
Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), 873{883 873

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND

LEARNING�

Mikiharu TERADA

Received February 22, 2001

Abstract. This paper deals with a particular type of generating set, called pre�x-free,

for a language. Given a language L over an alphabet �, a set G is a generating set of

L, denoted by L v G, if L � G
+. It is well known that a pre�x-free set G has the

property of unique decipherability for all strings in G+.

We �rst show that for a language L, the class PFGL of all pre�x-free and reduced

generating sets for L is a complete lattice under the relation v and give explicitly the

least element Ginf
L and the greatest element Gsup

L
. Especially we are concerned with the

least element Ginf
L of the lattice. Ginf

L has a good property in the sense that every string

in L can be represented by the minimum number of strings in Ginf
L among PFGL. We

give a necessary and suÆcient condition for Ginf
L to be �nite. Moreover, we present a

polynomial time algorithm for computing Ginf
L with respect to the sum of lengths of

strings in L for a �nite language L. For an in�nite language, we consider the problem

of identifying Ginf
L in the framework of identi�cation in the limit proposed by Gold for

language learning, and give a polynomial time learning algorithm for computing Ginf
L ,

provided that the target Ginf
L is �nite.

1 Introduction. In this paper, we consider particular sets of strings that generate every

string in a formal language L over an alphabet �. A set G of strings is a generating set of a

language L, denoted by L v G, if L � G+, that is, every string of L can be represented as a

concatenation of strings in G. For instance, let � = fa; bg and L = f(aab)ib(aa)j j i; j 2 Ng

be a regular language. Then the sets G1 = faab; b; aag and G2 = faa; bg of strings are

generating sets of L. Clearly the alphabet � is always a generating set of any language

L consisting of nonempty strings, i.e., L v �, and moreover the language L itself is a

generating set of L.

A set G of strings is said to be pre�x-free, if for any string of G, there is no proper pre�x

in G of the string. In the above example, the string aa in G1 is a proper pre�x of the string

aab in G1, and thus G1 is not pre�x-free. On the other hand, G2 is pre�x-free. For a string

u, a sequence u1; u2; � � � ; un of strings in G is a factorization of u in G and n is the length

of u with respect to G, if u = u1u2 � � � un. A pre�x-free set G has the property of so-called

unique decipherability in terminology of coding theory in the sense that any string in G+

has a unique factorization in G. In coding theory, such a set is called code and has been

discussed in connection with unique decipherability. Refer in detail to e.g. [3].

In general, there are many pre�x-free generating sets of a given language L. In this

paper, we investigate the lattice structure of the class PFGL of such pre�x-free generating

sets under the binary relation v mentioned above. We �rst show that the class PFGL is

a complete lattice and give explicitly both the least element Ginf
L and the greatest element

G
sup

L of the class. In particular, we are interested in the least pre�x-free generating set Ginf
L .

2000Mathematics Subject Classi�cation. 03G10, 06B23.

Key words and phrases. Pre�x-free, code, generating set, formal language, learning.

�
Supported in part by Grant-in-Aid for Scienti�c Research on Priority Areas No. 10143104 from the

Ministry of Education, Science and Culture, Japan.

874 M. TERADA

The set Ginf
L has a good property in a sense that every string in L has the shortest length

w.r.t. Ginf
L among PFGL. For instance, w = aabbaa has the length 4 w.r.t. G2 because of

w = (aa)(b)(b)(aa), while the (usual) length 6 w.r.t. �.

Secondly, we give a characterization theorem of Ginf
L to be �nite, and a subclass of

regular languages each of whose least pre�x-free generating set is �nite.

In terms of the result, we �nally present a polynomial time algorithm for computing

the least pre�x-free generating set of a �nite language. Furthermore, we consider inductive

inference of the least pre�x-free generating set of an in�nite language. Inductive learning is

the process of hypothesizing a general rule from examples. Gold[4] proposed a mathematical

model of inductive inference of recursive functions or formal languages based on the criterion

of success of inference in the limit. We give an eÆcient algorithm for identifying the least

pre�x-free generating set Ginf
L in the limit.

Yokomori[5] presented an eÆcient algorithm of strict deterministic automaton de�ned

over a particular �nite set of strings, called strict pre�x, from positive examples in the limit.

The strict pre�x set of strings is a special kind of pre�x-free generating sets introduced here.

