; yjs + 1; t).

Suppose that Case (ii) of Theorem 1 has been proved for n = k�1. For n = k, we assume

that S3(x) is an optimal ordering quantity which attains the sup of Ak(xjs; t). Then, we

have

Ak(xjs; t) = �KÆ (S3(x)) � cS3(x)

+
s

s + t

�
L
1 (x; S3(x)) +

Z
1

0

Ak�1 (z (x; y; u) ; js + 1; t) f1(u)du

�

+
t

s + t

�
L
2 (x; S3(x)) +

Z
1

0

Ak�1 (z (x; y; u) ; js; t + 1) f2(u)du

�

= �KÆ (S3(x)) � cS3(x)

+
s

s + t

�
L
1 (x; S3(x)) +Ak�1(0js+ 1; t) + �

1
k�1 (x; S3(x)js + 1; t)

�

+
t

s + t

�
L
2 (x; S3(x)) +Ak�1(0js; t+ 1) + �

2
k�1 (x; S3(x)js; t + 1)

�
(23)

from the integration by parts. Using similar way as (23), we have

A2(xjs+ 1; t)

� �KÆ (S3(x))� cS3(x)

+ s+1
s+t+1

�
L
1 (x; S3(x)) +Ak�1(0js+ 2; t) + �

1
k�1 (x; S3(x)js+ 2; t)

�
+ t

s+t+1

�
L
2 (x; S3(x)) +Ak�1(0js+ 1; t+ 1) + �

2
k�1 (x; S3(x)js + 1; t+ 1)

�
(24)

Also, let

Jn(x; yjs; t) = �KÆ(y) � cy

+
s

s+ t

�
L
1 (x; y) +

Z
1

0

Ak�1 (z (x; y; u) ; js+ 1; t) f1(u)du

�

+
t

s+ t

�
L
2 (x; y) +

Z
1

0

Ak�1 (z (x; y; u) js; t+ 1) f2(u)du

�
;(25)
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then it is derived from the inductive hypothesis that

Jk (x; S3(x)js + 1; t)� Jk (x; S3(x)js; t)

= s+1
s+t+1

�
L
1 (x; S3(x)) +Ak�1(0js+ 2; t) + �

1
k�1 (x; S3(x)js + 2; t)

�
+ t

s+t+1

�
L
2 (x; S3(x)) +Ak�1(0js+ 1; t+ 1) + �

2
k�1 (x; S3(x)js + 1; t+ 1)

�
�

s

s+ t

�
L
1 (x; S3(x)) +Ak�1(0js+ 1; t) + �

1
k�1 (x; S3(x)js+ 1; t)

�

�
t

s+ t

�
L
2 (x; S3(x)) +Ak�1(0js; t + 1) + �

2
k�1 (x; S3(x)js; t+ 1)

�

�
t

(s+ t)(s + t+ 1)

�
L
1 (x; S3(x))� L

2 (x; S3(x))

+Ak�1(0js + 2; t) �Ak�1(0js+ 1; t+ 1)

+�1k�1 (x; S3(x)js + 2; t)� �
2
k�1 (x; S3(x)js + 1; t+ 1)

�
(� 0);(26)

and

Jk (x; S4(x)js; t) � Jk (x; S4(x)js; t + 1)

�
s

(s + t)(s + t+ 1)

�
L
1 (x; S4(x)) �L

2 (x; S4(x))

+Ak�1(0js + 1; t)�Ak�1(0js; t+ 1)

+�1k�1 (x; S4(x)js+ 1; t)� �
2
k�1 (x; S4(x)js; t + 1)

�
(� 0);(27)

where S4(x) is an optimal order quantity which maximizes Jk(x; yjs; t + 1).

