ON PRIME AND SEMIPRIME IDEALS IN GAMMA-SEMINEAR-RINGS

Kyung Ho Kim

Received August 14, 2000; revised February 13, 2001

Abstract

In this paper, we introduce the notion of prime and semiprime ideal and characterize prime and semiprime ideals in a Γ-seminear-ring. Among them, for any Γ-seminear-ring, an ideal is semiprime if and only if it is the intersection of all primes containg it. Moreover, an ideal of a Γ-seminear-ring is prime if and only if it is semiprime and strongly irreducible.

1. Introduction

In 1967, W. G. van Hoorn and B . van Rootselar introduced the concept of seminear-ring. In [2], we introduced the the notion of Γ-seminear-ring as a generalization of seminearring. In this paper, we introduce the notion of prime, semiprime ideal and m-system in Γ-seminear-ring. Using the notion of prime and semiprime ideals, we characterize prime and semiprime ideals in a Γ-seminear-ring. Among them, for any Γ-seminear-ring, an ideal is semiprime if and only if it is the intersection of all primes containg it. Moreover, an ideal of a Γ-seminear-ring is prime if and only if it is semiprime and strongly irreducible in Γ-seminear-ring.

2. Preliminaries

We first recall some basic concepts for the sake of completeness. Recall that a nonempty set R with two binary operations " + "(addition) and "." (multiplication) is called a seminear-ring, if it satisfies the following axioms:
(i) $(R,+)$ and (R, \cdot) are semigroups,
(ii) $(x+y) \cdot z=x \cdot z+y \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a right seminear-ring because it satisfies the right distributive law. We will use the word "seminear-ring" to mean "right seminear-ring". We denote $x y$ instead of $x \cdot y$.

3. Prime and semiprime ideals

We begin by defining the notion of a Γ-seminear-ring.
Definition 3.1 ([2]). A Γ-seminear-ring is a triple $(R,+, \Gamma)$ where
(i) Γ is a non-empty set of binary operators on R such that for each $\alpha \in \Gamma,(R,+, \alpha)$ is a seminear-ring,
(ii) $x \alpha(y \beta z)=(x \alpha y) \beta z$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

Example 3.2. Let R be the set of all integers of the form $4 n+3$ and Γ the set of all integers of the form $4 n+1$. If " + " is an usual sum of integers and $x \alpha y=x+\alpha+y$ for $x, y \in R$ and $\alpha \in \Gamma$, then $(R,+, \Gamma)$ is a Γ-seminear-ring.

[^0]Definition 3.3 ([2]). Let R be a Γ-seminear-ring. A subsemigroup A of $(R,+)$ is called a left (resp. right) ideal of R if $R \Gamma A \subseteq A$ (resp. $A \Gamma R \subseteq A$). A left and right ideal is called an ideal.

Let R be a Γ-seminear-ring and $I, J \subseteq R$. Denote $I \Gamma J=\{a \alpha b \mid a, b \in R$ and $\alpha \in \Gamma\}$.
Definition 3.4 ([2]). Let R and R^{\prime} be Γ-seminear-rings. A mapping $f: R \rightarrow R^{\prime}$ is called a Γ-seminear-ring homomorphism (briefly, Γ-homomorphism) if $f(x+y)=f(x)+f(y)$ and $f(x \gamma y)=f(x) \gamma f(y)$ for all $x, y \in R$ and $\gamma \in \Gamma$.
Lemma 3.5. Let R and R^{\prime} be a Γ-seminear-ring S and $f: R \rightarrow R^{\prime}$ be a Γ-seminear-ring homomorphism. Then
(i) $(I \Gamma J) \Gamma K=I \Gamma(J \Gamma K)$ for all $I, J, K \subseteq R$.
(ii) $f\left(I_{1} \Gamma I_{2}\right)=f\left(I_{1}\right) \Gamma f\left(I_{2}\right)$ for all $I_{1}, I_{2} \subseteq R$.
(iii) $f^{-1}\left(J_{1}\right) \Gamma f^{-1}\left(J_{2}\right) \subset f^{-1}\left(J_{1} \Gamma J_{2}\right)$ for all $J_{1}, J_{2} \in R^{\prime}$.