The eÆcient algorithm given by Yokomori contained an eÆcient procedure to compute the

least strict pre�x set in the limit. Watanabe [6] has shown that the set of strict pre�x sets

has a �nite lattice structure.

2 Pre�x-Free Generating Sets of Formal Languages.

2.1 Preliminaries. We start with some basic de�nitions and notations used in this

paper.

Let � be a �nite alphabet. Let �� be the set of all �nite strings over �, and �+ be the

set of all �nite nonempty strings over �. The empty string is denoted by �. For a string

w 2 ��, jwj denotes the length of w. In particular, the length of � is 0.

The concatenation of strings u and v is denoted by uv. For a string w, a string u 2 ��

is a pre�x of w, if there is a string v 2 �� such that w = uv, particularly when v 2 �+, u

is a proper pre�x of w. Let N be the set of nonnegative integers.

For subsets S1 and S2 of ��, let us de�ne the product S1S2 = fuv j u 2 S1; v 2 S2g.

De�ne Sk+1 = SSk for a set S � �� and k 2 N , where S0 = f�g. Let S� =
S
k2N Sk, and

S+ = S� � f�g.

For sets S1; S2 � �+, we de�ne the following relation:

S1 v S2 if and only if S1 � S+
2 :

Clearly S v � for any set S � �+. As easily seen, the relation v is re
exive and transitive

but not antisymmetric. Indeed, for S1 = fa; bg and S2 = fa; b; abg, we have S1 v S2 and

S2 v S1 but S1 6= S2. As shown below, the relation v is antisymmetric for pre�x-free sets.

2.2 Pre�x-Free Sets.

De�nition 2.1 A set S � �� is pre�x-free, if any string in S is not a proper pre�x of

another string in S. By PF we denote the set of all pre�x-free sets.

As well known in coding theory, a pre�x-free set S has the property of unique decipher-

ability. That is, for every string w 2 S+, if there are strings u1; � � � ; un, v1; � � � ; vm 2 S such

that w = u1 � � �un and w = v1 � � � vm, then m = n and ui = vi for all i = 1; � � � ; n. We refer

u1; � � � ; un as the unique factorization of w. Using this property, it is easily shown that the

set (PF ;v) is a partially ordered set.

For a set S � �+, we de�ne

Pre(S) = fu 2 S j there is no proper pre�x of u in Sg:

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND LEARNING 875

By the above de�nition, clearly Pre(S) � S, Pre(S) 2 PF and for every string u 2 S, there

is a pre�x v 2 Pre(S) of u.

De�nition 2.2 We de�ne a binary operation O over strings as follows. For all strings

u; v 2 �+
, let

O(u; v) =

8>><
>>:

fug; if u = v;

fu; v0g; if 9v0 2 �+ s:t: v = uv0;

fu0; vg; if 9u0 2 �+ s:t: u = vu0;

fu; vg; otherwise;

For a string w, a set fu; vg of two strings is a direct ancestor of w, if w 2 O(u; v) and

w 6= u; v. Using the binary operation O, we next de�ne a set operation eO over sets S � �+

by eO(S) = [
(u;v)2S�S

O(u; v):

By the above de�nition, clearly S � eO(S) and S v eO(S). For all n 2 N , we de�neeOn+1(S) = eO(eOn(S)) with eO0(S) = S, as well as the closure eO� by

eO�(S) = [
n2N

eOn(S):

Clearly S � eOn(S) � eOn+1(S) � eO�(S) and S v eOn(S) v eOn+1(S) v eO�(S) for all
n 2 N . Furthermore, eO(eO�(S)) = eO�(S) and if eOn(S) = eOn+1(S) for some n 2 N , theneO�(S) = eOm(S) for all m � n.

Let S � �� and w 2 eO�(S) � S. A set fu; vg � eO�(S) is a direct ancestor of w, if

w 2 O(u; v) and w 6= u; v.

Note that for every n � 1 and for every w 2 eOn(S) � S, there is a direct ancestor

fu; vg � eOn�1(S) of w.

Lemma 2.1 Let S and S0 be subsets of �+
such that S v S0. If S0 is pre�x-free, theneO�(S) v S0 and Pre(eO�(S)) v S0.

Proof. We �rst prove eO�(S) v S0. By the assumption, eO0(S) = S v S0 and thus it suÆces

to show that eOn(S) v S0 implies eOn+1(S) v S0 for all n 2 N .

