Kyung Ho Kim

Received August 14, 2000; revised February 13, 2001

ABSTRACT. In this paper, we introduce the notion of prime and semiprime ideal and characterize prime and semiprime ideals in a Γ -seminear-ring. Among them, for any Γ -seminear-ring, an ideal is semiprime if and only if it is the intersection of all primes containg it. Moreover, an ideal of a Γ -seminear-ring is prime if and only if it is semiprime and strongly irreducible.

1. Introduction

In 1967, W. G. van Hoorn and B. van Rootselar introduced the concept of seminear-ring. In [2], we introduced the the notion of Γ -seminear-ring as a generalization of seminearring. In this paper, we introduce the notion of prime, semiprime ideal and *m*-system in Γ -seminear-ring. Using the notion of prime and semiprime ideals, we characterize prime and semiprime ideals in a Γ -seminear-ring. Among them, for any Γ -seminear-ring, an ideal is semiprime if and only if it is the intersection of all primes containg it. Moreover, an ideal of a Γ -seminear-ring is prime if and only if it is semiprime and strongly irreducible in Γ -seminear-ring.

2. Preliminaries

We first recall some basic concepts for the sake of completeness. Recall that a nonempty set R with two binary operations "+"(addition) and "." (multiplication) is called a *seminear-ring*, if it satisfies the following axioms:

(i) (R, +) and (R, \cdot) are semigroups,

(ii) $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a right seminear-ring because it satisfies the right distributive law. We will use the word "seminear-ring" to mean "right seminear-ring". We denote xy instead of $x \cdot y$.

3. Prime and semiprime ideals

We begin by defining the notion of a Γ -seminear-ring.

Definition 3.1 ([2]). A Γ -seminear-ring is a triple $(R, +, \Gamma)$ where

- (i) Γ is a non-empty set of binary operators on R such that for each $\alpha \in \Gamma$, $(R, +, \alpha)$ is a seminear-ring,
- (ii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

Example 3.2. Let R be the set of all integers of the form 4n + 3 and Γ the set of all integers of the form 4n + 1. If "+" is an usual sum of integers and $x\alpha y = x + \alpha + y$ for $x, y \in R$ and $\alpha \in \Gamma$, then $(R, +, \Gamma)$ is a Γ -seminear-ring.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16Y99.

Key words and phrases. Γ -seminear-ring, prime and semiprime ideal, m-system, irreducible.

Definition 3.3 ([2]). Let R be a Γ -seminear-ring. A subsemigroup A of (R, +) is called a *left* (resp. *right*) *ideal* of R if $R\Gamma A \subseteq A$ (resp. $A\Gamma R \subseteq A$). A left and right ideal is called an *ideal*.

Let R be a Γ -seminear-ring and $I, J \subseteq R$. Denote $I\Gamma J = \{a\alpha b | a, b \in R \text{ and } \alpha \in \Gamma\}$.

Definition 3.4 ([2]). Let R and R' be Γ -seminear-rings. A mapping $f : R \to R'$ is called a Γ -seminear-ring homomorphism (briefly, Γ -homomorphism) if f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ for all $x, y \in R$ and $\gamma \in \Gamma$.

Lemma 3.5. Let R and R' be a Γ -seminear-ring S and $f: R \to R'$ be a Γ -seminear-ring homomorphism. Then

- (i) $(I\Gamma J)\Gamma K = I\Gamma(J\Gamma K)$ for all $I, J, K \subseteq R$.
- (ii) $f(I_1 \Gamma I_2) = f(I_1) \Gamma f(I_2)$ for all $I_1, I_2 \subseteq R$.
- (iii) $f^{-1}(J_1)\Gamma f^{-1}(J_2) \subset f^{-1}(J_1\Gamma J_2)$ for all $J_1, J_2 \in R'$.

Proof. The proof is easy. \Box

Definition 3.6. Let R be a Γ -seminear-ring. A proper ideal P of R is called *prime* if for any ideals I and J, $I\Gamma J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.

Definition 3.7. Let S be a subset of a Γ -seminear-ring R. Then

- (i) The right (resp. left) ideal generated by S is the smallest right (resp. left) ideal containing S and is denoted by $(S)_r$ (resp. $(S)_l$).
- (ii) The ideal generated by S is the smallest ideal containing S and is denoted by (S)

For each r of a Γ -seminear-ring, the smallest ideal containing r is called the *principal ideal* generated by r and is denoted by (r).