Proof. The proof is easy.
Definition 3.6. Let R be a Γ-seminear-ring. A proper ideal P of R is called prime if for any ideals I and $J, I \Gamma J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.

Definition 3.7. Let S be a subset of a Γ-seminear-ring R. Then
(i) The right (resp. left) ideal generated by S is the smallest right (resp. left) ideal containing S and is denoted by $(S)_{r}$ (resp. $\left.(S)_{l}\right)$.
(ii) The ideal generated by S is the smallest ideal containing S and is denoted by (S)

For ecch r of a Γ-seminear-ring, the smallest ideal containing r is called the principal ideal generated by r and is denoted by (r).

Proposition 3.8. Let P be a proper ideal of a Γ-seminear-ring R. Then the following statements are equivalent.
(i) P is prime
(ii) For ideals I and J of $R,(I \Gamma J) \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.
(iii) For elements i and j in $R, i \notin P$ and $j \notin P$ implies $(i) \Gamma(j) \nsubseteq P$.

Proof. Clearly (i) and (ii) are equivalent.
(i) \Rightarrow (iii): Let P be a prime, $i \notin P$ and $j \notin P$. Suppose $(i) \Gamma(j) \subseteq P$. Then $(i) \subseteq P$ or
$(j) \subseteq P$. So $i \in P$ or $j \in P$. This is a contradiction. Thus $(i) \Gamma(j) \nsubseteq P$.
(iii) \Rightarrow (i): Assume that $I \nsubseteq P$ and $J \nsubseteq P$. Then there exists $i \in I \backslash P$ and $j \in J \backslash P$. So $(i) \Gamma(j) \subseteq I \Gamma J$ but $(i) \Gamma(j) \nsubseteq P$ by (iii). Thus $I \Gamma J \nsubseteq P$.

Proposition 3.9. Let P be a proper ideal of a Γ-seminear-ring R. If $\{\operatorname{a\alpha r} \beta b \mid r \in R, \alpha, \beta \in$ $\Gamma\} \subseteq P$ if and only if $a \in P$ or $b \in P$, then P is prime.

Proof. Let H and K be ideals of R with $H \Gamma K \subseteq P$. Assume that $H \nsubseteq P$ and let $a \in H \backslash P$. Then for any $b \in K,\{a \alpha r \beta b \mid r \in R$ and $\alpha, \beta \in \Gamma\} \subseteq H \Gamma K \subseteq P$. Since $a \notin P, b \in P$. So $K \subseteq P$ and hence P is prime.

Proposition 3.10. Let $\left\{P_{\alpha}\right\}_{\alpha \in A}$ be a family of prime ideals which are totally ordered by set inclusion. Then $\cap_{\alpha \in A} P_{\alpha}$ is prime.

Proof. Let I and J be ideals of R. If $I \Gamma J \subseteq \cap_{\alpha \in A} P_{\alpha}$, then $I \Gamma J \subseteq P_{\alpha}$, for all $\alpha \in A$. Assume that there exists $\alpha \in A$ such that $I \nsubseteq P_{\alpha}$. Then $J \subseteq P_{\alpha}$ and so $J \subseteq P_{\beta}$ for all $\beta \geq \alpha$. Suppose that there exist $\gamma<\alpha$ such that $J \nsubseteq P_{\gamma}$. Then $I \subseteq P_{\gamma}$ and so $I \subseteq P_{\alpha}$, This is impossible. Thus $J \subseteq P_{\beta}$ for any $\beta \in A$. Hence $\cap_{\alpha \in A} P_{\alpha}$ is prime.