Assume that eOn(S) v S0. This is obvious if eOn(S) = eOn+1(S0). Let eOn(S) (eOn+1(S)

and w be any string of eOn+1(S)� eOn(S). Then there is a direct ancestor fu; vg � eOn(S) of

w such that u = vw. By our assumption of eOn(S) v S0, u; v 2 S0+. Since S0 is pre�x-free,

it follows that w 2 S0+. Hence eOn+1(S) v S0. Consequently eO�(S) v S0.

Since Pre(eO�(S)) is a subset of eO�(S), the above implies Pre(eO�(S)) v S.

Lemma 2.2 For every set S � �+
, eO�(S) v Pre(eO�(S)).

Proof. Let T = eO�(S). Suppose the converse, i.e., T 6v Pre(T), and let w 2 T be one of the

shortest strings in T but not contained in (Pre(T))+. By w 2 T , there is a pre�x u 2 Pre(T)

such that w = uv for some string v. If v = �, then w 2 Pre(T) and a contradiction. Thus

v 6= �, and so v 2 T because of v 2 O(w;u). Since jvj < jwj, we have v 2 (Pre(T))+, and

thus w 2 (Pre(T))+. This contradicts the choice of w.

Hereafter, we investigate the lattice structure of PF. For a subset P of PF, sup(P)

and inf(P) denote the least upper bound and the greatest lower bound of P in PF under

the partially ordered relation v, respectively.

876 M. TERADA

Lemma 2.3 For every P � PF , sup(P) = Pre(eO�(SS2P S)).

Proof. Put T = eO�(SS2P S). By Lemma 2.2, T v Pre(T), and thus S v Pre(T) for every

S 2 P. Hence Pre(T) is an upper bound of P.

Let S0 2 PF be any upper bound of P. Then
S
S2P S v S0. Since S0 is pre�x-free,

Lemma 2.1 implies Pre(T) v S0. Hence Pre(T) is the least upper bound of P in PF .

As mentioned before, � is a pre�x-free set, and S v � for any S 2 PF. Hence � is the

greatest element of PF, i.e., sup(PF) = �.

Lemma 2.4 For any P � PF , inf(P) = Pre(eO�(TS2P S+)).

Proof. Put T = eO�(TS2P S
+). By Lemma 2.2, T v Pre(T).

We �rst prove that Pre(T) is a lower bound of P, i.e., Pre(T) v S for any S 2 P.

Assume that
T
S2P S

+ (eO(TS2P S
+) and let w 2 eO(TS2P S

+) �
T
S2P S

+. Then there

is a direct ancestor fu; vg �
T
S2P S

+ such that u = vw. Since each S 2 P is pre�x-free,

we have w 2
T
S2P S

+, and a contradiction. Hence we have eO(TS2P S
+) =

T
S2P S

+, and

thus T = eO�(TS2P S
+) =

T
S2P S

+. It means that Pre(T) �
T
S2P S

+. Consequently

Pre(T) v S for any S 2 P, i.e., Pre(T) is a lower bound of P.

Next, we prove that Pre(T) is the greatest lower bound of P. Let S0 2 PF be any lower

bound of P. Then S0 � S+ for any S 2 P, and thus S0 �
T
S2P S

+. Since
T
S2P S

+ v

Pre(T), we get S0 v Pre(T). Therefore Pre(T) is the greatest lower bound of P.

By Lemma 2.3 and Lemma 2.4, the next result on PF is immediately given as follows:

Theorem 2.5 The set (PF ;v) is a complete lattice and � is the greatest element of PF .

2.3 Pre�x-Free Generating Sets. A language over � is a subset of �+. In this

subsection, we consider a particular set of strings generating all strings in a given language.

De�nition 2.3 Let G � �+
and L be a language. G is a generating set of L if L v G. A

generating set G of L is reduced (with respect to L) if L 6v G0 for any proper subset G0 of

G. By PFGL we denote the set of all reduced and pre�x-free generating sets of L.

As mentioned before, if a generating set G of a language L is pre�x-free, each string of

L has a unique factorization of strings in G. Thus for any pre�x-free generating set G of

L, we have a unique reduced generating set G0 � G by deleting strings of G not used in

factorizations of strings of L. Thus we get:

Lemma 2.6 Let L be a language and G be a pre�x-free generating set of L. Then there

uniquely exists a reduced and pre�x-free generating set G0 2 PFGL of L such that G0 � G.

