ON THE g-ORTHOGONAL PROJECTION AND THE BEST APPROXIMATION OF A VECTOR IN A QUASI-INNER PRODUCT SPACES

Pavle M. Miličić

Received February 14, 2001

Abstract

Let X be a quasi-inner product space ([7]), and $x, y \in X \backslash\{0\}$. We resolve the problem of the relations between the three vectors: so-called g-orthogonal projection of the vector y on the subspace $[x](-a(x, y) x$, Lemma 2), the best approximation of the vector y with vector from $[x] \quad\left(-b(x, y) x\right.$, Lemma 1) and the vector $-\frac{g(x, y)}{\|x\|^{2}} x$.

 The equality$$
a(x, y)=b(x, y)=-\frac{g(x, y)}{\|x\|^{2}}
$$

is valid if and only if X is an inner-product space (i.p. space) ${ }^{1}$.

Let X be a real normed space and

$$
g(x, y):=\frac{\|x\|}{2}\left(\lim _{t \rightarrow-0} \frac{\|x+t y\|-\|x\|}{t}+\lim _{t \rightarrow+0} \frac{\|x+t y\|-\|x\|}{t}\right)(x, y \in X)^{2} .
$$

We are called that X is a quasi-inner product space (q.i.p. space) if the equality

$$
\begin{equation*}
\|x+y\|^{4}-\|x-y\|^{4}=8\left[\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right](x, y \in X)^{3} \tag{1}
\end{equation*}
$$

holds ([7]).
The equality (1) holds in the space l^{4}, but doesn't hold in the space l^{1} ([7]). On the properties of the functional g and the q.i.p. spaces see the recent papers: [3], [4], [5], [6] and [7]. We notice that a q.i.p space is uniformly smooth and uniformly convex. From this in a q.i.p. space X we have

$$
g(x, y)=\|x\| \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

where the functional g is linear in the second argument.
In what follows we assume that X is a complete q.i.p. space. (The space l^{4} is complete q.i.p. space).

For fixed $x, y \in X \backslash\{0\}, x$ and y linearly independent, we consider the real functions

[^0]\[

$$
\begin{equation*}
f(t):=\|y+t x\|, \quad \varphi(t):=\|y+t x\|^{2} g(y+t x, x) \quad(t \in \mathbb{R}) \tag{2}
\end{equation*}
$$

\]

Since X is smooth, the function f is differntiable and we have

$$
\begin{equation*}
f^{\prime}(t)=\frac{g(y+t x, x)}{\|y+t x\|} \quad(t \in \mathbb{R}) \tag{3}
\end{equation*}
$$

Using (1) we get
(4) $\|y+(t+1) x\|^{4}-\|y+(t-1) x\|^{4}=8\left[\|y+t x\|^{2} g(y+t x, x)+\|x\|^{2} g(x, y+t x)\right]$.

Besides this we have

$$
\begin{equation*}
\varphi(t)=\frac{1}{8}\left[\|y+(t+1) x\|^{4}-\|y+(t-1) x\|^{4}-8 t\|x\|^{4}-8\|x\|^{2} g(x, y)\right] \quad(t \in \mathbb{R}) \tag{5}
\end{equation*}
$$

Lemma 1. Let X is a complete q.i.p space and $x, y \in X \backslash\{0\}, x$ and y linearly independent. Then there exists a unique $b \in \mathbb{R} \quad(b=b(x, y))$ such that: a) $g(y+b x, x)=0$ and $\min f(t)=f(b)$;
b) $b=0$ and $\varphi(t)<0 \Leftrightarrow t<0$.

Proof. Since X is uniformly convex and complete the statement a) follows from Lemma 4 [2] and (3). The function f is convex. Hence a) implies that b) is true.

Corollary 1. Under conditions of Lemma 1, the following statements are valid: a) $b<$ $0 \Leftrightarrow g(y, x)>0$ and $b=0 \Leftrightarrow g(y, x)=0 ; \mathrm{b})$ The vector $-b x$ is the best approximation of vector y with vectors from $[x]$.
In [5] the orthogonality \Perp is defined as

$$
x घ^{\natural} y \Longleftrightarrow\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)=0 .
$$

In an i.p. space $(X,(.,)$.$) we have x \Perp y \Leftrightarrow(x, y)=0$.
If X is a q.i.p. space then the orthogonality \Perp is equivalent with James isocceles orthogonality i.e.

$$
x \perp^{\unlhd} y \Longleftrightarrow\|x+y\|=\|x-y\|
$$

Lemma 2 (Theorem 3.4, [5]). Let X be a q.i.p. space and $x, y \in X, x \neq 0$. Then there exists a unique $a \in \mathbb{R}(a=a(x, y))$ such that $x \Perp y+a x$, i.e.

$$
\begin{equation*}
\|y+a x\|^{2} g(y+a x, x)+\|x\|^{2} g(x, y+a x)=0 . \tag{6}
\end{equation*}
$$

The vector $-a x$ we are called g-orthogonal projection of the vector y on the subspace $[x]$.
Theorem 1. Let X be a complete q.i.p. space, $x \neq 0, x$ and y linearly independent. Then

$$
b-1<a<b+1
$$

Proof. From (4) we get $f(a+1)-f(a-1)=0$. By Roll theorem we obtain $0=2 f^{\prime}(c)$ where $c \in(a-1, a+1)$. By (3) we have $g(y+c x, x)=0 \quad(c \in(a-1, a+1))$. Since X is uniformly convex and $g(y+b x, x)=0$ we find $c=b$. So, $b \in(a-1, a+1)$.