Proposition 3.11. Let I be an ideal of $a \Gamma$-seminear-ring R with $R+I \subseteq I$ and $I+R \subseteq I$. Let P be a proper ideal of R containing I. If $\pi: R \rightarrow R / I$ is the canonical epimorphism, then P is prime if and only if $\pi(P)$ is prime.
Proof. Assume that P is prime in R, J_{1} and J_{2} be ideals in R / I such that $J_{1} \Gamma J_{2} \subseteq \pi(P)$. Let $\pi^{-1}\left(J_{1}\right)=I_{1}$ and $\pi^{-1}\left(J_{2}\right)=I_{2}$. Then $I_{1} \Gamma I_{2}=\pi^{-1}\left(J_{1}\right) \Gamma \pi^{-1}\left(J_{2}\right) \subseteq \pi^{-1}\left(J_{1} \Gamma J_{2}\right) \subseteq$ $\pi^{-1}(\pi(P))=P$. Since P is prime, $I_{1} \subseteq P$ or $I_{2} \subseteq P$. So, $J_{1}=\pi\left(\pi^{-1}\left(J_{1}\right)\right)=\pi\left(I_{1}\right) \subseteq \pi(P)$ or $J_{2}=\pi\left(\pi^{-1}\left(J_{2}\right)\right)=\pi\left(J_{2}\right) \subseteq \pi(P)$. Thus $\pi(P)$ is prime. Conversely, let $\pi(P)$ be prime and let I_{1}, I_{2} be ideals of R such that $I_{1} \Gamma I_{2} \subseteq P$. Then $\pi\left(I_{1}\right) \Gamma \pi\left(I_{2}\right)=\pi\left(I_{1} \Gamma I_{2}\right) \subseteq \pi(P)$. Since $\pi(P)$ is prime, $\pi\left(I_{1}\right) \subseteq \pi(P)$ or $\pi\left(I_{2}\right) \subseteq \pi(P)$. So $I_{1} \subseteq P$ or $I_{2} \subseteq P$. Thus P is prime.
Definition 3.12. Let R be a Γ-seminear-ring. A nonempty subset M of R is called an m-system if for $a, b \in M$, there exist $a_{1} \in(a), b_{1} \in(b)$ and $\alpha \in \Gamma$ such that $a_{1} \alpha b_{1} \in M$.

Proposition 3.13. Let P be a proper ideal of $a \Gamma$-seminear-ring R. Then P is prime if and only if $R \backslash P$ is an m-system.

Proof. Assume that P is prime. Let $a \in R \backslash P$ and $b \in R \backslash P$. Then $(a) \Gamma(b) \nsubseteq P$. So, there exist $a_{1} \in(a), b_{1} \in(b)$ and $\alpha \in \Gamma$ such that $a_{1} \alpha b_{1} \notin P$, i.e., $a_{1} \alpha b_{1} \in R \backslash P$. Thus $R \backslash P$ is an m-system. Conversely, if $R \backslash P$ is an m-system and let $a \in R \backslash P$ and $b \in R \backslash P$. Then there exist $a_{1} \in(a), b \in(b)$ and $\alpha \in \Gamma$ such that $a_{1} \alpha b_{1} \in R \backslash P$. Thus $(a) \Gamma(b) \nsubseteq P$ and hence P is prime.
Definition 3.14. Let R be a Γ-seminear-ring. Then $A \subseteq R$ is said to be subtractive if $a \in A$ and $a+b \in A$ imply $b \in A$.