For any language L, the set PFGL is a subset of PF and a partially ordered set under

v.

In what follows, we investigate a lattice structure of PFGL and a characterization of

the least element of PFGL to be �nite.

Lemma 2.7 Let L � �+
be a language and w 2 Pre(eO�(L)). Then there exists a �nite set

Sw � L and a string uw 2 Sw such that (i) w 2 Pre(eO�(Sw)) and (ii) uw = vw for some

string v 2 (Pre(eO�(Sw)))�.

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND LEARNING 877

Proof. We prove by induction on n 2 N that for every w 2 eOn(L), there exists a �nite set

Sw � L and a string uw 2 Sw satisfying the conditions (i)' w 2 eO�(Sw) and (ii) given in

our lemma.

For case of n = 0. Let w 2 L. Then the �nite set Sw = fwg and the string uw = w hold

the conditions (i)' and (ii).

Suppose that it is valid for n � k (k � 1). For n = k + 1, let w 2 eOk+1(L). Then

there is a direct ancestor fw1; w2g � eOk(L) of w such that w1 = w2w. By our induction

hypothesis, for i = 1; 2 there are a �nite subsets Swi � L and and a string uwi 2 Swi such

that wi 2 eO�(Swi) and uwi = viwi for some vi 2 (Pre(eO�(Swi)))�. Put uw = uw1
and

Sw = Sw1
[Sw2

. Then uw 2 Sw and

Pre(eO�(Swi)) � eO�(Swi) � eO�(Sw) v Pre(eO�(Sw))
for i = 1; 2. Thus (Pre(eO�(Swi)))� v Pre(eO�(Sw)). It means v1; w2 2 (Pre(eO�(Sw)))�, and
so v1w2 2 (Pre(eO�(Sw)))+. By uw 2 Sw and uw = (v1w2)w, these imply (i)'w 2 eO�(Sw).
The proof by induction completes.

If w 2 Pre(eO�(L)), w 2 eOn(L) for some n 2 N . By the above, w 2 eO�(Sw) for some

�nite set Sw � L. Clearly w 2 eO�(Sw) implies w 2 Pre(eO�(Sw)) because of eO�(Sw) �eO�(L).
Theorem 2.8 (PFGL;v) is a complete lattice of PF for every language L.

Proof. It suÆces to show that for any nonempty subset G � PFGL, there exist the least

upper bound and the greatest lower bound of G in our set PFGL.

Let G be any nonempty subset of PFGL. Put T = eO�(SG2G G). By Lemma 2.3,

sup(G) = Pre(T) in the lattice PF. It is enough to show that Pre(T) 2 PFGL. By

L v G v sup(G)(= Pre(T)) for every G 2 G, clearly Pre(T) is a pre�x-free generating set

of L. Since Pre(T) has the property of unique decipherability, this set is reduced w.r.t. L

if every string in Pre(T) occurs in unique factorization of at least one string in L. Let w

be any string in Pre(T). Then Lemma 2.7 implies that there is a string uw 2
S
G2G G such

that uw = vw for some v 2 (Pre(T))�. Let Gw 2 G be a set such that uw 2 Gw. Then since

the set Gw is reduced w.r.t. L, uw occurs in the factorization of some string in L, i.e., there

is a string xw 2 L such that xw = yuwz for some y; z 2 G�w. Hence we have xw = yvwz

and y; v; z 2 (Pre(T))�. This means that Pre(T) is reduced w.r.t. L.

Next, we show the existence of the greatest lower bound of G in PFGL. By Lemma

2.4, inf(G) = Pre(T0) in PF , where T0 = eO�(TG2G G
+). Similarly to the above, it can be

shown that Pre(T0) is a generating set of L. Appealing to Lemma 2.6, there uniquely exists

a reduced and pre�x-free generating set G0 2 PFGL of L such that G0 � Pre(T0). By

(Pre(T0) =) inf(G) v G for every G 2 G, clearly the subset G0 of Pre(T0) is a lower bound

of G.

Now we show that G0 is the greatest lower bound of G in PFGL. Suppose the converse,

that is, there is a lower bound G 2 PFGL of G such that G 6v G0. Let w 2 G � G+
0 .

