NOTE ON PROPER BCI-ALGEBRAS WITH ORDERS FIVE AND SIX

JIANG HAO AND JIN ZHAOSHENG

Received February 27, 2001

ABSTRACT. It is showed that I_{5-3-10} and I_{5-3-11} given in [1] are isomorphic. Some problems appeared in [2] are also discussed.

The first author has determined all proper BCI-algebras of order $n \leq 5$ in [1]. But owing to a neglect in the computation, I_{5-3-10} and I_{5-3-11} given in [1] are in fact isomorphic. Therefore I_{5-3-11} should be deleted from the classification table. The multiplication table of I_{5-3-10} and I_{5-3-11} are showed here by Table 1 and Table 2 respectively.

*		0	1	2	3	4	*		0	1	2	3	4	
_	—	—	—	—	—	—	—	—	—	—	—	—	—	
0		0	0	0	3	3	0		0	0	0	3	3	
1		1	0	1	4	3	1		1	0	1	3	3	
2	Ì	2	2	0	3	3	2	Ì	2	2	0	4	3	
3	Ì	3	3	3	0	0	3	Ì	3	3	3	0	0	
4	Ì	4	3	4	1	0	4	Ì	4	4	3	2	0	
		Т	able	1			$Table \ 2$							
		I_5	-3-	10			I_{5-3-11}							

If we rewrite Table 2 by changing the order of the figures 1 and 2, then we obtain Table 3.

*		0	2	1	3	4	Now, compare Table 3 with Table 1, it is easy to see that
_	_	_	_	_	_	_	I_{5-3-11} is isomorphic to I_{5-3-10} . We examine carefully the
0		0	0	0	3	3	classification tables given in [1] and find that all other pro-
2		2	0	2	4	3	per BCI-algebras given in [1] are indeed not isomorphic to
1		1	1	0	3	3	each other. J.Meng, Y.B.Jun and E.H.Roh have deter-
3		3	3	3	0	0	mined all proper BCI-algebras of order 6 in [2]. Let X be
4		4	3	4	2	0	a proper BCI-algebra of order 6. By $B(X)$ we denote its

Table 3 BCK-part, and by P(X) its p-semisimple part which is composed of all minimal elements of X. If $X = B(X) \cup_L P(X)$, i.e.X is the Li Xin union algebra of B(X) and P(X) (see [1]), then we call its construction to be simple, otherwise its construction to be complicated. In [2] the Cayley tables and Hasse diagrams of all 69 complicated proper BCI-algebras of order 6 are given. By I_{6-r} we mean the algebra given by the *r*th Cayley table in [2].

AMS(1991) Subject classification. 06F35, 03G25

Key words and phrases. proper BCI-algebras, classification problem.

Project 19971074 supported by National Natural Science Foundation of China .

We find that Table 37 and Table 38 given in [2] are just the same. There must be some mistakes, since I_{6-37} and I_{6-38} are not isomorphic. Here we show a proper BCI-algebra of order six, its Cayley table is showed by Table 4. We denote this algebra by X. The Cayley table of I_{6-37} is showed by Table 5.

*		0	1	2	3	4	5	*		0	1	2	3	4	5
—	_	—	—	_	—	—	_	—	—	_	_	—	—	—	—
0		0	0	0	3	3	3	0		0	0	0	3	3	3
1		1	0	0	3	3	3	1		1	0	0	3	3	3
2		2	1	0	4	3	3	2		2	1	0	3	3	3
3		3	3	3	0	0	0	3		3	3	3	0	0	0
4		4	3	3	1	0	0	4		4	3	3	1	0	0
5		5	3	3	1	1	0	5		5	3	3	1	1	0
		Т	able	4(2	K)					Tal	ble~5	$(I_{6}$	-37)		

These two tables are different only on one point: In Table 4, 2 * 3 = 4, but in Table 5, we have 2 * 3 = 3. By routine calculation we can find that X contains two subalgebras of order five, i.e., $\{0,1,2,3,4\}$ and $\{0,1,2,3,5\}$, which are of the type I_{5-3-4} . But I_{6-37} contains two subalgebras of order five, i.e., $\{0,1,2,3,4\}$ and $\{0,1,3,4,5\}$, which are of type I_{5-3-5} . (For the meaning of the symbols I_{5-3-4} and I_{5-3-5} , the reader is referred to [1].) So X is not isomorphic to I_{6-37} . We belive that X is the I_{6-38} in [2]. There is a misprint in its Cayley table given in [2] on the point 2 * 3.

Table 62 and Table 63 given in [2] are also the same. By similar calculation, we find that there is a misprint in Table 63 on the point 1 * 2, it should equal 2 instead of 5. The correct Cayley table of I_{6-63} is showed by Table 6.

*		0	1	2	3	4	5	The Cayley tables of I_{6-62} and I_{6-63} are different only
—	—	—	_	_	_	_	_	on one point: In I_{6-62} we have $1 * 2 = 5$, but in I_{6-63}
0		0	0	2	3	4	2	we have $1 * 2 = 2$. These two algebras are indeed not
1		1	0	2	3	4	2	isomorphic, since I_{6-63} contains a subalgebra $I_{5-2-1} =$
2		2	2	0	4	3	0	$\{0,1,2,3,4\}$, but I_{6-62} contains no subalgebra of order
3		3	3	4	0	2	4	five.
4		4	4	3	2	0	3	
5		5	2	1	4	3	0	

Table 6

References

1. Jiang Hao, Atlas of proper BCI-algebras of order $n \leq 5$, Math. Japon., 38(3)(1993), 589-591.

2. J. Meng, Y.B. Jun and E.H. Roh, BCI-algebras of order 6, Math. Japon., 47(1)(1998), 33-43.

DEPARTMENT OF MATHEMATICS, XIXI CAMPUS OF ZHEJIANG UNIVERSITY, HANGZHOU 310028 P.R. CHINA

E-mail: jmhty@mail.hz.zj.cn