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ABSTRACT. Let X be a quasi-inner product space ([7]), and 2,y € X\{0}. We resolve

the problem of the relations between the three vectors: so-called g-orthogonal projec-
tion of the vector y on the subspace [z] (—a(z,y)z, Lemma 2), the best approximation

of the vector y with vector from [z] (—b(z,y)z,Lemma 1) and the vector _g|(‘x||g) x
x
The equality
9(z,y)
a‘(‘r',y) = b('Tﬂy) = - ’
ll=]I?
is valid if and only if X is an inner-product space (i.p. space)l.
Let X be a real normed space and
: Izl (o Mty ==l o e+ tyll =l
' =— 1 1 : X)?.
9(z,y) 2 5 t +t%ln+10 t (.5 € X)

We are called that X is a quasi-inner product space (q.i.p. space) if the equality

(1) lz +wl* =1l = ll* = 8 [[l=1* gz, 9) + lyl* 9(y. 2)] (2,9 € X)*,
holds ([7]).
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The equality (1) holds in the space {*, but doesn’t hold in the space ' ([7]). On the
properties of the functional ¢ and the q.i.p. spaces see the recent papers: [3], [4], [3], [6]
and [7]. We notice that a q.i.p space is uniformly smooth and uniformly convex. From this

in a q.i.p. space X we have

?

e+ tyl = ol
g(ar,y) = [l Jim T

where the functional ¢ is linear in the second argument.

In what follows we assume that X is a complete q.i.p. space. (The space I* is complete

q.l.p. space).
For fixed z,y € X\{0},  and y linearly independent, we consider the real functions
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'If X is a i.p. space then the vector Rz e is the ortogonal projection of the vector y to the vector =.
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(2) ) =y +tz|, )= |ly+te||*gly +tz.2) (tE€R).

Since X is smooth, the function f is differntiable and we have

v gly e, x)

(3) f= byt (teR).

Using (1) we get

(@ Ny + @+ Dl = lly + (¢t = Dl =8 {lly + tal* gly + ta. x) + ||2]* g,y + t2)] -

Besides this we have

(5) ()= é [y + (t+ Dl = lly + (t = D)al|* = 8tl|=]|* = 8[| g(x, )] (t ER).

Lemma 1. Let X is a complete q.i.p space and 2,y € X\{0}, z and y linearly independent.
Then there exists a unique b € R (b = b(z,y)) such that: a) g(y + bzr,z) = 0 and
win (1) = f(b):

b)b=0and p(t) <0 &t <O0.

Proof. Since X is uniformly convex and complete the statement a) follows from Lemma 4
[2] and (3). The function f is convex. Hence a) implies that b) is true.

Corollary 1. Under conditions of Lemma 1, the following statements are valid: a) b <

0< g(y,z) >0and b =0 < g(y,x) = 0; b) The vector —bx is the best approximation of
vector y with vectors from [z].

In [3] the orthogonality ¥ is defined as

vy = llzl* g(z,y) + lyl* 9(y,2) = 0.

In an i.p. space (X, (.,.)) we have 2 ¥y < (z,y) = 0.

If X is a q.1.p. space then the orthogonality ¥ is equivalent with James isocceles orthogo-
nality i.e.

vy = |lv +yll=llz -yl .

Lemma 2 (Theorem 3.4, [5]). Let X be a q.i.p. space and z,y € X, v # 0. Then there
exists a unique a € R (@ = a(w,y)) such that = y + az, i.e.

(6) ly + ax|? g(y + ax, x) + ||2||* g(z,y + ax) = 0.
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The vector —axz we are called g-orthogonal projection of the vector y on the subspace [z].

Theorem 1. Let X be a complete q.i.p. space, @ # 0, @ and y linearly independent. Then

b—1l<a<b+1

Proof. From (4) we get f(a + 1) — f(a — 1) = 0. By Roll theorem we obtain 0 = 2f'(c)
where ¢ € (a —1,a+ 1). By (3) we have g(y + cx,2) =0 (c € (a —1,a+ 1)). Since X is
uniformly convex and g(y + bz, ) = 0 we find ¢ =b. So, b€ (a —1,a+1).

Now we resolve the problem of the relations between the three numbers: a(z,y), b(z,y) and
9(z,y)
]|

the number —

Theorem 2. Let X be a complete q.i.p. space and & # 0, x and y linearly independent.

Then either the number a is between number b and ——g|(Tig)
T
g(z,y)
=]
Proof. Using (4) and (5) we obtain
® la) = e a— [le]* gz y) -

In according to the property of the function ¢ (Lemma 1 and (6)) we have the following
three possibilities

1. a <b. Then p(a) <0, i.e. a > —g|($7|g). So,
x
_g@€)<a<b
Eals
: 9(x,y) _
2. a>b. Then ¢(a) >0, ie a< — 2E Hence we have
x
b<a<_ﬁ%?.
]
3. a=b. Thena= _g(ﬂ?,g)z ie.
]
wp— 9@Y)
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Corollary 2. Under conditions of Theorem 2 we have

9(z,y)

If z is orthogonal to y in the sens Birkhoff we denot = L _y.

Lemma 3 (4.4, [1]). A normed space X is an i.p. space if and only if the implication

(9) rly =z +yll =llz —yll,

holds.

Lemma 4 (Theorem 2, [4]). A normed space X is a smooth if and only if the equivalence
glz,y) =0<=zl.,y,

holds.

Finally, we give the answer of the question when (7) is valid.

Theorem 3. Let X be a complete q.i.p. space. X is a 1.p. space if and only if the equality
(7) valid.

Proof. If X is an i.p. space with (.,.) then g(z,y) = (z,y) and (y — (m’y)x,x> = 0. So,

a=— (||TT7|y2) le. (7) is valid.

Assum that (7) is valid. Let g(y,2) = 0. Then by Corollary 1 we have b = 0. In this case,
from (7) we obtain g(x,y) = 0. Then by (1) we get ||z + y|| = ||# — y||. Since X is smooth,
by Lemma 4, we have y L x. Hence the implication (9) is valid.
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