Similarly to the above, by G 2 PFGL, there is a string xw 2 L such that xw = uwv for

some u; v 2 G�. G v Pre(T0) implies u; v 2 (Pre(T0))
� and so w 2 (Pre(T0))

+. By the

choice of G0, the string xw has the same factorization in Pre(T0) and G0. Thus w 2 G+
0

must hold. This contradicts w 62 G+
0 .

Therefore G0 is the greatest lower bound of G in PFGL.

In general, for a subset G � PFGL, inf(G) is not always the greatest lower bound

of G in PFGL. In fact, let us consider a language L = fwg+, where w = abcdacdaab.

878 M. TERADA

Let G1 = fabcd; aab; acdg and G2 = fab; cdag. As easily seen, G1; G2 2 PFGL, and

inffG1; G2g = fabcdaab;wg. Clearly inffG1; G2g is not reduced although L v inffG1; G2g.

The greatest lower bound of fG1; G2g is given by fwg � inffG1; G2g. Note that the set

fwg is the greatest lower bound of the whole set PFGL.

By the above theorem, the lattice PFGL has the greatest lower bound of PFGL, that

is, the least element. The least element is given as follows:

Theorem 2.9 For any language L, Pre(eO�(L)) is the least element of PFGL under v.

Proof. By Lemma 2.2, L � eO�(L) v Pre(eO�(L)). Thus Pre(eO�(L)) is a pre�x-free

generating set of L. Furthermore, Lemma 2.1 implies Pre(eO�(L)) v G for every G 2 PFGL.

This means that Pre(eO�(L)) is reduced w.r.t. L, i.e., Pre(eO�(L)) 2 PFGL, and is the least

element of PFGL.

In what follows, we denote by Ginf
L and G

sup

L the least element and the greatest element

in PFGL, respectively. Clearly G
sup

L consists of all symbols of � appearing in some string

of L. That is,

Ginf
L = Pre(eO�(L)); G

sup

L = fa 2 � j a appears in some string in Lg;

and Ginf
L v G v G

sup

L for any G 2 PFGL.

As a direct result of the above theorem, it follows that:

Corollary 2.10 Let L1 and L2 be languages. If L1 � L2, then Ginf
L1

v Ginf
L2

.

Let L be a language and w 2 L. For a pre�x-free generating set G, the length of w

w.r.t. G, denoted by jwjG, is de�ned by the number of strings in G (allowing repetitions)

appearing in the unique factorization for w, i.e.,

jwjG = m; if w = u1u2 � � �um for some ui 2 G (i = 1; � � � ;m):

Since G is pre�x-free, every string w 2 L has a unique factorization of strings in G.

Thus the above length function j : : : jG is well-de�ned.

As easily seen, jwjGinf

L

� jwjG for any w 2 L and for any G 2 PFGL. In this sense, the

least element Ginf
L is a good generating set for the language L.

In what follows, we consider the case that Ginf
L is �nite.

If a language L is �nite, so is Ginf
L . In fact, the length of each string in Ginf

L is less than

or equal to that of the longest strings in L. Thus the cardinality of Ginf
L is at most �nite.

Theorem 2.11 Let L be a language. Ginf
L is �nite if and only if there is a �nite subset S

of L such that L v Ginf
S .

Proof. If part. Let S be a �nite subset of L satisfying L v Ginf
S . Since Ginf

S is reduced

w.r.t. S, it must be reduced w.r.t. the superset L of S. Thus Ginf
S 2 PFGL. By Theorem

2.9, Ginf
L v Ginf

S . On the other hand, by S � L, Corollary 2.10 implies Ginf
S v Ginf

L . Hence

Ginf
S = Ginf

L . Since S is �nite, and thus so is Ginf
L .

Only if part. Assume that Ginf
L is �nite. Let w be any string of Ginf

L , i.e., w 2 Pre(eO�(L)).
Then by Lemma 2.7, there is a �nite set Sw � L such that w 2 Pre(eO�(Sw)). Put S =

(
S
w2Ginf

L

Sw). Since G
inf
L is �nite, so is S. Furthermore, it can be easily seen that

Ginf
L �

[
w2Ginf

L

Pre(eO�(Sw)) � [
w2Ginf

L

eO�(Sw) � eO�(S) v Ginf
S :

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND LEARNING 879

Hence Ginf
L v Ginf

S . The converse is trivial since S � L holds. Consequently Ginf
L = Ginf

S for

the �nite set S � L.