Proposition 3.8. Let P be a proper ideal of a Γ -seminear-ring R. Then the following statements are equivalent.

- (i) P is prime
- (ii) For ideals I and J of R, $(I\Gamma J) \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.
- (iii) For elements i and j in R, $i \notin P$ and $j \notin P$ implies $(i)\Gamma(j) \nsubseteq P$.

Proof. Clearly (i) and (ii) are equivalent.

 $(i) \Rightarrow (iii)$: Let P be a prime, $i \notin P$ and $j \notin P$. Suppose $(i)\Gamma(j) \subseteq P$. Then $(i) \subseteq P$ or $(j) \subseteq P$. So $i \in P$ or $j \in P$. This is a contradiction. Thus $(i)\Gamma(j) \not\subseteq P$.

(iii) \Rightarrow (i): Assume that $I \not\subseteq P$ and $J \not\subseteq P$. Then there exists $i \in I \setminus P$ and $j \in J \setminus P$. So $(i)\Gamma(j) \subseteq I\Gamma J$ but $(i)\Gamma(j) \not\subseteq P$ by (iii). Thus $I\Gamma J \not\subseteq P$. \Box

Proposition 3.9. Let P be a proper ideal of a Γ -seminear-ring R. If $\{a\alpha r\beta b | r \in R, \alpha, \beta \in \Gamma\} \subseteq P$ if and only if $a \in P$ or $b \in P$, then P is prime.

Proof. Let H and K be ideals of R with $H\Gamma K \subseteq P$. Assume that $H \not\subseteq P$ and let $a \in H \setminus P$. Then for any $b \in K$, $\{a\alpha r\beta b | r \in R \text{ and } \alpha, \beta \in \Gamma\} \subseteq H\Gamma K \subseteq P$. Since $a \notin P$, $b \in P$. So $K \subseteq P$ and hence P is prime. \Box

Proposition 3.10. Let $\{P_{\alpha}\}_{\alpha \in A}$ be a family of prime ideals which are totally ordered by set inclusion. Then $\bigcap_{\alpha \in A} P_{\alpha}$ is prime.

Proof. Let I and J be ideals of R. If $I\Gamma J \subseteq \cap_{\alpha \in A} P_{\alpha}$, then $I\Gamma J \subseteq P_{\alpha}$, for all $\alpha \in A$. Assume that there exists $\alpha \in A$ such that $I \not\subseteq P_{\alpha}$. Then $J \subseteq P_{\alpha}$ and so $J \subseteq P_{\beta}$ for all $\beta \geq \alpha$. Suppose that there exist $\gamma < \alpha$ such that $J \not\subseteq P_{\gamma}$. Then $I \subseteq P_{\gamma}$ and so $I \subseteq P_{\alpha}$, This is impossible. Thus $J \subseteq P_{\beta}$ for any $\beta \in A$. Hence $\cap_{\alpha \in A} P_{\alpha}$ is prime. \Box **Proposition 3.11.** Let I be an ideal of a Γ -seminear-ring R with $R+I \subseteq I$ and $I+R \subseteq I$. Let P be a proper ideal of R containing I. If $\pi : R \to R/I$ is the canonical epimorphism, then P is prime if and only if $\pi(P)$ is prime.

Proof. Assume that P is prime in R, J_1 and J_2 be ideals in R/I such that $J_1\Gamma J_2 \subseteq \pi(P)$. Let $\pi^{-1}(J_1) = I_1$ and $\pi^{-1}(J_2) = I_2$. Then $I_1\Gamma I_2 = \pi^{-1}(J_1)\Gamma\pi^{-1}(J_2) \subseteq \pi^{-1}(J_1\Gamma J_2) \subseteq \pi^{-1}(\pi(P)) = P$. Since P is prime, $I_1 \subseteq P$ or $I_2 \subseteq P$. So, $J_1 = \pi(\pi^{-1}(J_1)) = \pi(I_1) \subseteq \pi(P)$ or $J_2 = \pi(\pi^{-1}(J_2)) = \pi(J_2) \subseteq \pi(P)$. Thus $\pi(P)$ is prime. Conversely, let $\pi(P)$ be prime and let I_1, I_2 be ideals of R such that $I_1\Gamma I_2 \subseteq P$. Then $\pi(I_1)\Gamma\pi(I_2) = \pi(I_1\Gamma I_2) \subseteq \pi(P)$. Since $\pi(P)$ is prime, $\pi(I_1) \subseteq \pi(P)$ or $\pi(I_2) \subseteq \pi(P)$. So $I_1 \subseteq P$ or $I_2 \subseteq P$. Thus P is prime. \Box

Definition 3.12. Let R be a Γ -seminear-ring. A nonempty subset M of R is called an *m*-system if for $a, b \in M$, there exist $a_1 \in (a), b_1 \in (b)$ and $\alpha \in \Gamma$ such that $a_1 \alpha b_1 \in M$.

