BCK/BCI-RELATIONS

Young Bae Jun

Received November 20, 2000

Abstract

We introduce the notion of a BCK/BCI-relation which is a generalization of a homomorphism of BCK/BCI-algebras, and investigates some properties related to the subalgebras.

1. Introduction

The notion of BCK-algberas was proposed by Imai and Iséki in 1966. In the same year, Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algbera. In this paper, as a generalization of a homomorphism of $\mathrm{BCK} / \mathrm{BCI}$-algebras, the concept of BCK/BCI-relations is introduced, and then basic properties related to the subalgebras are investigated.

2. Preliminaries

We include some elementary aspects of $\mathrm{BCK} / \mathrm{BCI}$-algebras that are necessary for this paper, and for more details we refer to [3].

By a BCI-algebra we mean an algebra ($X, *, 0$) of type (2,0) satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0$ and $y * x=0$ imply $x=y$
for all $x, y, z \in X$. A BCI-algebra X satisfying the additional condition:
(V) $0 * x=0$ for all $x \in X$
is called a $B C K$-algebra. In any BCK/BCI-algebra X one can define a partial ordering " $\leq "$ on X by $x \leq y$ if and only if $x * y=0$.

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A mapping $f: X \rightarrow Y$ of BCK/BCI-algberas is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism of BCK/BCI-algberas, then $f\left(0_{X}\right)=0_{Y}$, where 0_{X} and 0_{Y} are zero elements of X and Y, respectively.

3. BCK/BCI-relations

Definition 3.1. Let X and Y be BCK/BCI-algebras. A nonempty relation $\Theta \subseteq X \times Y$ is called a BCK/BCI-relation if
(R1) for every $x \in X$ there exists $y \in Y$ such that $x \Theta y$,
(R2) $x \Theta a$ and $y \Theta b$ imply $(x * y) \Theta(a * b)$.

[^0]We usually denote such relation by $\Theta: X \rightarrow Y$. It is clear from (R1) and (R2) that $0_{X} \Theta 0_{Y}$.
Example 3.2. (1) Consider a BCK-algebra $X=\{0, a, b, c\}$ possessing the following Cayley table (see [3]):

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Define a relation $\Theta: X \rightarrow X$ as follows: $0 \Theta 0,0 \Theta a, 0 \Theta b, a \Theta 0, a \Theta a, a \Theta b, b \Theta 0, c \Theta 0$. It is easy to verify that Θ is a BCK-relation.
(2) Consider a BCI-algebra $X=\{0, a, b, c\}$ having the following Cayley table (see [4]):

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Define a relation $\Omega: X \rightarrow X$ as follows: $0 \Omega 0,0 \Omega b, a \Omega 0, a \Omega b, b \Omega 0, b \Omega b, c \Omega 0, c \Omega b$. It is easy to verify that Ω is a BCI-relation.
(3) Consider two BCI-algebras $X=\{0,1,2\}$ and $Y=\{0, a, b\}$ having the following Cayley tables (see [1]):

Let $\Psi: X \rightarrow Y$ be a relation defined by $0 \Psi 0,0 \Psi b, 1 \Psi 0,1 \Psi b, 2 \Psi 0,2 \Psi b$. It is easy to verify that Ψ is a BCI-relation. If a relation $\Phi: X \rightarrow Y$ is defined by $0 \Phi 0,1 \Phi 0,2 \Phi 0$, then Φ is a BCI-relation which is a homomorphism.

Theorem 3.3. Every homomorphism of BCK/BCI-algebras is a BCK/BCI-relation.
Proof. Let $\Theta: X \rightarrow Y$ be a homomorphism of BCK/BCI-algebras. Clearly, Θ satisfies conditions (R1) and (R2).

The following example shows that the converse of Theorem 3.3 need not be true.
Example 3.4. In Example 3.2, the BCK/BCI-relation Θ and Ω are not homomorphisms.
Let $\Theta: X \rightarrow Y$ be a BCK/BCI-relation. For any $x \in X$ and $y \in Y$, let

$$
\Theta[x]:=\{y \in Y \mid x \Theta y\} \quad \text { and } \quad \Theta^{-1}[y]:=\{x \in X \mid x \Theta y\} .
$$

Note that $\Theta[x]$ and $\Theta^{-1}[y]$ are not subalgebras of Y and X, respectively as seen in the following example.

Example 3.5. Let $X=\{0, a, b\}$ be a BCI-algebra with Cayley table as follows (see [1]):

$*$	0	a	b
0	0	a	b
a	a	0	b
b	b	a	0

Define a relation $\Theta: X \rightarrow X$ as follows: $0 \Theta 0, a \Theta b, b \Theta a$. It is routine to show that Θ is a BCI-relation, and that $\Theta^{-1}[b]=\{a\}$ (resp. $\Theta[a]=\{b\}$) is not a subalgebra of X (resp. Y).

Theorem 3.6. For any BCK/BCI-relation $\Theta: X \rightarrow Y$, we have
(i) $\Theta\left[0_{X}\right]$, called the zero image of Θ, is a subalgebra of Y.
(ii) $\Theta^{-1}\left[0_{Y}\right]$, called the kernel of Θ and denoted by $\operatorname{Ker} \Theta$, is a subalgebra of X.

Proof. (i) Let $y_{1}, y_{2} \in \Theta\left[0_{X}\right]$. Then $0_{X} \Theta y_{1}$ and $0_{X} \Theta y_{2}$. It follows from (R2) and (III) that $0_{X} \Theta\left(y_{1} * y_{2}\right)$, that is, $y_{1} * y_{2} \in \Theta\left[0_{X}\right]$.
(ii) Let $x_{1}, x_{2} \in \operatorname{Ker} \Theta$. Then $x_{1} \Theta 0_{Y}$ and $x_{2} \Theta 0_{Y}$. By using (R2) and (III), we get $\left(x_{1} * x_{2}\right) \Theta 0_{Y}$ and so $x_{1} * x_{2} \in \operatorname{Ker} \Theta$. This completes the proof.

Proposition 3.7. Let $\Theta: X \rightarrow Y$ be a $B C K / B C I$-relation.
(i) If $\Theta[a] \cap \Theta[b] \neq \emptyset$ where $a, b \in X$, then $a * b \in \operatorname{Ker} \Theta$.
(ii) If $\Theta^{-1}[u] \cap \Theta^{-1}[v] \neq \emptyset$ where $u, v \in Y$, then $u * v \in \Theta\left[0_{X}\right]$.

Proof. (i) Let $a, b \in X$ be such that $\Theta[a] \cap \Theta[b] \neq \emptyset$. Taking $y \in \Theta[a] \cap \Theta[b]$, we have $a \Theta y$ and $b \Theta y$. It follows from (R2) and (III) that $(a * b) \Theta(y * y)=(a * b) \Theta 0_{Y}$ so that $a * b \in \operatorname{Ker} \Theta$.
(ii) Let $x \in \Theta^{-1}[u] \cap \Theta^{-1}[v]$. Then $x \Theta u$ and $x \Theta v$. Using (R2) and (III), we obtain $(x * x) \Theta(u * v)=0_{X} \Theta(u * v)$, i.e., $u * v \in \Theta\left[0_{X}\right]$. This completes the proof.

Theorem 3.8. Let $\Theta: X \rightarrow Y$ be a $B C K / B C I-r e l a t i o n ~ a n d ~ l e t ~ S e ~ a ~ s u b a l g e b r a ~ o f ~ X . ~$ Then

$$
\Theta[S]:=\{y \in Y \mid x \Theta y \text { for some } x \in S\}
$$

is a subalgebra of Y.
Proof. Clearly, $\Theta[S] \neq \emptyset$ since $0_{X} \Theta 0_{Y}$. Let $y_{1}, y_{2} \in \Theta[S]$. Then $x_{1} \Theta y_{1}$ and $x_{2} \Theta y_{2}$ for some $x_{1}, x_{2} \in S$. Using (R2), we obtain $\left(x_{1} * x_{2}\right) \Theta\left(y_{1} * y_{2}\right)$ which implies that $y_{1} * y_{2} \in \Theta[S]$ since $x_{1} * x_{2} \in S$. Therefore $\Theta[S]$ is a subalgebra of Y.

Corollary 3.9. Let $\Theta: X \rightarrow Y$ be a $B C K / B C I-r e l a t i o n . ~ T h e n ~$
(i) $\Theta[X]$ is a subalgebra of Y.
(ii) $\Theta[X]:=\underset{x \in X}{\cup} \Theta[x]$.
(iii) The zero image of Θ is a subalgebra of $\Theta[X]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $a, b \in \Theta\left[0_{X}\right]$. Then $0_{X} \Theta a$ and $0_{X} \Theta b$, and hence $0_{X} \Theta(a * b)$, i.e., $a * b \in \Theta\left[0_{X}\right]$. Therefore $\Theta\left[0_{X}\right]$ is a subalgbera of $\Theta[X]$.

Theorem 3.10. Let $\Theta: X \rightarrow Y$ be a $B C K / B C I$-relation and let T be a subalgebra of Y. Then

$$
\Theta^{-1}[T]:=\{x \in X \mid x \Theta y \text { for some } y \in T\}
$$

is a subalgebra of X.
Proof. Obviously, $\Theta^{-1}[T] \neq \emptyset$ since $0_{X} \Theta 0_{Y}$. Let $x_{1}, x_{2} \in \Theta^{-1}[T]$. Then there exist $y_{1}, y_{2} \in T$ such that $x_{1} \Theta y_{1}$ and $x_{2} \Theta y_{2}$. Note that $y_{1} * y_{2} \in T$ since T is a subalgbera of Y.

It follows from (R2) that $\left(x_{1} * x_{2}\right) \Theta\left(y_{1} * y_{2}\right)$ so that $x_{1} * x_{2} \in \Theta^{-1}[T]$. Hence $\Theta^{-1}[T]$ is a subalgebra of X.

(i) $\Theta^{-1}[Y]$ is a subalgebra of X.
(ii) $\Theta^{-1}[Y]:=\underset{y \in Y}{\cup} \Theta^{-1}[y]$.
(iii) The kernel of Θ is a subalgebra of $\Theta^{-1}[Y]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $x, y \in \operatorname{Ker} \Theta$. Then $x \Theta 0_{Y}$ and $y \Theta 0_{Y}$. It follows from (R2) and (III) that $(x * y) \Theta\left(0_{Y} * 0_{Y}\right)=(x * y) \Theta 0_{Y}$ so that $x * y \in \operatorname{Ker} \Theta$. Hence $\operatorname{Ker} \Theta$ is a subalgebra of $\Theta^{-1}[Y]$. This completes the proof.

References

[1] E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japonica 33(4) (1988), 517-522.
[2] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[3] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Korea, 1994.
[4] Q. Zhang, Some endomorphisms of BCI-algebras, Math. Japonica 36(3) (1991), 503-506.

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr

[^0]: Key words and phrases. BCK/BCI-relation, subalgebra, homomorphism, kernel, zero image. 2000 Mathematics Subject Classification. 06F35, 03G25 .