Hence, we have

Ak(xjs; t + 1) � Ak(xjs; t) � Ak(xjs+ 1; t):(28)

The following case proved in the same manner:

If L2(x; y) � L
1(x; y), then it holds

A1(xjs; t+ 1) � A1(xjs; t) � A1(xjs + 1; t):(29)

Also, if L2(x; y) � L
1(x; y) and �

2
k�1(x; yjs; t + 1) � �

2
k�1(x; yjs; t) � �

1
k�1(x; yjs; t) �

�
1
k�1(x; yjs+ 1; t), then we have

Ak(xjs; t + 1) � Ak(xjs; t) � Ak(xjs+ 1; t);(30)

for positive integer k > 1. Equation (22) and (28) mean that the expected pro�t tends to

large if the number of times at which the good state occurred is large. On the contrary,

Equation (29) and (30) represent that the expected pro�t becomes small when the number

of times at which the good state occurred is large.

We now consider some of relationships between L
1(x; y) and L2(x; y) in the following

Remarks.
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Remarks

(I) In the case of p � (< resp.)r, if F 1(x) � (>)F 2(x) for x � 0, then we have L2(x; y) �
(>)L1(x; y).

(II) Let D1 and D2 be uniformly distributed on these interval (0; �1) and (0; �2) (0 < �2 <

�1), respectively. For i = 1; 2, the uniform density function f i(u) is de�ned by

f
i(u) =

8<
:

1

�i

; if 0 < u < �i,

0; otherwise.
(31)

Then it holds L2(x; y) � (> resp.)L1(x; y) when
�
�1�2(p� r) + (h+ r)(x1+ y)2

+�x21
�
� (<)0.

(III) Assume that D1 and D2 are exponential random variables having respective parameters

�1 and �2 (�1 < �2). For i = 1; 2, the density of Di is de�ned by

f
i(u) =

�
�ie

��iu; if u � 0,

0; if u < 0.
(32)

Also there exists a unique �i = �0 which is a solution @
@�i

L
i(x; y) = 0. Then we

obtain the following relationship between L1(x; y) and L2(x; y).

(a) Case r � p.

Then we have L2(x; y) � L
1(x; y).

(b) Case r > p.

i. If �0 � �1, then we have L2(x; y) � L
1(x; y).

ii. If �0 � �2, then we have L2(x; y) � L
1(x; y).

Proof

(I) Assume that p � (< resp.)r and F 1(x) � (>)F 2(x), then we have

L
1(x; y) � L

2(x; y)

= (p� r)
�
E
�
D
1
�
�E

�
D
2
�	

+ (h+ r)

Z
x1+y

0

�
F
2(u)� F

1(u)
�
du

+�

Z x1

0

�
F
2(u)� F

1(u)
�
du

� (<) 0:(33)

(II) The following equation is obtained by substituting (4) into f i(u) from (31).

L
i (x; y) = p

Z
1

0

u
1

�i

du� h

Z
x1+y

0

(x1+ y � u)
1

�i

du

�r

Z
1

x1+y
(u� x1� y)

1

�i

du� �

Z x1

0

(x1 � u)
1

�i

; for i = 1; 2.(34)
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Subtract L2(x; y) from L
1(x; y), it holds

L
1(x; y) � L

2(x; y) = (p � r)
�1

2
� (h+ r)

(x1+ y)2

2�1
+ r(x1+ y) � �

x
2
1

2�1

�(p� r)
�2

2
+ (h + r)

(x1+ y)2

2�2
� r(x1+ y) + �

x
2
1

2�2

=
�1 � �2

2�1�2

�
�1�2(p� r) + (h+ r)(x1+ y)2 + �x

2
1

�
:(35)

Therefore when
�
�1�2(p � r) + (h+ r)(x1+ y)2 + �x

2
1

�
� (< resp.)0, we have L2(x;

y) � (>)L1(x; y).

(III) An expected value of exponential random variables become small when the rate �i
becomes large. Substituting the function of f i(u) from (32) in (4), we obtain

L
i (x; y) = p

Z
1

0

u�ie
��iudu� h

Z
x1+y

0

(x1+ y � u)�ie
��iudu

�r

Z
1

x1+y
(u� x1� y)�ie

��iudu� �

Z x1

0

(x1 � u)�ie
��iu; for i = 1; 2.(36)

By partial di�erentiating Li(x; y) with respect to �i, we have

@L
i(x; y; �i)

@�i

= �
(p+ h+ �)

�
2
i

+
(h+ r)[1 + �i(x + y)]

�
2
i

e
��i(x�1+y) +

�(1 + �ix1)