Proposition 3.13. Let P be a proper ideal of a Γ -seminear-ring R. Then P is prime if and only if $R \setminus P$ is an m-system.

Proof. Assume that P is prime. Let $a \in R \setminus P$ and $b \in R \setminus P$. Then $(a)\Gamma(b) \nsubseteq P$. So, there exist $a_1 \in (a), b_1 \in (b)$ and $\alpha \in \Gamma$ such that $a_1 \alpha b_1 \notin P$, i.e., $a_1 \alpha b_1 \in R \setminus P$. Thus $R \setminus P$ is an m-system. Conversely, if $R \setminus P$ is an m-system and let $a \in R \setminus P$ and $b \in R \setminus P$. Then there exist $a_1 \in (a), b \in (b)$ and $\alpha \in \Gamma$ such that $a_1 \alpha b_1 \in R \setminus P$. Thus $(a)\Gamma(b) \nsubseteq P$ and hence P is prime. \Box

Definition 3.14. Let R be a Γ -seminear-ring. Then $A \subseteq R$ is said to be *subtractive* if $a \in A$ and $a + b \in A$ imply $b \in A$.

Lemma 3.15. Let R be a Γ -seminear-ring whose ideals are subtractive. Let P be a proper ideal of R. Then P is prime if and only if for any ideals I, J of R, $P \subset I$ and $P \subset J$ imply $I\Gamma J \not\subseteq P$.

Proof. Assume that for any ideals I, J of $R, P \subset I$ and $P \subset J$ imply $I\Gamma J \not\subseteq P$. Let $I \not\subseteq P$ and $J \not\subseteq P$. Then there exist $i \in I \setminus P$ and $j \in J \setminus P$ and so $P \subset P + (i)$. By hypothesis, $(P + (i))\Gamma(P + (j)) \not\subseteq P$ and so there exist $i' \in (i), j' \in (j)$ and $p, p' \in P$ and $\alpha \in \Gamma$ such that $(p + i')\alpha(p' + j') \notin P$. Since $p\alpha(p' + j') \in P$, $i'\alpha(p' + j') \notin P$. And since P is an ideal, $i' \notin P$, and $p' + j' \notin P$. So $i' \notin P$ and $j' \notin P$ because P is subtractive. Thus $(i')\Gamma(j') \nsubseteq P$. But $(i')\Gamma(j') \subseteq I\Gamma J$. So $I\Gamma J \nsubseteq P$. Hence P is prime. The converse is obvious. \Box

Theorem 3.16. Let M be a m-system of a Γ -seminear-ring R whose ideals are subtractive. Let I be an ideal with $I \cap M = \emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap M = \emptyset$.

Proof. Let *I* = {*J*|*J* is an ideal of *R*, *I* ⊆ *J* and *J*∩*M* ≠ ∅}. Then *I* ≠ ∅. Let {*J*_α}_{α∈A} be a chain in *I* under set inclusion. Then *I* ⊆ ∩_{α∈A}*J*_α and (∪_{α∈A}*J*_α)∩*M* = ∪_{α∈A}(*J*_α∩*M*) = ∅. So ∪_{α∈A}*J*_α ∈ *I*. By Zorn's Lemma, *I* has a maximal element *P*. Now we claim that *P* is prime. If *P* ⊂ *K*₁ and *P* ⊂ *K*₂, then there exist *k*₁ ∈ *K*₁ ∩ *M*, *k*₂ ∈ *K*₂ ∩ *M* and α ∈ Γ such that (*k*₁)α(*k*₂) ⊆ *K*₁Γ*K*₂ and there exist *k'*₁ ∈ (*k*₁) and *k'*₂ ∈ (*k*₂) such that *k'*₁α*k'*₂ ∈ *M*. So *k'*₁α*k'*₂ ∈ *K*₁Γ*K*₂ ∩ *M*. Since *P* ∩ *M* = ∅, (*K*₁Γ*K*₂) ⊈ *P*. Hence *P* is prime. □

Definition 3.17. A Γ -seminear-ring R containing 0 is called a *prime* Γ -seminear-ring if $\{0\}$ is a prime ideal.

