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AN ACTION ON PERMUTATIONS WITH APPLICATION TO EULERIAN

NUMBERS

Shinji TANIMOTO

Received October 19, 2000

Abstract. An action on permutations is introduced, which preserves the numbers of

their ascents and descents. Periodicity of permutations under the action is investigated

and its application is given to proofs of some congruence relations modulo a prime for

Eulerian numbers.

1. Introduction. For a positive integer n, an ascent (or an up) in a permuta-

tion a1a2 � � � an of f1; 2; : : : ; ng means an adjacent pair such that ai < ai+1 for some

i (1 � i � n � 1). For k (0 � k � n � 1) let us denote by E(n; k) the set of all

permutations with exactly k ascents and by e(n; k) its cardinal number, namely, an Eu-

lerian number. A descent (or a down) in a permutation a1a2 � � � an is an adjacent pair

such that ai > ai+1 for some i (1 � i � n � 1). In this paper we call a consecutive se-

quence ai � � � aj in a permutation a1a2 � � � an an ascending chain (or "run up" due to [3])

if ai�1 > ai < ai+1 < � � � < aj > aj+1. For a permutation A = a1a2 � � � an we de�ne

its re
ection by A
� = anan�1 � � � a1. It is easy to see that A

�

2 E(n; k) if and only if

A 2 E(n; n� k � 1), because the number of descents in A is equal to n� k � 1. Since two

adjacent ascending chains of permutations in E(n; k) are separated by a descent, we see

that the number of ascending chains is equal to (n� k � 1) + 1 = n� k.

We introduce an action on permutations which preserves the numbers of ascents and

descents of permutations. Our main objective is to deduce properties of periodicity under

the action and to apply them for studying properties of Eulerian numbers. Our result in-

cludes a generalization of a congruence relation modulo a prime, which was given in [5]. As

for other properties and identities of Eulerian numbers we refer to [1, 2, 4], for example.

2. Periods of permutations under an action. We introduce an action denoted by �

on the set of all permutations of f1; 2; : : : ; ng. This is de�ned by adding one to all entries

of a permutation A = a1a2 � � � an and by changing n + 1 into one. But when a1 = n,

all entries ai are cyclically shifted to the left by one place and one is added so that we

obtain �A = b2b3 � � � bn1, where bi = ai + 1 for 2 � i � n. Moreover, when an = n, all

entries ai are cyclically shifted to the right by one place and one is added so that we obtain

�A = 1b1b2 � � � bn�1, where bi = ai + 1 for 1 � i � n � 1. Thus, for example, we have

�(426315) = 531426, �(531426) = 164253 and �(624135) = 352461.

By the de�nition of ascents it is easy to see that if A = a1a2 � � � an is in E(n; k), then

�A is also in E(n; k). We denote successive applications of the action � by �
2
A = �(�A)

and inductively by �
`
A = �(�`�1A) for a positive integer `. For convenience sake we take

�
0
A = A for all permutations A. In order to consider periodicity of the action it is ef-

fective to adopt terminology from �nite group actions as in [2]. For A = a1a2 � � � an it is
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shown that there exists a positive integer ` such that �`A = A. We call the smallest such

positive integer the period of A and the set fA;�A; : : : ; �`�1Ag of distinct permutations

the orbit of A. We sometimes denote the period of a permutation A by �(A). Permuta-

tions with period one, or those satisfying �A = A are called �xed points of the action �.

It is easily seen that �xed points are only two permutations; 12 � � �n 2 E(n; n � 1) and

n � � � 21 2 E(n; 0). We divide E(n; k) into two parts. E
�(n; k) is the set of permutations

A = a1a2 � � � an with a1 < an and E
+(n; k) is the set of those with a1 > an. Observe that

�A 2 E
�(n; k) for A 2 E

�(n; k) and �A 2 E
+(n; k) for A 2 E

+(n; k) hold, as is easily seen.

Lemma 1. For any permutation A,

(i) A
�� = A;

(ii) (�A)� = �A
�;

(iii) �(A�) = �(A).

Proof. The proofs of (i) and (ii) are obvious. Applying induction to (ii) yields (�`A)� = �
`
A
�

for a positive integer `. Putting ` = �(A) we have A
� = �

�(A)
A
�. Hence we see that

�(A�) � �(A). Since the reverse inequality also holds, the proof of (iii) is complete.