Now we resolve the problem of the relations between the three numbers: $a(x, y), b(x, y)$ and the number $-\frac{g(x, y)}{\|x\|^{2}}$.

Theorem 2. Let X be a complete q.i.p. space and $x \neq 0, x$ and y linearly independent. Then either the number a is between number b and $-\frac{g(x, y)}{\|x\|^{2}}$ or

$$
\begin{equation*}
a=b=-\frac{g(x, y)}{\|x\|^{2}} . \tag{7}
\end{equation*}
$$

Proof. Using (4) and (5) we obtain

$$
\begin{equation*}
\varphi(a)=-\|x\|^{4} a-\|x\|^{2} g(x, y) \tag{8}
\end{equation*}
$$

In according to the property of the function φ (Lemma 1 and (6)) we have the following three possibilities

1. $a<b$. Then $\varphi(a)<0$, i.e. $a>-\frac{g(x, y)}{\|x\|^{2}}$. So,

$$
-\frac{g(x, y)}{\|x\|^{2}}<a<b
$$

2. $a>b$. Then $\varphi(a)>0$, i.e. $a<-\frac{g(x, y)}{\|x\|^{2}}$. Hence we have

$$
b<a<-\frac{g(x, y)}{\|x\|^{2}}
$$

3. $a=b$. Then $a=-\frac{g(x, y)}{\|x\|^{2}}$, i.e.

$$
a=b=-\frac{g(x, y)}{\|x\|^{2}}
$$

Corollary 2. Under conditions of Theorem 2 we have

$$
\|y+b x\| \leq\|y+a x\| \leq\left\|y-\frac{g(x, y)}{\|x\|^{2}}\right\|
$$

If x is orthogonal to y in the sens Birkhoff we denot $x \perp_{B} y$.
Lemma 3 (4.4, [1]). A normed space X is an i.p. space if and only if the implication

$$
\begin{equation*}
x \perp_{B} y \Longrightarrow\|x+y\|=\|x-y\| \tag{9}
\end{equation*}
$$

holds.
Lemma 4 (Theorem 2, [4]). A normed space X is a smooth if and only if the equivalence

$$
g(x, y)=0 \Longleftrightarrow x \perp_{B} y,
$$

holds.
Finally, we give the answer of the question when (7) is valid.
Theorem 3. Let X be a complete q.i.p. space. X is a i.p. space if and only if the equality (7) valid.

Proof. If X is an i.p. space with $(.,$.$) then g(x, y)=(x, y)$ and $\left(y-\frac{(x, y)}{\|x\|^{2}} x, x\right)=0$. So, $a=-\frac{(x, y)}{\|x\|^{2}}$, i.e. (7) is valid.
Assum that (7) is valid. Let $g(y, x)=0$. Then by Corollary 1 we have $b=0$. In this case, from (7) we obtain $g(x, y)=0$. Then by (1) we get $\|x+y\|=\|x-y\|$. Since X is smooth, by Lemma 4 , we have $y \perp_{B} x$. Hence the implication (9) is valid.

References

[1] D. Amir: Characterizations of Inner Product Spaces, Birkhauser, 1986.
[2] J. R. Giles: Classes of semi-inner product spaces, Trans. Amer. Math. Soc. v.129(1967), 436446.
[3] P. M. Miličić: Sur le semi-produit scalaire généralisé, Mat. Vesnik 10 (25), sv.4(1973), 325-329.
[4] P. M. Miličić: Sur la g-orthogonalité dans un espace normé, Mat. Vesnik 39(1987), 325-334.
[5] P. M. Miličić: On the quasi-inner product spaces, Matematički Bilten 22 (XLVIII), (1998) 19-30.
[6] P. M. Miličić: Resolvability of g-orthogonality in normed space, Mathematica Balkanica, New Series, v. 12 (1998).
[7] P. M. Miličić: A generalization of the paralellogram equality in normed spaces, Jour. Math. of Kyoto Univ. Vol.38, N ${ }^{\circ} 1$ (1998), 71-75.

Faculty of Mathematics, University of Belgrade, YU - 11000, Yugoslavia

[^0]: 2000 Mathematics Subject Classification. 46B20, 46C15.
 Key words and phrases. The best approximation. g-orthogonal projection.
 ${ }^{1}$ If X is a i.p. space then the vector $-\frac{g(x, y)}{\| x^{2}} x$ is the ortogonal projection of the vector y to the vector x.