Example 3.18. Let (R, +) be any Γ -semigroup with identity 0. For $a, b \in R$ and $\alpha \in \Gamma$, define $a\alpha b = a$ if $b \neq 0$ and $a\alpha b = 0$ if b = 0. Then $(R, +, \cdot)$ is a Γ -seminear-ring. Indeed it is prime. Let I and J be ideals such that $I \neq 0$ and $J \neq 0$. Then there exist $i \in I \setminus \{0\}, j \in J \setminus \{0\}$. So $i\alpha j = i \neq 0$. Thus $I\Gamma J \neq 0$ and hence $\{0\}$ is prime. \Box

Definition 3.19. Let R be a Γ -seminear-ring. An ideal Q is said to be *semiprime* if for any ideal of I of R, $I\Gamma I \subseteq Q$ implies $I \subseteq Q$. A nonempty subset S is said an *sp-system* if for every $s \in S$, there exist $s_1, s_2 \in (s)$ ans $\alpha \in \Gamma$ such that $s_1 \alpha s_2 \in S$.

Clearly, every prime ideal is semiprime and each m-system is an sp-system.

Proposition 3.20. Let R be a Γ -seminear-ring and Q an ideal of R. Then Q is semiprime if and only if $R \setminus Q$ is an sp-system.

Proof. Assume that Q is semiprime. Let $a \in R \setminus Q$. Then $(a) \notin Q$ and so $(a)\Gamma(a) \notin Q$. Thus there exist $a_1, a_2 \in (a)$ and $\alpha \in \Gamma$ such that $a_1 \alpha a_2 \notin Q$. Hence $R \setminus Q$ is an *sp*-system. Conversely, assume that $R \setminus Q$ is an *sp*-system. Let I be an ideal with $I \Gamma I \subseteq Q$. Suppose that $I \notin Q$. Then there exist $s \in I \setminus Q \subseteq R \setminus Q$. Since $s_1 \alpha s_2 \in (s)\Gamma(s) \subseteq I\Gamma I$, $I\Gamma I \notin Q$. this is impossible. So $I \subseteq Q$ and hence Q is semiprime. \Box

Remark 1. Let $\{S_{\alpha}\}_{\alpha \in A}$ be a family of sp-systems of a Γ -seminear-ring R. If $s \in \bigcup_{\alpha \in A} S_{\alpha}$, then $s \in S_{\alpha}$ for some $\alpha \in A$. Since S_{α} is an sp-system, there exist $s_1, s_2 \in S_{\alpha} \subseteq \bigcup_{\alpha \in A} S_{\alpha}$. Thus $\bigcup_{\alpha \in A} S_{\alpha}$ is an sp-system.

Lemma 3.21. Let S be a nonempty subset of a Γ -seminear-ring R. Then S is an sp-system if and only if $S = \bigcup_{\alpha \in A} S_{\alpha}$, where S_{α} 's are m-systems of R.

Proof. Assume that S is an sp-system and $s_0 \in S$. Then there exist $s_0^1, s_0^2 \in (s_0)$ and $\alpha \in \Gamma$ such that $s_1 = s_0^1 \alpha s_0^2 \in S$. And for s_1 , there exist $s_1^1, s_1^2 \in (s_1)$ and $\beta \in \Gamma$ such that $s_2 = s_1^1 \beta s_1^2 \in S$. Continuing this process, we can get a sequence s_0, s_1, s_2, \cdots . We claim that $M = \{s_0, s_1, s_2, \cdots\}$ is an m-system. Let $s_i, s_j \in M$. We may assume that i < j without loss of generality. Then $(s_j) \subseteq (s_i)$. Take $s_j^1, s_j^2 \in (s_j)$ and $\gamma \in \Gamma$. Then $s_j^1 \gamma s_j^2 = s_{j+1} \in M$. Thus M is an m-system. The converse is clear. \Box

Theorem 3.22. Let Q be an ideal in a Γ -seminear-ring R. Then Q is semiprime if and only if Q is an intersection of all prime ideals $P_{\alpha}(\alpha \in A)$ containing Q.