Lemma 3.15. Let R be a Γ-seminear-ring whose ideals are subtractive. Let P be a proper ideal of R. Then P is prime if and only if for any ideals I, J of $R, P \subset I$ and $P \subset J$ imply $I \Gamma J \nsubseteq P$.
Proof. Assume that for any ideals I, J of $R, P \subset I$ and $P \subset J$ imply $I \Gamma J \nsubseteq P$. Let $I \nsubseteq P$ and $J \nsubseteq P$. Then there exist $i \in I \backslash P$ and $j \in J \backslash P$ and so $P \subset P+(i)$. By hypothesis, $(P+(i)) \Gamma(P+(j)) \nsubseteq P$ and so there exist $i^{\prime} \in(i), j^{\prime} \in(j)$ and $p, p^{\prime} \in P$ and $\alpha \in \Gamma$ such that $\left(p+i^{\prime}\right) \alpha\left(p^{\prime}+j^{\prime}\right) \notin P$. Since $p \alpha\left(p^{\prime}+j^{\prime}\right) \in P, i^{\prime} \alpha\left(p^{\prime}+j^{\prime}\right) \notin P$. And since P is an ideal, $i^{\prime} \notin P$, and $p^{\prime}+j^{\prime} \notin P$. So $i^{\prime} \notin P$ and $j^{\prime} \notin P$ because P is subtractive. Thus $\left(i^{\prime}\right) \Gamma\left(j^{\prime}\right) \nsubseteq P$. But $\left(i^{\prime}\right) \Gamma\left(j^{\prime}\right) \subseteq I \Gamma J$. So $I \Gamma J \nsubseteq P$. Hence P is prime. The converse is obvious.
Theorem 3.16. Let M be a m-system of $a \Gamma$-seminear-ring R whose ideals are subtractive. Let I be an ideal with $I \cap M=\emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap M=\emptyset$.

Proof. Let $\mathcal{I}=\{J \mid J$ is an ideal of $R, I \subseteq J$ and $J \cap M \neq \emptyset\}$. Then $\mathcal{I} \neq \emptyset$. Let $\left\{J_{\alpha}\right\}_{\alpha \in A}$ be a chain in \mathcal{I} under set inclusion. Then $I \subseteq \cap_{\alpha \in A} J_{\alpha}$ and $\left(\cup_{\alpha \in A} J_{\alpha}\right) \cap M=\cup_{\alpha \in A}\left(J_{\alpha} \cap M\right)=\emptyset$. So $U_{\alpha \in A} J_{\alpha} \in \mathcal{I}$. By Zorn's Lemma, \mathcal{I} has a maximal element P. Now we claim that P is prime. If $P \subset K_{1}$ and $P \subset K_{2}$, then there exist $k_{1} \in K_{1} \cap M, k_{2} \in K_{2} \cap M$ and $\alpha \in \Gamma$ such that $\left(k_{1}\right) \alpha\left(k_{2}\right) \subseteq K_{1} \Gamma K_{2}$ and there exist $k_{1}^{\prime} \in\left(k_{1}\right)$ and $k^{\prime}{ }_{2} \in\left(k_{2}\right)$ such that $k_{1}^{\prime} \alpha k^{\prime}{ }_{2} \in M$. So $k^{\prime}{ }_{1} \alpha k^{\prime}{ }_{2} \in K_{1} \Gamma K_{2} \cap M$. Since $P \cap M=\emptyset,\left(K_{1} \Gamma K_{2}\right) \nsubseteq P$. Hence P is prime.
Definition 3.17. A Γ-seminear-ring R containing 0 is called a prime Γ-seminear-ring if $\{0\}$ is a prime ideal.

Example 3.18. Let ($R,+$) be any Γ-semigroup with identity 0 . For $a, b \in R$ and $\alpha \in \Gamma$, define $a \alpha b=a$ if $b \neq 0$ and $a \alpha b=0$ if $b=0$. Then $(R,+, \cdot)$ is a Γ-seminear-ring. Indeed it is prime. Let I and J be ideals such that $I \neq 0$ and $J \neq 0$. Then there exist $i \in I \backslash\{0\}, j \in J \backslash\{0\}$. So $i \alpha j=i \neq 0$. Thus $I \Gamma J \neq 0$ and hence $\{0\}$ is prime.

Definition 3.19. Let R be a Γ-seminear-ring. An ideal Q is said to be semiprime if for any ideal of I of $R, I \Gamma I \subseteq Q$ implies $I \subseteq Q$. A nonempty subset S is said an $s p$-system if for every $s \in S$, there exist $s_{1}, s_{2} \in(s)$ ans $\alpha \in \Gamma$ such that $s_{1} \alpha s_{2} \in S$.