Lemma 2. For a permutation A = a1a2 � � � an in E(n; k), where 0 � k � n� 1, the

following relations hold.

(i) For A 2 E
�(n; k), �n(n�k)A = A.

(ii) For A 2 E
+(n; k), �n(k+1)

A = A.

Proof. First we prove (i). Applying �
n remains each entry unchanged. But in case of

E
�(n; k) some entries at the right-hand end of permutation change their positions and

move to the left-hand end. Those entries constitutes an ascending chain of A. Thus the

last ascending chain of permutation is collectively moved to the left end. Since A is in

E(n; k), it contains n � k ascending chains. Therefore, n � k applications of �n yields A,

i.e., �n(n�k)A = A. In order to prove (ii) let us consider the re
ection of A 2 E
+(n; k).

Since A
� belongs to E

�(n; n � k � 1), applying Lemma 1 and the result (i), we see that

�
n(k+1)

A
� = A

� and hence �n(k+1)
A = A.

A relation proved in Lemma 2 is frequently used in the sequel. Let a permutation

A 2 E
�(n; k) be written as A1A2 � � �An�k by arranging all n � k ascending chains. Then

it holds that

�
n
A = An�kA1A2 � � �An�k�1:

Taking A = 2671453 2 E
�(7; 4), for example, three ascending chains are A1 = (267),

A2 = (145), A3 = (3). Then �
7
A = 3267145, �14A = 1453267 and �

21
A = 2671453.

Lemma 2 also implies that the period of a permutation in E(n; k) is a divisor of n(n�k)

or n(k + 1). The following theorem says in turn that it is a multiple of n� k or k + 1.

Theorem 3. For a permutation A 2 E(n; k), where 0 � k � n � 1, the period �(A) is

equal to d(n�k) or d(k+1) for a divisor d of n, according to A 2 E
�(n; k) or A 2 E

+(n; k).

Proof. Suppose A 2 E
�(n; k). By the relation following Lemma 2, if the period �(A)

is a multiple of n, then �(A) = n(n � k) holds, since A is composed of n � k ascending

chains. So let us suppose the contrary and let �(A) = qn + r, where q is a nonnegative
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integer and the residue r satis�es 1 � r � n� 1. Since A 2 E
�(n; k) is composed of n� k

ascending chains, we write it by A = A1A2 � � �An�k. Then

�
r
A = Aq+1 � � �An�kA1 � � �Aq :

This follows from the fact that ��(A)A = �
qn(�rA) = A and each �

n moves an ascending

chain at the right end into the left end. Similarly, from �
2(qn+r)

A = �
2qn(�2rA) = A, we

obtain

�
2r
A = A2q+1 � � �An�kA1 � � �A2q :

In a similar way, for an integer s = n= gcd(n; r) for which sr becomes the smallest positive

multiple of n, we have

�
sr
A = Asq+1 � � �An�kA1 � � �Asq:

On the other hand, from sr = nr= gcd(n; r), we also have

�
sr
A = A(n�k)�r= gcd(n;r)+1 � � �An�kA1 � � �A(n�k)�r= gcd(n;r):

Here the indices of A in both expressions should be considered as modulo n� k. Observing

the indices of both the last ascending chains, we have

sq =
qn

gcd(n; r)
� n� k �

r

gcd(n; r)
(mod n� k):

Therefore, for some integer d,

�(A) = qn+ r = d(n� k):

Lemma 2 says that �(A) divides n(n � k). Therefore, d is a divisor of n. In case of

A 2 E
+(n; k), A� belongs to E

�(n; n � k � 1) and hence we see that the period of A is

equal to d(k + 1) for some divisor d of n.

This theorem tells us that possible minimal periods of permutations in E(n; k) is either

n�k or k+1. The following theorem answers the question whether such permutations exist.

Theorem 4. There exists a unique orbit of the period n � k in E
�(n; k) if and only

if gcd(n; k) = 1. Similarly, there exists a unique orbit of the period k+1 in E
+(n; k) if and

only if gcd(n; k + 1) = 1.