Proof. Assume that Q is semiprime and let $S = R \setminus Q$. Then S is an sp-system. By Lemma 3.21, $S = \bigcup_{\beta \in B} S_{\beta}$ for some m-system S_{β} . Since for each $\beta \in B$, $S_{\beta} \subseteq S$, $P_{\beta} = R \setminus S_{\beta}$ is prime containing Q and so $Q \subseteq \bigcap_{\alpha \in A} P_{\alpha} \subseteq \bigcap_{\beta \in B} P_{\beta} = \bigcap_{\beta \in B} (R \setminus S_{\beta}) = R \setminus \bigcup_{\beta \in B} S_{\beta} = R \setminus S = Q$. Thus Q is an intersection of P_{α} . Conversely, let I be an ideal in R with $I \cap I \subseteq Q$. Then $I \cap I \subseteq P_{\alpha}$ for all $\alpha \in A$. Since P_{α} is prime, $I \subseteq P_{\alpha}$ for all $\alpha \in A$ and so $I \subseteq Q$. Thus Q is semiprime. \Box

Definition 3.23. An ideal I of a Γ -seminear-ring R is said to be *irreducible* if for any ideals H, K in $R, I = H \cap K$ implies I = H or I = K. I is strongly irreducible if $H \cap K \subseteq I$ implies $H \subseteq I$ or $K \subseteq I$. A nonempty subset A of R is an *i*-system if for any $a, b \in A, (a) \cap (b) \cap A \neq \emptyset$.

Remark 2. Let M be an m-system of R and $a, b \in M$. Then there exist $a_1 \in (a)$ and $b_1 \in (b)$ and $\alpha \in \Gamma$ such that $a_1 \alpha b_1 \in (a) \cap (b) \cap M$. Hence every m-system is an i-system.

Proposition 3.24. The following conditions on an ideal I in a Γ -seminear-ring R are equivalent.

- (i) I is strongly irreducible
- (ii) If $a, b \in R$ such that $(a) \cap (b) \subseteq I$, then $a \in I$ or $b \in I$.
- (iii) $R \setminus I$ is an *i*-system.

Proof. (i) \Rightarrow (ii): It is clear.

(ii) \Rightarrow (iii): Let $a, b \in R \setminus I$. Suppose that $(a) \cap (b) \cap R \setminus I = \emptyset$. Then $(a) \cap (b) \subseteq I$. By (ii), we have $a \in I$ or $b \in I$. It is a contradiction. Therefore $(a) \cap (b) \cap R \setminus I \neq \emptyset$. Thus $R \setminus I$ is an *i*-system.

(iii) \Rightarrow (i): Let H, K be ideals of R not contained in I. Then there exist $a \in H \setminus I$ and $b \in K \setminus I$. By (iii), $(a) \cap (b) \cap R \setminus I \neq \emptyset$. Therefore there exist $c \in (a) \cap (b)$ and $c \notin I$. Hence $H \cap K \nsubseteq I$ and I is strongly irreducible. \Box

Theorem 3.25. A proper ideal P of a Γ -seminear-ring R is prime if and only if it is semiprime and strongly irreducible.

Proof. If P is prime, it is semiprime. Moreover, if K, H are ideals of R such that $H \cap K \subseteq P$, then $H\Gamma K \subseteq P$, then $H\Gamma K \subseteq H \cap K \subseteq P$. Since P is prime, then $H \subseteq P$ or $K \subseteq P$ and so P is strongly irreducible. Conversely, assume that P is semiprime and strongly irreducible. If H and K are ideals of R such that $H\Gamma K \subseteq P$, then $(H \cap K)\Gamma(H \cap K) \subseteq H\Gamma K \subseteq P$. Since P is semiprime, $H \cap K \subseteq P$. By the strongly irreducible, we have $H \subseteq P$ or $K \subseteq P$. Thus P is prime. \Box

References

[1] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.

[2] Y. B. Jun and K. H. Kim, On structures of gamma-seminear-rings, (submitted).

 [2] H. J. Weinert, Seminear-rings, seminear-field and their semigroup theoretic background, Semigroup Forum 24 (1982), 235-254.

K. H. Kim Department of Mathematics Chungju National University

Chungju 380-702, Korea

E-mail: ghkim@gukwon.chungju.ac.kr