The class of regular languages are known to be an important class located in the lowest in

Chomsky hierarchy, but the least elements for regular languages considered are not always

�nite. In fact, the language ab�a over the alphabet � = fa; bg is regular but Ginf
L = L to

be in�nite.

For a string w 2 �+, head(w) represents the �rst letter of w. We consider a particular

subclass of PFGL introduced by Yokomori[5]:

A generating set G of L is simple if head(u) 6= head(v) for any u; v 2 G with u 6= v.

Clearly a simple generating set is pre�x-free and the cardinality of any simple pre�x-free

set is less than or equal to that of �.

By SPFGL be the subclass of PFGL consisting of all simple reduced and pre�x-free

generating sets of L.

Watanabe[6] has shown the next result on SPFGL:

Theorem 2.12 (Watanabe[6]) For every language L, the set SPFGL is a �nite lattice.

Yokomori[5] gave an algorithm of �nding the least element Ginf
L in the subclass SPFGL

for a given �nite set L � �+ in polynomial time. We deal with the problem of �nding the

least element in PFGL in the next paragraph.

3 Polynomial Time Algorithms for Computing Ginf
L . In this section, we �rst

present an eÆcient algorithm for computing a reduced and pre�x-free generating set Ginf
L of

a �nite given language L. For an in�nite language, we give an eÆcient learning algorithm

for Ginf
L in the framework of identi�cation in the limit due to Gold[4], provided that Ginf

L is

�nite.

3.1 An Algorithm for a Finite Language. We �rst considerGinf
L for a �nite language

L. As shown in the previous section, Ginf
L = Pre(eO�(L)). If L is �nite, eOn(L) = eOn+1(L)

for some n, and eO�(L) = eOn(L). Thus it is easy to compute the set Ginf
L , but the number

n of operations eO may be exponential even if L is �nite. In order to avoid it, we introduce

another operations instead of O and eO as follows: For u; v 2 �+ and S � �+,

O0(u; v) =

�
fwg; if 9w 2 �+ s:t: v = uw;

�; otherwise;

eO0(S) =
[

u2Pre(S)

v2S�Pre(S)

O0(u; v) [Pre(S):

Similarly to the de�nition of the operation eO, we de�ne eO00(S) = S and eO0n+1(S) =eO0(eO0n(S)) for each n 2 N .

Clearly if eO0n(S) is pre�x-free for some n, eO0n(S) = eO0m(S) for any m � n, and we

denote it by eO0�(S).
Lemma 3.1 Let S � �+

be nonempty set and n 2 N . Then

(i) eO0n(S) v eO0n+1(S), (ii) eO0n(S) � eOn(S).

Proof. By the de�nition of the operation eO0, (i) is clearly valid. Thus we show (ii) only.

We prove (ii) by induction on n 2 N . It is clear for n = 0. Assume that it is valid for any

n � k (k 2 N). Let w be any string of eO0k+1(S). If w 2 eO0k(S), our induction hypothesis

880 M. TERADA

yields w 2 eOk(S), and thus w 2 eOk+1(S). Otherwise there are strings u 2 Pre(eO0k(S)) and
v 2 eO0k(S) � Pre(eO0k(S)) such that v = uw. By the induction hypothesis, u; v 2 eOk(S).

Since w 2 O(u; v), we have w 2 Ok+1(S). Hence eO0k+1(S) � eOk+1(S). Consequently (ii) is

valid for any n 2 N .

For a �nite set S of strings, we denote by]S and jjSjj the number and the sum of lengths

of strings contained in S, respectively.

Lemma 3.2 Let S � �+
be a �nite set and n 2 N . Then

(i)] eO0n(S) �] eO0n+1(S), where the equality is valid if eO0n(S) is pre�x-free.
(ii) jj eO0n(S)jj � jj eO0n+1(S)jj, where the equality is valid if and only if eO0n(S) is pre�x-

free.

Proof. As noted above, if eO0n(S) is pre�x-free, then the equalities of (i) and (ii) are valid.

Suppose that eO0n(S) is not pre�x-free.
By the de�nition of eO0, Pre(eO0n(S)) � eO0n+1(S). Thus it is enough to show that (i)'

]Sn �]S0n+1 and (ii)' jjSnjj > jjS0n+1jj, where

Sn = eO0n(S)� Pre(eO0n(S)); S0n+1 =
eO0n+1(S)� Pre(eO0n(S)):

As easily seen, for each w 2 S0n+1, there are two strings uw 2 Pre(eO0n(S)) and vw 2 Sn
such that vw = uww.