Proof. Let ` = n � k be the period of A 2 E
�(n; k). Then its orbit f�A; : : : ; �`A = Ag

appears n times repeatedly in the set f�A; : : : ; �n(n�k)A = Ag. As is seen from the proof

of Lemma 2, each entry in A is only once changed to 1 at the left end of permutation in the

course of n(n�k) applications of �. Therefore, a unique �iA in f�A; : : : ; �`A = Ag has the

form B = 1a2a3 � � � an. Since A and B generate the same orbit of period n� k, it suÆces to

consider the orbit of B. Let s = n+ 1� an. Then �
s
B also has the form 1b2b3 � � � bn. This

implies �sB = B and hence s � `. But, in order to obtain B again, we must apply � to B

at least s times. Consequently, we get s � ` and the equality n+1�an = ` or an = n+1�`

holds. Thus, under �`, an changes to 1 and an�1 to an, and so on. Therefore we see that

all entries are determined as follows; an�j = n+1� (j+1)` (mod n) for j (0 � j � n� 2).

The condition for such a permutation to exist is gcd(n; `) = gcd(n; k) = 1. Conversely, it is

easy to show that such a permutation A (or B) has a period of ` = n � k. Next to verify

that it indeed belongs to E
�(n; k), note that �g`A = A for g = n= gcd(n; `) = n. Then g`

is the minimal multiple of n. Assume that A 2 E
�(n; h). Lemma 2 says that the minimal
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m such that �mn
A = A is m = n�h. Hence g` = n(n�h) holds, from which we get h = k.

The latter half follows from the former.

3. Application to Eulerian numbers. When n is a prime, the set E(n; k) is eas-

ily partitioned into a few classes in terms of periods. The aim of this section is to derive

some congruence relations for Eulerian numbers e(n; k) from the partition. Let e�(n; k) or

e
+(n; k) be the cardinality of E�(n; k) or E+(n; k), respectively. Ordinary Eulerian num-

bers are given by e(n; k) = e
�(n; k) + e

+(n; k).

Theorem 5. Let p be a prime and m, k positive integers such that 1 � k � p
m
� 1.

(i) If gcd(p; k) = 1, then e
�(pm; k) � p

m
� k (mod p(pm � k)),

otherwise e
�(pm; k) � 0 (mod p(pm � k)).

(ii) If gcd(p; k + 1) = 1, then e
+(pm; k) � k + 1 (mod p(k + 1)),

otherwise e
+(pm; k) � 0 (mod p(k + 1)).

Proof. We will prove these relations by classifying permutations of E(pm; k) in terms of

periods. Since p is a prime, it follows from Theorem 3 that periods of permutations in

E
�(pm; k) or E

+(pm; k) are of the form p
i(pm � k) or p

i(k + 1), respectively, for some

i (0 � i � m). Let � be the number of orbits of period p
m
� k in E

�(pm; k) and let �

be that of period k + 1 in E
+(pm; k). Then e

�(pm; k) equal the sum of �(pm � k) and a

multiple of p(pm� k), and e
+(pm; k) is the sum of �(k+1) and a multiple of p(k+1). Due

to Theorem 4, if gcd(pm; k) = gcd(p; k) = 1 then � = 1 and otherwise � = 0. Moreover, if

gcd(pm; k + 1) = gcd(p; k + 1) = 1 then � = 1 and otherwise � = 0. From this observation

the congruence relations in (i) and (ii) follow immediately.

In [5] a special case (m =1) of the next corollary is proved by means of relationships

between Stirling numbers and Eulerian numbers. However, our proof needs no analytic

calculation involving identities of Eulerian numbers, and it is simple and straightforward.

Corollary 6. Let p be a prime and m a positive integer. The congruence relation e(pm; k) �

1 (mod p) holds for k (0 � k � p
m
� 1).

Proof. Since e(pm; 0) = 1, it is evident for k = 0. Let k � 1. Suppose �rst that both the

conditions gcd(pm; k) = gcd(p; k) = 1 and gcd(pm; k + 1) = gcd(p; k + 1) = 1 are ful�lled.

Then, by the preceding theorem, we have e�(pm; k) � �k (mod p) and e
+(pm; k) � k + 1

(mod p). Since e(n; k) = e
�(n; k) + e

+(n; k), in this case the congruence relation follows.

Next suppose that gcd(p; k) = 1 and gcd(p; k + 1) 6= 1. Then k + 1 is a multiple of p.

Theorem 5 implies e
�(pm; k) � �k � 1 (mod p) and e

+(pm; k) � 0 (mod p). Finally

suppose that gcd(p; k) 6= 1 and gcd(p; k+1) = 1. Then k is a multiple of p and by Theorem

5 we have e�(pm; k) � 0 (mod p) and e
+(pm; k) � k + 1 � 1 (mod p). In both cases the

congruence relation also holds.
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