Clearly, every prime ideal is semiprime and each m-system is an $s p$-system.
Proposition 3.20. Let R be a Γ-seminear-ring and Q an ideal of R. Then Q is semiprime if and only if $R \backslash Q$ is an sp-system.

Proof. Assume that Q is semiprime. Let $a \in R \backslash Q$. Then $(a) \nsubseteq Q$ and so $(a) \Gamma(a) \nsubseteq Q$. Thus there exist $a_{1}, a_{2} \in(a)$ and $\alpha \in \Gamma$ such that $a_{1} \alpha a_{2} \notin Q$. Hence $R \backslash Q$ is an $s p$-system. Conversely, assume that $R \backslash Q$ is an $s p$-system. Let I be an ideal with $I \Gamma I \subseteq Q$. Suppose that $I \nsubseteq Q$. Then there exist $s \in I \backslash Q \subseteq R \backslash Q$. Since $s_{1} \alpha s_{2} \in(s) \Gamma(s) \subseteq I \Gamma I, I \Gamma I \nsubseteq Q$. this is impossible. So $I \subseteq Q$ and hence Q is semiprime.

Remark 1. Let $\left\{S_{\alpha}\right\}_{\alpha \in A}$ be a family of sp-systems of $a \Gamma$-seminear-ring R. If $s \in \cup_{\alpha \in A} S_{\alpha}$, then $s \in S_{\alpha}$ for some $\alpha \in A$. Since S_{α} is an sp-system, there exist $s_{1}, s_{2} \in S_{\alpha} \subseteq \cup_{\alpha \in A} S_{\alpha}$. Thus $\cup_{\alpha \in A} S_{\alpha}$ is an sp-system.

Lemma 3.21. Let S be a nonempty subset of $a \Gamma$-seminear-ring R. Then S is an sp-system if and only if $S=\cup_{\alpha \in A} S_{\alpha}$, where $S_{\alpha}{ }^{\prime} s$ are m-systems of R.
Proof. Assume that S is an $s p$-system and $s_{0} \in S$. Then there exist $s_{0}{ }^{1}, s_{0}{ }^{2} \in\left(s_{0}\right)$ and $\alpha \in \Gamma$ such that $s_{1}=s_{0}{ }^{1} \alpha s_{0}{ }^{2} \in S$. And for s_{1}, there exist $s_{1}{ }^{1}, s_{1}{ }^{2} \in\left(s_{1}\right)$ and $\beta \in \Gamma$ such that $s_{2}=s_{1}{ }^{1} \beta s_{1}{ }^{2} \in S$. Continuing this process, we can get a sequence $s_{0}, s_{1}, s_{2}, \cdots$. We claim that $M=\left\{s_{0}, s_{1}, s_{2}, \cdots.\right\}$ is an m-system. Let $s_{i}, s_{j} \in M$. We may assume that $i<j$ without loss of generality. Then $\left(s_{j}\right) \subseteq\left(s_{i}\right)$. Take $s_{j}{ }^{1}, s_{j}{ }^{2} \in\left(s_{j}\right)$ and $\gamma \in \Gamma$. Then $s_{j}{ }^{1} \gamma s_{j}{ }^{2}=s_{j+1} \in M$. Thus M is an m-system. The converse is clear.