Since uw 2 Pre(eO0n(S)), it follows that vw 6= vw0 for any w0 2 S0n+1 with w0 6= w. Hence

]Sn �]S0n+1, i.e., (i)' is valid.

The inequality jjSnjj > jjS0n+1jj can be derived from jvwj > jwj for each w 2 S0n+1.

Theorem 3.3 For every �nite language L, eO0�(L) = Ginf
L .

Proof. Since L is �nite, by Lemma 3.2 eO0n(L) eventually becomes pre�x-free for some n,

say n0. Thus eO0n(L) = eO0n0(L) for any n � n0. It means that eO0�(L) = eO0n0 (L). By

Lemma 3.1, eO0�(L) � eOn0(L) � eO�(L) v Ginf
L . This implies eO0�(L) v Ginf

L .

In order to show the converse, we prove eOn(L) v eO0�(L) by induction on n 2 N . It

is clear for n = 0. Assume that eOk(L) v eO0�(L). Let w 2 eOk+1(L). If w 2 eOk(L), our

induction hypothesis yields w 2 (eO0�(L))+. Otherwise there is a direct ancestor fu; vg �eOk(L) of w such that u = vw. By the induction hypothesis, u; v 2 (eO0�(L))+. Since eO0�(L)
is pre�x-free, we obtain w 2 (eO0�(L))+. Thus eOn(L) v eO0�(L) for any n 2 N . It implies

that eO�(L) v eO0�(L). By Lemma 2.1, Ginf
L v eO0�(L).

Consequently we have Ginf
L = eO0�(L).

We �rst present a procedure for computing eO0(S) for a given �nite set S:

Algorithm eO0(S)
Input: a �nite set S of strings;

Output: the set eO0(S);
begin

T := �;

for each (u; v) 2 Pre(S)� (S � Pre(S)) do T := T [O0(u; v);

output T [Pre(S)

end.

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND LEARNING 881

Let n =]S and m = maxfjwj j w 2 Sg. In the above procedure, Pre(S) can be

computed in time O(n2m), and for each pair (u; v), O0(u; v) can be computed in O(m).

Thus the procedure for eO0(S) correctly outputs eO0(S) in time O(n2m).

Now we give a polynomial time algorithm for computing Ginf
L as follows:

Algorithm Ginf
L

Input: a �nite language L;

Output: the least element Ginf
L ;

begin

T := L;

repeat

T 0 := T ; T := eO0(T)
until T = T 0;

output T

end.

Theorem 3.4 Let L be a �nite language. Then Algorithm Ginf
L correctly computes Ginf

L in

time O(n3m2), where n =]L and m = maxfjwj j w 2 Lg.

Proof. As mentioned above, each eO0(T) can be computed in time O(n2m). By Lemma

3.2(ii), the number of the repetitions until T = T 0 is at most nm. Hence the time of

complexity is given by O(n3m2).

3.2 Identi�cation of Ginf
L in the Limit. In this subsection, we consider the problem

of identifying Ginf
L in the frame-work of inductive inference based on identi�cation in the

limit introduced by Gold[4] for language learning, provided Ginf
L is �nite.

Inductive inference is a process to guess an unknown general rule from given examples.

Gold[4] proposed a mathematical model of inductive inference based on a criterion called

identi�cation in the limit as follows: A positive presentation � of a language L is an in-

�nite sequence w1; w2; � � � of strings such that fwn j n � 1g = L. An inference machine

M is an e�ective procedure that requests a string and produces a hypothesis at a time.

Given a positive presentation � = w1; w2; � � �, M generates an in�nite sequence g1; g2; � � � of

hypotheses. In language identi�cation, hypotheses mean some devices de�ning languages

such as automata, formal grammars and so on. The inference machine M identi�es the

target language from positive examples, if for any positive presentation � the sequence of

the hypotheses g1; g2; � � � generated by M converges to some hypothesis g which de�nes

the target language. A language L is inferable from positive examples, if there exists an

inference machine which identi�es L from positive examples. Refer in detail to Gold[4].

In this paper, the goal of the learning process is the least pre�x-free generating set Ginf
L

but not usual devices de�ning the target language L. Thus the space of hypotheses is the

class of all pre�x-free sets to be �nite. According to the above, an inference machine M

identi�es the least pre�x-free generating set Ginf
L of L from positive examples in the limit,

if there is an integer n0 such that gn = Ginf
L for any n � n0.