�
2
i

e
��ix1(37)

Then
@L(x;y;�i)

@�i

� 0 agrees with

�(p + h+ �) + (h+ r)[1 + �(x + y)]e��(x�1+y) + �(1 + �x1)e
��x1 � 0(38)

Let '2(�i) express the left-hand-side of Inequality (38), we have

lim
�i!0+0

'2(�i) = �(p� r);(39)

lim
�i!+1

'2(�i) = �(p+ h+ �) (< 0);(40)

d'2(�i)

d�i

= ��i(h+ r)(x + y)2e��i(x�1+y) � �i�x
2
1e
��ix1 (< 0):(41)

Equation(39), (40) and (41) reveal as follows.

(a) If p�r � 0, then Li(x; y) is non-increasing function with respect to �i. It means

L
i(x; y) becomes large when expected values of Di are large.

(b) When p � r < 0, Li(x; y) �rst increases and then decreases with increasing �i.

Therefore there exists a unique �i = �0 which maximizes the Li(x; y). In this

case, it is complicated that the relation between L1(x; y) and L2(x; y) is analyzed,

but it becomes clear that L2(x; y) � L
1(x; y) if �0 � �1 and L

1(x; y) � L
2(x; y)

if �2 � �0.
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Figure 1: Sensitivity analysis with respect to K.
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Figure 2: Sensitivity analysis with respect to c.
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Figure 3: Sensitivity analysis with respect to �.
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4. Numerical Examples In this section, we calculate an optimal ordering quantity

which maximizes the expected pro�t for remaining n > 1 periods. As an example, suppose

D
1 and D2 are Weibull random variables having respective parameters (�1; �) and (�2; �),

�1 < �2, and m = 2,n = 3,h = 1,p = 300,�1 = 0:5,� = 0:7,� = 0:95. Figure 1,2, and 3

reveal the y�(0) and A3(0j1; 1) for r = 250 and 350, respectively.

Figure 1 shows y�(0) and A3(0j1; 1) when the cost, K, for ordering a lot (set-up) varies.

It is observed in Figure 1 that y�(0) increases with an increase in K, and y�(0) increases

with an increase in r. The following description explains these tendencies:

For large values of K, it is considered that there is a tendency to increase the ordering

quantity in order to reduce the number of times of ordering. Since, in the case of r =

350(> p), the big penalty cost is carried out to run out, it avoids selling out. Therefore,

the ordering quantity is larger than in the case of r = 250(< p). This tendency also can be

seen in Figure 2 and 3.

Moreover, it is observed in Figure 1 that A3(0j1; 1) reduces with an increase in K and

in r, respectively.

Figure 2 illustrates y�(0) and A3(0j1; 1) when the cost, c, for purchasing per unit varies.

It is remarked in Figure 2 that y�(0) reduces with an increase in c. Large values of c make

the ordering quantity small in order to reduce the ordering and holding cost. In Figure 2,

it is also observed that A3(0j1; 1) reduces with an increase in c and in r.

Figure 3 shows y�(0) and A3(0j1; 1) when the cost, �, for disposal per unit changes. It

is observed in Figure 3 that y�(0) decreases with an increase �. This can be explained in

the following manner:

As increase �, the present ordering quantity is made small in order to small the disposal

cost in the future. Also, it is observed that A3(0j1; 1) reduces with an increase in � and in

r.

In addition, many examples of cases with m > 2 and n > 3 yielded results that were

consistent with above mentioned.

5. Concluding Remarks This study proposed a Bayesian dynamic perishable inventory

model based on Fries' approach. We consider the case that there exist two types of state,

and that the commodities sell well when the good state occurs at the beginning of the

period, but do not when the bad state occurs. First, the maximum expected pro�t for

remaining periods was formulated and the optimal ordering policy in the �rst period was

obtained. In the main theorem, we gave the relationship between the numbers of times at

which the good and the bad state occurred and the maximum expected pro�t for remaining

periods. Moreover, numerical examples were given to illustrate an optimal ordering quantity

for remaining n > 1 periods. Furthermore, the research of models with more general types

of states is left as one of further problems.
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