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Abstract. Let X be a quasi-inner product space ([7]), and x; y 2 Xnf0g. We resolve

the problem of the relations between the three vectors: so-called g-orthogonal projec-

tion of the vector y on the subspace [x] (�a(x; y)x;Lemma 2), the best approximation

of the vector y with vector from [x] (�b(x; y)x;Lemma 1) and the vector �
g(x; y)

kxk2
x.

The equality

a(x; y) = b(x; y) = �
g(x; y)

kxk2
;

is valid if and only if X is an inner-product space (i.p. space)1 .

Let X be a real normed space and

g(x; y) :=
kxk

2

�
lim

t!�0

kx+ tyk � kxk

t
+ lim

t!+0

kx+ tyk � kxk

t

�
(x; y 2 X)2 :

We are called that X is a quasi-inner product space (q.i.p. space) if the equality

kx + yk4 � kx� yk4 = 8
�
kxk2 g(x; y) + kyk2 g(y; x)

�
(x; y 2 X)3 ;(1)

holds ([7]).

The equality (1) holds in the space l
4, but doesn't hold in the space l

1 ([7]). On the

properties of the functional g and the q.i.p. spaces see the recent papers: [3], [4], [5], [6]

and [7]. We notice that a q.i.p space is uniformly smooth and uniformly convex. From this

in a q.i.p. space X we have

g(x; y) = kxk lim
t!0

kx + tyk � kxk

t
;

where the functional g is linear in the second argument.

In what follows we assume that X is a complete q.i.p. space. (The space l
4 is complete

q.i.p. space).

For �xed x; y 2 Xnf0g, x and y linearly independent, we consider the real functions
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1
If X is a i.p. space then the vector �

g(x;y)

kx2
x is the ortogonal projection of the vector y to the vector x.
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f(t) := ky + txk; '(t) := ky + txk2 g(y + tx; x) (t 2 R) :(2)

Since X is smooth, the function f is di�erntiable and we have

f
0

(t) =
g(y + tx; x)

ky + txk
(t 2 R) :(3)

Using (1) we get

ky + (t+ 1)xk4 � ky + (t� 1)xk4 = 8
�
ky + txk2 g(y + tx; x) + kxk2 g(x; y + tx)

�
:(4)

Besides this we have

'(t) =
1

8

�
ky + (t + 1)xk4 � ky + (t� 1)xk4 � 8tkxk4 � 8kxk2 g(x; y)

�
(t 2 R) :(5)

Lemma 1. Let X is a complete q.i.p space and x; y 2 Xnf0g, x and y linearly independent.

Then there exists a unique b 2 R (b = b(x; y)) such that: a) g(y + bx; x) = 0 and

min f(t) = f(b);

b) b = 0 and '(t) < 0, t < 0.

Proof. Since X is uniformly convex and complete the statement a) follows from Lemma 4

[2] and (3). The function f is convex. Hence a) implies that b) is true.

Corollary 1. Under conditions of Lemma 1, the following statements are valid: a) b <

0 , g(y; x) > 0 and b = 0 , g(y; x) = 0; b) The vector �bx is the best approximation of

vector y with vectors from [x].

In [5] the orthogonality ?g is de�ned as

x?gy () kxk2 g(x; y) + kyk2 g(y; x) = 0 :

In an i.p. space (X; (:; :)) we have x?gy , (x; y) = 0.

If X is a q.i.p. space then the orthogonality ?g is equivalent with James isocceles orthogo-

nality i.e.

x?gy () kx + yk = kx� yk :

Lemma 2 (Theorem 3.4, [5]). Let X be a q.i.p. space and x; y 2 X; x 6= 0. Then there

exists a unique a 2 R (a = a(x; y)) such that x?gy + ax, i.e.

ky + axk2 g(y + ax; x) + kxk2 g(x; y + ax) = 0 :(6)
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The vector �ax we are called g-orthogonal projection of the vector y on the subspace [x].

Theorem 1. Let X be a complete q.i.p. space, x 6= 0, x and y linearly independent. Then

b � 1 < a < b+ 1 :

Proof. From (4) we get f(a + 1) � f(a � 1) = 0. By Roll theorem we obtain 0 = 2f
0

(c)

where c 2 (a � 1; a + 1). By (3) we have g(y + cx; x) = 0 (c 2 (a � 1; a + 1)). Since X is

uniformly convex and g(y + bx; x) = 0 we �nd c = b. So, b 2 (a � 1; a + 1).

Now we resolve the problem of the relations between the three numbers: a(x; y), b(x; y) and

the number �
g(x; y)

kxk2
.

Theorem 2. Let X be a complete q.i.p. space and x 6= 0, x and y linearly independent.

Then either the number a is between number b and �
g(x; y)

kxk2
or

a = b = �
g(x; y)

kxk2
:(7)

Proof. Using (4) and (5) we obtain

'(a) = �kxk4 a� kxk2 g(x; y) :(8)

In according to the property of the function ' (Lemma 1 and (6)) we have the following

three possibilities

1. a < b. Then '(a) < 0, i.e. a > �
g(x; y)

kxk2
. So,

�
g(x; y)

kxk2
< a < b :

2. a > b. Then '(a) > 0, i.e. a < �
g(x; y)

kxk2
. Hence we have

b < a < �
g(x; y)

kxk2
:

3. a = b. Then a = �
g(x; y)

kxk2
, i.e.

a = b = �
g(x; y)

kxk2
:
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Corollary 2. Under conditions of Theorem 2 we have

ky + bxk � ky + axk �

y � g(x; y)

kxk2

 :

If x is orthogonal to y in the sens Birkho� we denot x?
B
y.

Lemma 3 (4.4, [1]). A normed space X is an i.p. space if and only if the implication

x?
B
y =) kx + yk = kx � yk ;(9)

holds.

Lemma 4 (Theorem 2, [4]). A normed space X is a smooth if and only if the equivalence

g(x; y) = 0() x?
B
y ;

holds.

Finally, we give the answer of the question when (7) is valid.

Theorem 3. Let X be a complete q.i.p. space. X is a i.p. space if and only if the equality

(7) valid.

Proof. If X is an i.p. space with (.,.) then g(x; y) = (x; y) and

�
y �

(x; y)

kxk2
x; x

�
= 0. So,

a = �
(x; y)

kxk2
, i.e. (7) is valid.

Assum that (7) is valid. Let g(y; x) = 0. Then by Corollary 1 we have b = 0. In this case,

from (7) we obtain g(x; y) = 0. Then by (1) we get kx + yk = kx � yk. Since X is smooth,

by Lemma 4, we have y?
B
x. Hence the implication (9) is valid.
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