Theorem 3.22. Let Q be an ideal in a Γ-seminear-ring R. Then Q is semiprime if and only if Q is an intersection of all prime ideals $P_{\alpha}(\alpha \in A)$ containing Q.
Proof. Assume that Q is semiprime and let $S=R \backslash Q$. Then S is an $s p$-system. By Lemma 3.21, $S=\cup_{\beta \in B} S_{\beta}$ for some m-system S_{β}. Since for each $\beta \in B, S_{\beta} \subseteq S, P_{\beta}=R \backslash S_{\beta}$ is prime containing Q and so $Q \subseteq \cap_{\alpha \in A} P_{\alpha} \subseteq \cap_{\beta \in B} P_{\beta}=\cap_{\beta \in B}\left(R \backslash S_{\beta}\right)=R \backslash \cup_{\beta \in B} S_{\beta}=R \backslash S=Q$. Thus Q is an intersection of P_{α}. Conversely, let I be an ideal in R with $I \Gamma I \subseteq Q$. Then $I \Gamma I \subseteq P_{\alpha}$ for all $\alpha \in A$. Since P_{α} is prime, $I \subseteq P_{\alpha}$ for all $\alpha \in A$ and so $I \subseteq Q$. Thus Q is semiprime.

Definition 3.23. An ideal I of a Γ-seminear-ring R is said to be irreducible if for any ideals H, K in $R, I=H \cap K$ implies $I=H$ or $I=K$. I is strongly irreducible if $H \cap K \subseteq I$ implies $H \subseteq I$ or $K \subseteq I$. A nonempty subset A of R is an i-system if for any $a, b \in A,(a) \cap(b) \cap A \neq \emptyset$.
Remark 2. Let M be an m-system of R and $a, b \in M$. Then there exist $a_{1} \in(a)$ and $b_{1} \in(b)$ and $\alpha \in \Gamma$ such that $a_{1} \alpha b_{1} \in(a) \cap(b) \cap M$. Hence every m-system is an i-system.

Proposition 3.24. The following conditions on an ideal I in a Γ-seminear-ring R are equivalent.
(i) I is strongly irreducible
(ii) If $a, b \in R$ such that $(a) \cap(b) \subseteq I$, then $a \in I$ or $b \in I$.
(iii) $R \backslash I$ is an i-system.

Proof. (i) \Rightarrow (ii): It is clear.
(ii) \Rightarrow (iii): Let $a, b \in R \backslash I$. Suppose that $(a) \cap(b) \cap R \backslash I=\emptyset$. Then $(a) \cap(b) \subseteq I$. By (ii), we have $a \in I$ or $b \in I$. It is a contradiction. Therefore $(a) \cap(b) \cap R \backslash I \neq \emptyset$. Thus $R \backslash I$ is an i-system.
(iii) \Rightarrow (i): Let H, K be ideals of R not contained in I. Then there exist $a \in H \backslash I$ and $b \in K \backslash I$. By (iii), $(a) \cap(b) \cap R \backslash I \neq \emptyset$. Therefore there exist $c \in(a) \cap(b)$ and $c \notin I$. Hence $H \cap K \nsubseteq I$ and I is strongly irreducible.
Theorem 3.25. A proper ideal P of $a \Gamma$-seminear-ring R is prime if and only if it is semiprime and strongly irreducible.

Proof. If P is prime, it is semiprime. Moreover, if K, H are ideals of R such that $H \cap K \subseteq P$, then $H \Gamma K \subseteq P$, then $H \Gamma K \subseteq H \cap K \subseteq P$. Since P is prime, then $H \subseteq P$ or $K \subseteq P$ and so P is strongly irreducible. Conversely, assume that P is semiprime and strongly irreducible. If H and K are ideals of R such that $H \Gamma K \subseteq P$, then $(H \cap K) \Gamma(H \cap K) \subseteq H \Gamma K \subseteq P$. Since P is semiprime, $H \cap K \subseteq P$. By the strongly irreducible, we have $H \subseteq P$ or $K \subseteq P$. Thus P is prime.

References

[1] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.
[2] Y. B. Jun and K. H. Kim, On structures of gamma-seminear-rings, (submitted).
[2] H. J. Weinert, Seminear-rings, seminear-field and their semigroup theoretic background, Semigroup Forum 24 (1982), 235-254.
K. H. Kim

Department of Mathematics
Chungju National University
Chungju 380-702, Korea
E-mail: ghkim@gukwon.chungju.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 16Y99.
 Key words and phrases. Γ-seminear-ring, prime and semiprime ideal, m-system, irreducible.

