NOTE ON PROPER BCI-ALGEBRAS WITH ORDERS FIVE AND SIX

Jiang Hao and Jin Zhaosheng

Received February 27, 2001

Abstract

It is showed that I_{5-3-10} and I_{5-3-11} given in [1] are isomorphic. Some problems appeared in [2] are also discussed.

The first author has determined all proper BCI-algebras of order $n \leq 5$ in [1]. But owing to a neglect in the computation, I_{5-3-10} and I_{5-3-11} given in [1] are in fact isomorphic. Therefore I_{5-3-11} should be deleted from the classification table. The multiplication table of I_{5-3-10} and I_{5-3-11} are showed here by Table 1 and Table 2 respectively.

$*$	\mid	0	1	2	3	4	$*$	\mid	0	1	2	3	4
-	-	-	-	-	-	-	-	-	-	-	-	-	
0	1	0	0	0	3	3	0	\mid	0	0	0	3	3
1	1	0	1	4	3	1	\mid	1	0	1	3	3	
2	1	2	2	3	3	2	\mid	2	2	0	4	3	
3	1	3	3	3	0	0	3		3	3	3	0	0
4		4	3	4	1	0	4		4	4	3	2	0

Table 1
I_{5-3-10}

Table 2
I_{5-3-11}

If we rewrite Table 2 by changing the order of the figures 1 and 2 , then we obtain Table 3 .

$*$	\mid	0	2	1	3	4	Now, compare Table 3 with Table 1 , it is easy to see that
-	-	-	-	-	-	I_{5-3-11} is isomorphic to I_{5-3-10}. We examine carefully the	
0	0	0	0	3	3	classification tables given in [1] and find that all other pro-	
2	2	0	2	4	3	per BCI-algebras given in [1] are indeed not isomorphic to	
1	1	1	0	3	3	each other. J.Meng, Y.B.Jun and E.H.Roh have deter-	
3		3	3	3	0	0	mined all proper BCI-algebras of order 6 in $[2]$. Let X be
4	4	3	4	2	0	a proper BCI-algebra of order 6 . By $B(X)$ we denote its	

Table 3
BCK-part, and by $P(X)$ its p-semisimple part which is composed of all minimal elements of X. If $X=B(X) \cup_{L} P(X)$, i.e. X is the Li Xin union algebra of $B(X)$ and $P(X)$ (see [1]), then we call its construction to be simple, otherwise its construction to be complicated. In [2] the Cayley tables and Hasse diagrams of all 69 complicated proper BCI-algebras of order 6 are given. By I_{6-r} we mean the algebra given by the r th Cayley table in [2].

[^0]We find that Table 37 and Table 38 given in [2] are just the same. There must be some mistakes, since I_{6-37} and I_{6-38} are not isomorphic. Here we show a proper BCI-algebra of order six, its Cayley table is showed by Table 4 . We denote this algebra by X. The Cayley table of I_{6-37} is showed by Table 5.

$*$	\mid	0	1	2	3	4	5
-	-	-	-	-	-	-	-
0	0	0	0	3	3	3	
1	1	0	0	3	3	3	
2		2	1	0	4	3	3
3		3	3	3	0	0	0
4	4	3	3	1	0	0	
5		5	3	3	1	1	0

$*$	\mid	0	1	2	3	4	5
-	-	-	-	-	-	-	-
0		0	0	0	3	3	3
1	1	1	0	0	3	3	3
2		2	1	0	3	3	3
3		3	3	3	0	0	0
4		4	3	3	1	0	0
5	5	3	3	1	1	0	

Table $4(X)$
Table $5\left(I_{6-37}\right)$
These two tables are different only on one point: In Table $4,2 * 3=4$, but in Table 5, we have $2 * 3=3$. By routine calculation we can find that X contains two subalgebras of order five, i.e., $\{0,1,2,3,4\}$ and $\{0,1,2,3,5\}$, which are of the type I_{5-3-4}. But I_{6-37} contains two subalgebras of order five, i.e., $\{0,1,2,3,4\}$ and $\{0,1,3,4,5\}$, which are of type I_{5-3-5}. (For the meaning of the symbols I_{5-3-4} and I_{5-3-5}, the reader is referred to [1].) So X is not isomorphic to I_{6-37}. We belive that X is the I_{6-38} in [2]. There is a misprint in its Cayley table given in [2] on the point $2 * 3$.

Table 62 and Table 63 given in [2] are also the same. By similar calculation, we find that there is a misprint in Table 63 on the point $1 * 2$, it should equal 2 instead of 5 . The correct Cayley table of I_{6-63} is showed by Table 6.

$*$	\mid	0	1	2	3	4	5	The Cayley tables of I_{6-62} and I_{6-63} are different only
-	-	-	-	-	-	-	-	on one point: In I_{6-62} we have $1 * 2=5$, but in I_{6-63}
0	\mid	0	0	2	3	4	2	we have $1 * 2=2$. These two algebras are indeed not
1	1	1	0	2	3	4	2	isomorphic, since I_{6-63} contains a subalgebra $\mathrm{I}_{5-2-1}=$
2	2	2	0	4	3	0	$\{0,1,2,3,4\}$, but I_{6-62} contains no subalgebra of order	
3	3	3	4	0	2	4	five.	
4	4	4	3	2	0	3		
5	5	2	1	4	3	0		

Table 6

References

1. Jiang Hao, Atlas of proper BCI-algebras of order $n \leq 5$, Math. Japon., 38(3)(1993), 589-591.
2. J. Meng, Y.B. Jun and E.H. Roh, BCI-algebras of order 6, Math. Japon., 47(1)(1998), 33-43.

Department of Mathematics, Xixi campus of Zhejiang University, Hangzhou 310028 P.R. China
E-mail: jmhty@mail.hz.zj.cn

[^0]: AMS(1991) Subject classification. 06F35, 03G25
 Key words and phrases. proper BCI-algebras, classification problem.
 Project 19971074 supported by National Natural Science Foundation of China .