Let G1; G2; � � � be an in�nite sequence of sets of strings. The sequence G1; G2; � � � con-

verges to a set G � �+, denoted by lim
n!1

Gn = G, if there exists an integer n0 such that

Gn = G for any n � n0.

Let � = w1; w2; � � � be a positive presentation of L, and let Sn = fw1; w2; � � � ; wng for

each n 2 N .

882 M. TERADA

Lemma 3.5 Let L be a language. If Ginf
L is �nite, then

lim
n!1

Ginf
Sn

= Ginf
L :

Proof. By Theorem 2.11, there exists a �nite subset S of L such that Ginf
S = Ginf

L . Since

S is �nite, S � Sn0
for some n0 2 N . Using Corollary 2.10, Ginf

S v Ginf
Sn

v Ginf
L for any

n � n0. Hence G
inf
S = Ginf

L implies Ginf
Sn

= Ginf
L for any n � n0.

Lemma 3.6 For a �nite set S � �+
and a string w 2 �+

,

Ginf
S[fwg = Ginf

Ginf

S
[fwg

:

Proof. Clearly S [fwg v Ginf
S [fwg. By Theorem 2.9, Ginf

S[fwg
is the least element of

PFGS[fwg, and so Ginf
S[fwg

v Ginf

Ginf

S
[fwg

.

Next, we prove the converse. Since Ginf
S [fwg � O�(S [fwg), GS[fwg is a pre�x-free

generating set of Ginf
S [fwg. Appealing to Theorem 2.9, we get Ginf

Ginf

S
[fwg

v Ginf
S[fwg

.

Now we present an inference algorithm as follows:

Algorithm LA
Input: a positive presentation of a language L;

Output: a sequence of reduced and pre�x-free generating sets;

begin

G0 := �; n := 1;

repeat

read the next data wn;

Gn := Ginf
Gn�1[fwng

;

output Gn as the n-th conjecture;

n := n+ 1

forever

end.

For each n, let Sn = fw1; � � � ; wng be a sample set of a target language L, and Gn be

the n-th hypothesis of the above algorithm.

Theorem 3.7 Let L be a language. If Ginf
L is �nite, the algorithm LA identi�es Ginf

L from

positive examples in the limit, and may be implemented to update the n-th hypothesis in

time O(n3m2), where m = maxfjwij j i = 1; 2; � � � ; ng.

Proof. By Lemma 3.6, it is easy to show that Gn = Ginf
Sn

for any n. Appealing to Lemma

3.5, we obtain lim
n!1

Gn = Ginf
L because Ginf

L is �nite. Thus the algorithm identi�es Ginf
L in

the limit.

Using Theorem 3.3,]Ginf
Sn

� n and the length of the longest strings in Ginf
Sn

is less than

or equal to that in Sn. Thus by Theorem 3.4, the algorithm LA may be implemented to

update the n-th conjecture Gn = Ginf
Sn�1[fwng

in time O(n3m2), where m = maxfjwij j i =

1; 2; � � � ; ng.

Acknowledgements

The author would like to give his thanks to Prof. Masako Sato and Dr. Yasuhito Muk-

ouchi of Osaka prefecture university for their valuable suggestions and comments.

PREFIX-FREE GENERATING SETS OF FORMAL LANGUAGES AND LEARNING 883

References

[1] Angluin, D.: Inductive Inference of Formal Languages from Positive Data. Information and

Control, 45 (1980), 117{135.

[2] Ash, R.: \Information Theory." Interscience Publishers, (1965).

[3] Capocelli, R.M.: A Decision Procedure for Finite Decipherability and Synchronizability of Mul-

tivalued Encodings. IEEE Transactions on Information Theory, IT-28(2) (1982), 307{318.

[4] Gold, E.M.: Language Identi�cation in the Limit. Information and Control, 10 (1967), 447{474.

[5] Yokomori, T.: On Polynomial-Time Learnability in the Limit of Strictly Deterministic Au-

tomata. Machine Learning, 19 (1995), 153{179.

[6] Watanabe, N.: Polynomial-Time Inductive Inference of Simple Regular Automata. Master the-

sis, Osaka Prefecture University, (1996).

Department of Mathematics and Information Sciences,

Graduate School, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan

