PARALINDELÖF SUBSPACES IN PRODUCTS OF TWO ORDINALS

NOBUYUKI KEMOTO AND KIMIHITO KUWAOKA

Received December 18, 2000

ABSTRACT. Let ρ and σ be ordinals with the order topologies. It is known from [KTY] that metacompactness, screenability and weak submetaLindelöfness are equivalent for every subspace of $\rho \times \sigma$. However there are a metacompact subspace of $(\omega_1 + 1) \times (\omega_2 + 1)$ which is not subparacompact, and a subparacompact subspace of $(\omega + 1) \times (\omega_1 + 1)$ which is not paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not difficult to show that these examples are not paraLindelöf. So it is natural to ask whether all paraLindelöf subspaces of $\rho \times \sigma$ are paracompact for every ordinals ρ and σ . In this paper, we will see that paraLindelöf subspaces of subspaces of $(\rho + 1) \times (\omega_1 \cdot \omega)$ are paracompact for every ordinal ρ , where $\omega_1 \cdot \omega$ denotes the ordinal number $\omega_1 + \omega_1 + \cdots (\omega$ -times), see [Ku, I Definition 7.19]. Moreover we will show that paraLindelöf subspaces of $(\rho + 1)^2$ are paracompact for every ordinal $\rho < \omega_1 \cdot \omega_1$. And we will construct a non-paracompact subspace X of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ which can be represented as the locally countable union of clopen paracompact subspaces.

All spaces are assumed to be regular T_1 . Let ρ and σ be ordinals with the order topologies. It is known from [KTY] that metacompactness, screenability and weak submetaLindelöfness are equivalent for every subspace of $\rho \times \sigma$. So at least, such paraLindelöf subspaces are metacompact. However there are a metacompact subspace of $(\omega_1 + 1) \times (\omega_2 + 1)$ which is not subparacompact, and a subparacompact subspace of $(\omega + 1) \times (\omega_1 + 1)$ which is not paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not difficult to show that these examples are not paraLindelöf. In this connection, it is known in [KY] that for subspaces $A \subset \rho$ and $B \subset \sigma$, $A \times B$ is paracompact iff A and B are paracompact. Since, by [Be], paraLindelöf GO-spaces are paracompact, for subspaces $A \subset \rho$ and $B \subset \sigma$, $A \times B$ is paraLindelöf iff $A \times B$ is paracompact. So it is natural to ask whether all paraLindelöf subspaces of $\rho \times \sigma$ are paracompact for every ordinals ρ and σ . In this paper, we will see that paraLindelöf subspaces of $(\rho + 1) \times (\omega_1 \cdot \omega)$ are paracompact for every ordinal ρ , where $\omega_1 \cdot \omega$ denotes the ordinal number $\omega_1 + \omega_1 + \cdots + (\omega$ -times), see [Ku, I Definition 7.19]. Moreover we will show that paraLindelöf subspaces of $(\rho + 1)^2$ are paracompact for every ordinal $\rho < \omega_1 \cdot \omega_1$. And we will construct a non-paracompact subspace X of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ which can be represented as the locally countable union of clopen paracompact subspaces. We recall basic definitions and introduce specific notation from [KTY].

In our discussion, for some technical reasons, we always assume $X \subset (\rho + 1) \times (\sigma + 1)$ for some suitably large ordinals ρ and σ . Moreover, in general, the letters μ and ν stand for limit ordinals with $\mu \leq \rho$ and $\nu \leq \sigma$. For each $A \subset \rho + 1$ and $B \subset \sigma + 1$ put

$$X_A = A \times (\sigma + 1) \cap X, \ X^B = (\rho + 1) \times B \cap X,$$

and

$$X_A^B = X_A \cap X^B$$

AMS subject Classification: 54B10, 54D20.

Key words and phrases: paracompact, paraLindelöf, ordinal, product space

For each $\alpha \leq \rho$ and $\beta \leq \sigma$, put

$$V_{\alpha}(X) = \{ \beta \le \sigma : \langle \alpha, \beta \rangle \in X \},\$$
$$H_{\beta}(X) = \{ \alpha \le \rho : \langle \alpha, \beta \rangle \in X \}.$$

cf μ denotes the cofinality of the ordinal μ . When cf $\mu \geq \omega_1$, a subset S of μ is called stationary in μ if it intersects all cub (i.e., closed and unbounded) sets in μ . Moreover for each $A \subset \mu$, $\lim_{\mu} (A)$ is the set $\{\alpha < \mu : \alpha = \sup(A \cap \alpha)\}$, in other words, the set of all cluster points of A in μ . For convenience, we consider $\sup \emptyset = -1$ and -1 is the immediate predecessor of the ordinal 0. Therefore $\lim_{\mu} (A)$ is cub in μ whenever A is unbounded in μ . We will simply denote $\lim_{\mu} (A)$ by $\lim_{\mu} (A)$ if the situation is clear in its context. In particular, assume C is a cub set in μ with cf $\mu \geq \omega$, then $\lim_{\mu} (C) \subset C$. In this case, we define $\operatorname{Succ}(C) = C \setminus \operatorname{Lim}(C)$, and $\operatorname{p}_C(\alpha) = \sup(C \cap \alpha)$ for each $\alpha \in C$. Note that, for each $\alpha \in C$, $\operatorname{p}_C(\alpha) \in C \cup \{-1\}$, and $\operatorname{p}_C(\alpha) < \alpha$ iff $\alpha \in \operatorname{Succ}(C)$. So $\operatorname{p}_C(\alpha)$ is the immediate predecessor of α in $C \cup \{-1\}$ whenever $\alpha \in \operatorname{Succ}(C)$. Moreover observe that $\mu \setminus C$ is the union of the pairwise disjoint collection $\{(\operatorname{p}_C(\alpha), \alpha) : \alpha \in \operatorname{Succ}(C)\}$ of open intervals of μ and that $\mu \setminus \operatorname{Lim}(C)$ is the union of the pairwise disjoint collection $\{(\operatorname{p}_C(\alpha), \alpha) : \alpha \in \operatorname{Succ}(C)\}$ of clopen intervals of μ . For short, let denote $\operatorname{Lim} = \operatorname{Lim}(\omega_1)$ and $\operatorname{Succ} = \operatorname{Succ}(\omega_1)$.

Let κ be a regular uncountable cardinal and $A \subset \kappa$. Assume that a cub set C_{γ} is assigned for each $\gamma \in A$. Then, by the argument of [Ku, II 6.14], the diagonal intersection

$$\Delta_{\gamma \in A} C_{\gamma} = \{ \delta < \kappa : \forall \gamma \in A \cap \delta(\delta \in C_{\gamma}) \}$$

is cub in κ .

A strictly increasing function $M : \operatorname{cf} \mu + 1 \to \mu + 1$ is said to be a normal function for μ if $M(\gamma) = \sup\{M(\gamma') : \gamma' < \gamma\}$ for each limit ordinal $\gamma \leq \operatorname{cf} \mu$ and $M(\operatorname{cf} \mu) = \mu$. Observe that, if $\operatorname{cf} \mu \geq \omega_1$, then two normal functions for μ coincide on a cub set of $\operatorname{cf} \mu$. Note that a normal function for μ always exists if $\operatorname{cf} \mu \geq \omega$. So we always fix a normal function M for each ordinal μ with $\operatorname{cf} \mu \geq \omega$. In particular, if μ is regular, i.e. $\operatorname{cf} \mu = \mu$, then we can fix the identity map on $\mu + 1$ as the normal function. Then M carries $\operatorname{cf} \mu + 1$ homeomorphically to the range ran M of M and ran M is closed in $\mu + 1$. Note that for all $S \subset \mu$ with $\operatorname{cf} \mu \geq \omega_1$, S is stationary in μ if and only if $M^{-1}(S)$ is stationary in $\operatorname{cf} \mu$. For convenience, we define M(-1) = -1.

A space Y is said to be $paraLindel \ddot{o}f$ if every open cover of Y has a locally countable open refinement.

The next lemma follows from [KTY, Lemma 2.2].

Lemma 1. Let Y be a subspace of $\rho + 1$ for some ordinal ρ . Then the following are equivalent:

- (A) Y is paracompact,
- (B) Y is paraLindelöf,
- (C) For every $\mu \in (\rho + 1) \setminus Y$ with cf $\mu \ge \omega_1$, $Y \cap \mu$ is not stationary in μ .

Lemma 2. Let X be a paraLindelöf subspace of $(\mu + 1) \times (\nu + 1)$ and let E be a closed subset which is disjoint from $X^{\{\nu\}}$. If cf $\nu \ge \omega_1$, then E and $X^{\{\nu\}}$ are separated by disjoint open subsets of X.

Proof. Let $\mathcal{U} = \{X \setminus E\} \cup \{X^{[0,N(\delta)]} : \delta < \operatorname{cf} \nu\}$. Then \mathcal{U} is an open cover of X. Since X is paraLindelöf, there is a precise locally countable open refinement $\mathcal{W} = \{W\} \cup \{W(\delta) : \delta < \operatorname{cf} \nu\}$ of \mathcal{U} , where "precise" means $W \subset X \setminus E$ and $W(\delta) \subset X^{[0,N(\delta)]}$ for each $\delta < \operatorname{cf} \nu$. Let

 $G = \bigcup_{\delta < cf \nu} W(\delta)$, then $E \subset G$. It suffices to show $X^{\{\nu\}} \subset X \setminus ClG$. Let $\langle \alpha, \nu \rangle \in X^{\{\nu\}}$. Take $f(\alpha) < \alpha$ and $g(\alpha) < \nu$ such that

$$D_{\alpha} = \{ \delta < \operatorname{cf} \nu : X_{(f(\alpha),\alpha]}^{(g(\alpha),\alpha]} \cap W(\delta) \neq \emptyset \}$$

is countable. Let $\nu' = \max\{g(\alpha), \sup D_{\alpha}\}$. Then $\nu' < \nu$ and $X_{(f(\alpha),\alpha]}^{(\nu',\nu]} \cap G = \emptyset$. This implies $\langle \alpha, \nu \rangle \in X \setminus \operatorname{Cl} G$. \Box

Theorem 3. Let X be a paraLindelöf subspace of $(\mu+1) \times (\nu+1)$. Assume that $X_{[0,\mu']}$ and $X^{[0,\nu']}$ are paracompact for each $\mu' < \mu$ and $\nu' < \nu$. Then in either cases of the following, X is paracompact.

- (a) cf $\mu < \nu$, moreover either ν is regular uncountable or $\nu < \omega_1$.
- (b) $\nu < cf \mu$.

Proof. Assume that X is not paracompact. Then it follows from Lemma 1 that μ and ν are limit ordinals.

Claim 1. $\langle \mu, \nu \rangle \notin X$.

Proof. Assume $\langle \mu, \nu \rangle \in X$. Let \mathcal{U} be an open cover of X. Take $U \in \mathcal{U}$ with $\langle \mu, \nu \rangle \in U$, moreover take $\mu' < \mu$ and $\nu' < \nu$ such that $X_{(\mu',\mu]}^{(\nu',\nu]} \subset U$. Since, $X_{[0,\mu']} \cup X^{[0,\nu']}$ is a paracompact clopen subspace, it is not difficult to construct a locally finite open refinement of \mathcal{U} , a contradiction.

Moreover we have $\operatorname{cf} \mu \geq \omega_1$ or $\operatorname{cf} \nu \geq \omega_1$. Indeed, if $\operatorname{cf} \mu = \operatorname{cf} \nu = \omega$, then $X = \bigoplus_{n \in \omega} X_{(M(n-1),M(n)]} \cup \bigoplus_{n \in \omega} X_{(N(n-1),N(n)]}$ is the union of countably many clopen paracompact subspaces. Therefore X is paracompact, a contradiction.

We will consider several cases. In all cases, we will derive contradictions. First we consider the case (a).

Case (a). cf $\mu \leq \nu$, moreover either ν is regular uncountable or $\nu < \omega_1$.

In this case, we may assume that $\operatorname{cf} \mu \leq \nu$ and ν is regular uncountable. Because, if $\operatorname{cf} \mu \leq \nu < \omega_1$, then $\operatorname{cf} \mu = \operatorname{cf} \nu = \omega$, a contradiction.

There are three subcases to consider.

Subcase (a-1). cf $\mu = \omega$.

Since X is paraLindelöf, by Lemma 1, we can take a cub set D in ν disjoint from $V_{\mu}(X)$. Then $X_{\{\mu\}}$ and $X^{D\cup\{\nu\}}$ are disjoint closed subsets. In particular, $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are disjoint closed subsets. Applying Lemma 2, take an open set G of X such that $X_{\{\mu\}} \subset G$ and $\operatorname{Cl} G \cap X^{\{\nu\}} = \emptyset$. Let $\mathcal{U} = \{X \setminus \operatorname{Cl} G\} \cup \{X^{[0,\delta]} : \delta < \nu\}$. Then \mathcal{U} is an open cover of X. Since X is paraLindelöf, there is a precise locally countable open refinement $\mathcal{W} = \{W\} \cup \{W(\delta) : \delta < \nu\}$ of \mathcal{U} . For each $\beta \in V_{\mu}(X)$, we can take $f(\beta) < \mu$ and $g(\beta) < \beta$ such that $(g(\beta), \beta] \cap D = \emptyset$, $H(\beta) = X^{(g(\beta), \beta]}_{(f(\beta), \mu]} \subset G$ and $\{\delta < \nu : W(\delta) \cap H(\beta) \neq \emptyset\}$ is countable. Let $H = \bigcup_{\beta \in V_{\mu}(X)} H(\beta)$. Then $X_{\{\mu\}} \subset H \subset G$ is obvious.

Claim 2. $S = \{\delta \in D : X^{\{\delta\}} \cap \operatorname{Cl} H \neq \emptyset\}$ is not stationary in ν .

Proof. Assume that S is stationary in ν . For each $\delta \in S$, take $h(\delta) < \mu$ with $\langle h(\delta), \delta \rangle \in \operatorname{Cl} H$. Since \mathcal{W} is an open cover, there is $\psi(\delta) < \nu$ with $\langle h(\delta), \delta \rangle \in W(\psi(\delta))$. Note that $\psi(\delta) > \delta$ because of $W(\psi(\delta)) \subset X^{[0,\psi(\delta))}$. Since $(g(\beta), \beta] \cap D = \emptyset$ for each $\beta \in V_{\mu}(X)$ and $W(\psi(\delta))$ is a neighborhood of $\langle h(\delta), \delta \rangle \in \operatorname{Cl} H$, we can find $\beta(\delta) \in V_{\mu}(X)$ with $\beta(\delta) < \delta$ such that $W(\psi(\delta)) \cap H(\beta(\delta)) \neq \emptyset$. For each $\delta \in \nu \setminus S$, define $\psi(\delta) = 0$. Then $D' = \{\delta < \nu : \forall \delta' < \delta(\psi(\delta') < \delta)\}$ is cub in ν . By the PDL(Pressing Down Lemma), there is a stationary set $S' \subset S \cap D'$ in ν and $\beta \in V_{\mu}(X)$ such that $\beta(\delta) = \beta$ for each $\delta \in S'$. Since $\delta < \psi(\delta)$ for each $\delta \in S'$ and $S' \subset D'$, the members of $\{\psi(\delta) : \delta \in S'\}$ are all distinct. Therefore $H(\beta)$ meets uncountably many $W(\psi(\delta))$'s, $\delta \in S'$, a contradiction.

Applying Claim 2, take a cub set $E \subset D$ in ν with $E \cap S = \emptyset$. Then, since $H \subset G$ and $\operatorname{Cl} G \cap X^{\{\nu\}} = \emptyset$, $X_{\{\mu\}}$ and $X^{E \cup \{\nu\}}$ are separated by H and $X \setminus \operatorname{Cl} H$. Since

$$X \setminus H \subset X \setminus X_{\{\mu\}} \subset \bigoplus_{n \in \omega} X_{(M(n-1),M(n)]} \text{ and}$$
$$\operatorname{Cl} H \subset X \setminus X^{E \cup \{\nu\}} \subset \bigoplus_{\delta \in \operatorname{Succ}(E)} X^{(\operatorname{p}_E(\delta),\delta]},$$

 $X = (X \setminus H) \cup \operatorname{Cl} H$ is the union of two paracompact closed subspaces. So X is paracompact, a contradiction.

Subcase (a-2). $\omega_1 \leq cf \ \mu < \nu$.

Since $\langle \mu, \nu \rangle \notin X$ and cf $\mu \geq \omega_1$, $H_{\nu}(X)$ is not stationary in μ , so we can take a cub set Cin cf μ such that $M(C) \cap H_{\nu}(X) = \emptyset$. Similarly, for each $\gamma \in C \cup \{\text{cf }\mu\}$, since $V_{M(\gamma)}(X)$ is not stationary in ν , we can take a cub set D_{γ} in ν disjoint from $V_{M(\gamma)}(X) = \emptyset$. Put $D = \bigcap_{\gamma \in C \cup \{\text{cf }\mu\}} D_{\gamma}$. Then, since cf $\mu < \nu = \text{cf }\nu$, D is a cub set in ν and $X_{M(C)\cup \{\mu\}}$ and $X^{D\cup \{\nu\}}$ are disjoint closed subsets. In particular, $X_{M(C)\cup \{\mu\}}$ and $X^{\{\nu\}}$ are disjoint closed subsets. By Lemma 2, we can take an open subset G such that $X_{M(C)\cup \{\mu\}} \subset G$ and $\text{Cl} G \cap X^{\{\nu\}} = \emptyset$. Since $\mathcal{U} = \{X \setminus \text{Cl} G\} \cup \{X^{[0,\delta)} : \delta < \nu\}$ is an open cover of the paraLindelöf space X, there is a precise locally countable open refinement $\mathcal{W} = \{W\} \cup \{W(\delta) : \delta \in \nu\}$ of \mathcal{U} . For each $\gamma \in C \cup \{\text{cf }\mu\}$ and each $\beta \in V_{M(\gamma)}(X)$, we can take $f(\gamma, \beta) < M(\gamma)$ and $g(\gamma, \beta) < \beta$ such that $(g(\gamma, \beta), \beta] \cap D = \emptyset$, $H(\gamma, \beta) = X^{(g(\gamma, \beta), \beta]}_{(f(\gamma, \beta), M(\gamma)]} \subset G$ and $\{\delta < \nu : W(\delta) \cap H(\gamma, \beta) \neq \emptyset\}$ is countable. Let

$$H = \bigcup_{\gamma \in C \cup \{ \operatorname{cf} \mu \}, \beta \in V_{M(\gamma)}(X)} H(\gamma, \beta)$$

Then $X_{M(C)\cup\{\mu\}} \subset H \subset G$ is obvious.

Claim 3. $S = \{\delta \in D : X^{\{\delta\}} \cap \operatorname{Cl} H \neq \emptyset\}$ is not stationary in ν .

Proof. Assume that S is stationary in ν . For each $\delta \in S$ take $h(\delta) < \mu$ with $\langle h(\delta), \delta \rangle \in \operatorname{Cl} H$ and take $\psi(\delta) < \nu$ with $\langle h(\delta), \delta \rangle \in W(\psi(\delta))$. Note $\psi(\delta) > \delta$ because of $W(\psi(\delta)) \subset X^{[0,\psi(\delta))}$. Since $(g(\gamma, \beta), \beta] \cap D = \emptyset$ for each $\gamma \in C \cup \{\operatorname{cf} \mu\}$ and $\beta \in V_{M(\gamma)}(X)$, we can take $\gamma(\delta) \in C \cup \{\operatorname{cf} \mu\}$ and $\beta(\delta) \in V_{M(\gamma(\delta))}(X)$ with $\beta(\delta) < \delta$ such that $W(\psi(\delta)) \cap H(\gamma(\delta), \beta(\delta)) \neq \emptyset$. As in Claim 2, noting $|C \cup \{\operatorname{cf} \mu\}| = \operatorname{cf} \mu < \nu$, by the PDL, we find a stationary set $S' \subset S$, $\beta < \nu$ and $\gamma \in C \cup \{\operatorname{cf} \mu\}$ such that $\beta(\delta) = \beta$ for each $\delta \in S'$, $\gamma(\delta) = \gamma$ and members of $\{\psi(\delta) : \delta \in S'\}$ are all distinct. Then $H(\beta, \gamma)$ meets uncountably many $W(\psi(\delta))$'s, a contradiction.

Applying Claim 3, take a cub set $E \subset D$ in ν with $E \cap S = \emptyset$. Then, since $H \subset G$ and $\operatorname{Cl} G \cap X^{\{\nu\}} = \emptyset$, $X_{M(C) \cup \{\mu\}}$ and $X^{E \cup \{\nu\}}$ are separated by H and $X \setminus \operatorname{Cl} H$. Since

$$X \setminus H \subset X \setminus X_{M(C) \cup \{\mu\}} \subset \bigoplus_{\gamma \in \operatorname{Succ}(C)} X_{(M(p_C(\gamma)), M(\gamma)]}$$
 and

$$\operatorname{Cl} H \subset X \setminus X^{E \cup \{\nu\}} \subset \bigoplus_{\delta \in \operatorname{Succ}(E)} X^{(\operatorname{p}_E(\delta),\delta]}$$

 $X \setminus H$ and $\operatorname{Cl} H$ are paracompact. Therefore $X = (X \setminus H) \cup \operatorname{Cl} H$ is paracompact, a contradiction.

Subcase (a-3). cf $\mu = \nu$.

Note, in this case, $\omega_1 \leq \operatorname{cf} \mu = \operatorname{cf} \nu = \nu$. First we consider the special case that $X \subset \mu \times (\nu + 1)$. Since $\langle \mu, \nu \rangle \notin X$, $\Delta(X) = \{\gamma < \nu : \langle M(\gamma), \gamma \rangle \in X\}$ is homeomorphic to the closed subspace $X \cap \{\langle M(\gamma), \gamma \rangle : \gamma < \nu\}$ of $X, \Delta(X)$ is not stationary in ν . Take a cub set C in ν such that $C \cap \Delta(X) = \emptyset$.

Claim 4. $\mathcal{X} = \{X_{(M(\mathbf{p}_C(\gamma)),M(\gamma)]}^{(\mathbf{p}_C(\gamma),\gamma]} : \gamma \in \operatorname{Succ}(C)\}\$ is a discrete collection of clopen paracompact subspaces.

Proof. By the assumption, it suffices to show that \mathcal{X} is dicrete. Let $\langle \alpha, \beta \rangle \in X$. If $\alpha \notin M(C)$, then take $\gamma \in \operatorname{Succ}(C)$ such that $\alpha \in (M(p_C(\gamma)), M(\gamma)]$. Then $X_{(M(p_C(\gamma)), M(\gamma)]}$ is neighborhood of $\langle \alpha, \beta \rangle$ which meets at most one member of \mathcal{X} . Similarly if $\beta \notin C \cup \{\nu\}$, we can take a neighborhood of $\langle \alpha, \beta \rangle$ which meets at most one member of \mathcal{X} . So we may assume $\langle \alpha, \beta \rangle \in X_{M(C)}^{C\cup\{\nu\}}$. Take $\gamma(\alpha) \in C$ with $M(\gamma(\alpha)) = \alpha$. Since $C \cap \Delta(X) = \emptyset$, we have $M(\beta) \neq \alpha = M(\gamma(\alpha))$, so $\beta \neq \gamma(\alpha)$. If $\beta < \gamma(\alpha)$, then $X_{[0,\alpha]}^{[0,\beta]}$ is neighborhood of $\langle \alpha, \beta \rangle$ which meets no member of \mathcal{X} . If $\beta > \gamma(\alpha)$, then $X_{[0,\alpha]}^{[\gamma(\alpha),\beta]}$ is neighborhood of $\langle \alpha, \beta \rangle$ which meets no member of \mathcal{X} . This completes the proof of Claim 4.

Let

$$Y(0) = \{ \langle \alpha, \beta \rangle \in X : \alpha > M(\beta) \} \setminus ([] \mathcal{X}).$$

Then Y(0) is clopen subspace of X. Because Y(0) can be represented as $\{\langle \alpha, \beta \rangle \in X : \alpha \ge M(\beta)\} \setminus (\bigcup \mathcal{X})$. Similarly

$$Y(1) = \{ \langle \alpha, \beta \rangle \in X : \alpha < M(\beta) \} \setminus (\bigcup \mathcal{X})$$

is a clopen subspace of X.

Claim 5. Y(0) is paracompact.

Proof. Note, in this special case, $\mu \notin H_{\delta}(X)$ for each $\delta < \nu$. Therfore $H_{\delta}(X)$ is not stationary in μ for each $\delta < \nu$. Take a cub set C_{δ} in cf μ such that $M(C_{\delta}) \cap H_{\delta}(X) = \emptyset$. Put

$$C' = C \cap \Delta_{\delta < \nu} C_{\delta}$$

We shall show $X_{M(C')} \cap Y(0) = \emptyset$. Assume on the countary that $\langle \alpha, \beta \rangle \in X_{M(C')} \cap Y(0)$. Take $\gamma(\alpha) \in C'$ with $M(\gamma(\alpha)) = \alpha$. By the definiton of Y(0), we have $M(\beta) < \alpha = M(\gamma(\alpha))$, so $\beta < \gamma(\alpha)$. It follows from $\beta < \gamma(\alpha) \in C' \subset \Delta_{\delta < \nu} C_{\delta}$ that $\gamma(\alpha) \in C_{\beta}$. So $\alpha = M(\gamma(\alpha)) \in M(C_{\beta}) \cap H_{\beta}(X)$, a contradiction. Hence $X_{M(C')} \cap Y(0) = \emptyset$. Since Y(0) is clopen and

$$Y(0) \subset X \setminus X_{M(C')} \subset \bigoplus_{\gamma \in \text{Succ}(C')} X_{(M(p_{C'}(\gamma)), M(\gamma)]}$$

Y(0) is paracompact.

Since $X = Y(0) \bigoplus (\bigcup \mathcal{X}) \bigoplus Y(1)$ is not paracompact but $\bigcup \mathcal{X}$ and Y(0) are paracompact, Y(1) is not paracompact. By considering Y(1) as X, we may now assume that

$$X \subset \{ \langle \alpha, \beta \rangle \in \mu \times (\nu + 1) : \alpha < M(\beta) \}$$

is paraLindelöf but not paracompact, moreover $X_{[0,\mu']}$ and $X^{[0,\nu']}$ are paracompact for each $\mu' < \mu$ and $\nu' < \nu$.

Since X is paraLindelöf, $H_{\nu}(X)$ is not stationary in μ . So take a cub set C' in cf μ such that $M(C') \cap H_{\nu}(X) = \emptyset$. Similarly for each $\gamma \in C'$, we can take a cub set C_{γ} in ν such that $C_{\gamma} \cap V_{M(\gamma)}(X) = \emptyset$. Put

$$C = C' \cap \Delta_{\gamma \in C'} C_{\gamma}.$$

Claim 6. $X_{M(C)} \cap X^{C \cup \{\nu\}} = \emptyset$.

Proof. Assume on the contrary that $\langle \alpha, \beta \rangle \in X_{M(C)} \cap X^{C \cup \{\nu\}}$. Since $M(C') \cap H_{\nu}(X) = \emptyset$ and $\alpha \in M(C) \subset M(C')$, we have $\beta \neq \nu$ so $\beta \in C \subset C'$. Take $\gamma(\alpha) \in C$ with $M(\gamma(\alpha)) = \alpha$. Since $\alpha < M(\beta)$, we have $\gamma(\alpha) < \beta$. It follows from

$$\gamma(\alpha) < \beta \in C \subset \Delta_{\gamma \in C'} C_{\gamma}$$

that $\beta \in C_{\gamma(\alpha)}$. So $\beta \in C_{\gamma(\alpha)} \cap V_{\alpha}(X) = C_{\gamma(\alpha)} \cap V_{M(\gamma(\alpha))}$, a contradiction.

By Claim 6, in particular, $X_{M(C)}$ and $X^{\{\nu\}}$ are disjoint closed subsets. By Lemma 2, we can find an open subset G such that $X_{M(C)} \subset G$ and $\operatorname{Cl} G \cap X^{\{\nu\}} = \emptyset$. Since $\mathcal{U} = \{X \setminus \operatorname{Cl} G\} \cup \{X^{[0,\delta]} : \delta < \nu\}$ is an open cover of the paraLindelöf space X, there is a precise locally countable open refinement $\mathcal{W} = \{W\} \cup \{W(\delta) : \delta < \nu\}$ of \mathcal{U} . For each $\gamma \in C$ and each $\beta \in V_{M(\gamma)}(X)$, we can find $f(\gamma, \beta) < M(\gamma)$ and $g(\gamma, \beta) < \beta$ such that $(g(\gamma, \beta), \beta] \cap C = \emptyset$, $H(\gamma, \beta) = X^{(g(\gamma, \beta), \beta]}_{(f(\gamma, \beta), M(\gamma)]} \subset G$ and $\{\delta < \nu : W(\delta) \cap H(\gamma, \beta) \neq \emptyset\}$ is countable. Let

$$H = \bigcup_{\gamma \in C, \beta \in V_{M(\gamma)}(X)} H(\gamma, \beta)$$

Then $X_{M(C)} \subset H \subset G$ is obvious.

Claim 7. $S = \{\delta \in C : X^{\{\delta\}} \cap \operatorname{Cl} H \neq \emptyset\}$ is not stationary in ν .

Proof. Assume that S is stationary in ν . For each $\delta \in S$ take $h(\delta) < \mu$ with $\langle h(\delta), \delta \rangle \in \operatorname{Cl} H$ and take $\psi(\delta) \in \nu$ with $\langle h(\delta), \delta \rangle \in W(\psi(\delta))$. As in Claim 3, we can take $\gamma(\delta) \in C$ and $\beta(\delta) \in V_{M(\gamma(\delta))}(X)$ with $\beta(\delta) < \delta$ such that $W(\psi(\delta)) \cap H(\gamma(\delta), \beta(\delta)) \neq \emptyset$. Since $X \subset$ $\{\langle \alpha, \beta \rangle \in \mu \times (\nu + 1) : \alpha < M(\beta)\}$, we have $M(\gamma(\delta)) < M(\beta(\delta))$. Hence $\gamma(\delta) < \beta(\delta) < \delta$. Applying the PDL twice, we can find a stationary set $S' \subset S$ in $\nu, \gamma \in C$ and $\beta \in V_{M(\gamma)}(X)$ such that $\gamma(\delta) = \gamma$ and $\beta(\delta) = \beta$ for each $\delta \in S'$, moreover members of $\{\psi(\delta) : \delta \in S'\}$ are all distinct. Then $H(\gamma, \beta)$ meets uncountably many $W(\psi(\delta))$'s, a contradiction.

Applying Claim 7, take a cub set $E \subset C$ in ν with $E \cap S = \emptyset$. Then, by a similar argument of one after Claim 3, we can see that X is paracompact, a contradiction.

Next we consider the general case, that is, $X \subset (\mu+1) \times (\nu+1)$. Since X is paraLindelöf, $V_{\mu}(X)$ is not stationary in ν , so we can take a cub set D in ν such that $D \cap V_{\mu}(X) = \emptyset$. Then $X^{D \cup \{\nu\}}$ and $X_{\{\mu\}}$ are disjoint closed subsets. By Lemma 2, there is a open subset G such that $X^{D \cup \{\nu\}} \subset G$ and $\operatorname{Cl} G \cap X_{\{\mu\}} = \emptyset$. Then

$$X\setminus G\subset X\setminus X^{D\cup\{\nu\}}\subset \bigoplus_{\delta\in\operatorname{Succ}(D)}X^{(\operatorname{p}_D(\delta),\delta]} \text{ and }$$

and

$$\operatorname{Cl} G \subset X \setminus X_{\{\mu\}} \subset \mu \times (\nu + 1).$$

By the special case, $\operatorname{Cl} G$ is paracompact. Therefore $X = (X \setminus G) \cup \operatorname{Cl} G$ is paracompact, a contradiction.

Case (b). $\nu < cf \mu$.

There are two subcases.

Subcase (b-1). $\omega_1 \leq \operatorname{cf} \nu$.

Since $\operatorname{cf} \mu > \nu \geq \operatorname{cf} \nu \geq \omega_1$, we can find a cub set D in $\operatorname{cf} \nu$ such that $N(D) \cap V_{\mu}(X) = \emptyset$. Then $X^{N(D) \cup \{\nu\}}$ and $X_{\{\mu\}}$ are disjoint closed subsets. Applying Lemma 2, take an open set G such that $X^{N(D) \cup \{\nu\}} \subset G$ and $\operatorname{Cl} G \cap X_{\{\mu\}} = \emptyset$.

Claim 8. $S = \{\gamma < \operatorname{cf} \mu : X_{\{M(\gamma)\}} \cap \operatorname{Cl} G \neq \emptyset\}$ is not stationary in cf μ .

Proof. Assume that S is stationary in cf μ . For each $\gamma \in S$, fix $h(\gamma) \leq \nu$ with $\langle M(\gamma), h(\gamma) \rangle \in$ Cl G. By $\nu < \text{cf } \mu$ and the PDL, we can find a stationary set $S' \subset S$ in cf μ and $\nu' \leq \nu$ such that $h(\gamma) = \nu'$ for each $\gamma \in S'$. Then $M(S') \subset H_{\nu'}(X)$, therefore $H_{\nu'}(X) \cap \mu$ is stationary in μ . Since X is paraLindelöf and $H_{\nu'}(X) \cap \mu$ is stationary in μ , we have $\mu \in H_{\nu'}(X)$. So

$$\langle \mu, \nu' \rangle \in \operatorname{Cl}\{\langle M(\gamma), \nu' \rangle : \gamma \in S'\} \cap X_{\{\mu\}} \subset \operatorname{Cl} G \cap X_{\{\mu\}},$$

a contradiction.

By Claim 8, we can take a cub set C in cf μ such that $C \cap S = \emptyset$. Then we have $X^{N(D) \cup \{\nu\}} \subset G$ and $X_{M(C) \cup \{\mu\}} \cap \operatorname{Cl} G = \emptyset$. Since

$$X \setminus G \subset X \setminus X^{N(D) \cup \{\nu\}} \subset \bigoplus_{\delta \in \text{Succ}(D)} X^{(N(\text{p}_D(\delta)), N(\delta)]} \text{ and }$$

$$\operatorname{Cl} G \subset X \setminus X_{M(C) \cup \{\mu\}} \subset \bigoplus_{\gamma \in \operatorname{Succ}(C)} X_{(M(p_C(\gamma)), M(\gamma)]},$$

 $X = (X \setminus G) \cup \operatorname{Cl} G$ is paracompact, a contradicion.

Subcase (b-2). cf $\nu = \omega$.

Note that in this case, we have $\omega_1 \leq cf \mu$. By Lemma 2, take an open set G with $X^{\{\nu\}} \subset G$ and $Cl G \cap X_{\{\mu\}} = \emptyset$.

By a similar argument of Claim 8, $S = \{\gamma < cf \ \mu : X_{\{M(\gamma)\}} \cap Cl \ G \neq \emptyset\}$ is not stationary in $cf \ \mu$. Then by a similar argument of one after Claim 2, we can show that X is paracompact, a contradiction. \Box

Corollary 4. Let X be a paraLindelöf subspace of $(\rho + 1) \times (\nu + 1)$ for a suitably large ordinal ρ such that $X^{[0,\nu']}$ is paracompact for each $\nu' < \nu$. If ν is regular uncountable or $\nu < \omega_1$, then X is paracompact.

Proof. Assume that X is not paracompact and let

$$\mu = \min\{\mu' \le \rho : X_{[0,\mu']} \text{ is not paracompact }\}.$$

Then $X_{[0,\mu]}$ is not paracompact. First assume ν is regular uncountable. Then by Theorem 3, in either cases of cf $\mu \leq \nu$ or $\nu < \text{cf } \mu$, $X_{[0,\mu]}$ is paracompact, a contradiction. Next assume $\nu < \omega_1$. Similarly by Theorem 3, $X_{[0,\mu]}$ is paracompact, a contradiction. \Box

This Corollary immediately yields:

Corollary 5. For a suitably large ordinal ρ , paraLindelöf subspaces of $(\rho + 1) \times (\omega_1 + 1)$ are paracompact.

Corollary 6. For a suitably large ordinal ρ , paraLindelöf subspaces of $(\rho + 1) \times (\omega_1 \cdot \omega)$ are paracompact.

Proof. Let X be a paraLindelöf subspace of $(\rho + 1) \times (\omega_1 \cdot \omega)$. Put $T_0 = [0, \omega_1]$ and $T_n = (\omega_1 \cdot n, \omega_1 \cdot (n+1)]$ for each $n \in \omega$ with $n \ge 1$. Since T_n is homeomorphic to $(\omega_1 + 1)$, $X \cap (\rho + 1) \times T_n$ is homeomorphic to a subspace of $(\rho + 1) \times (\omega_1 + 1)$. By Corollary 5,

$$X = \bigoplus_{n \in \omega} [X \cap (\rho + 1) \times T_n]$$

is the free union of paracompact clopen subspaces, so X is paracompact. \Box

Corollary 7. For each $\rho < \omega_1 \cdot \omega_1$, paraLindelöf subspaces of $(\rho + 1)^2$ are paracompact.

Proof. Assume that there is a paraLindelöf subspace X of $(\rho+1)^2$ which is not paracompact for some $\rho < \omega_1 \cdot \omega_1$. Let

 $\mu = \min\{\mu' \le \rho : X_{[0,\mu']} \text{ is not paracompact } \},\$

 $\nu = \min\{\nu' \le \rho : X_{[0,\mu]}^{[0,\nu']} \text{ is not paracompact } \}.$

Since $X_{[0,\mu]}^{[0,\nu]}$ is a clopen subspace of X, we may assume that $X = X_{[0,\mu]}^{[0,\nu]}$. Note that X is not paracompact, $X_{[0,\mu']}$ and $X^{[0,\nu']}$ are paracompact for each $\mu' < \mu$ and $\nu' < \nu$. As in the proof of Theorem 3, we can show that $\langle \mu, \nu \rangle \notin X$ moreover that of $\mu \ge \omega_1$ or of $\nu \ge \omega_1$. So we may assume of $\nu = \omega_1$. Since $\nu \le \rho < \omega_1 \cdot \omega_1$, there is a $\xi \in$ Succ such that $\nu = \omega_1 \cdot \xi$. Let $\xi - 1$ be the immediate predecessor of ξ . Since $(\omega_1 \cdot (\xi - 1), \omega_1 \cdot \xi]$ is homeomorphic to $\omega_1 + 1$, by Corllary 6, $X^{(\omega_1 \cdot (\xi - 1), \omega_1 \cdot \xi]}$ is a clopen paracompact subspace. Then $X = X^{[0,\omega_1 \cdot (\xi - 1)]} \cup X^{(\omega_1 \cdot (\xi - 1),\omega_1 \cdot \xi]}$ is the union of two clopen paracompact subspaces, so X is paracompact, a contradiction. \Box

The reader should observe that, if Theorem 3 also holds for the following remaining case (c):

(c) cf $\mu \leq \nu$, cf $\nu < \nu$ and ν is uncountable.

then all paraLindelöf subspaces of products of two ordinals are paracompact.

However, we have no useful way to extend Corollary 6 for subspaces of $(\rho+1) \times (\omega_1 \cdot \omega + 1)$ and Corollary 7 for subspaces of $(\omega_1 \cdot \omega_1)^2$. Now we conjecture the following.

Conjecture 8. There is a paraLindelöf subspace of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ which is not paracompact. Or more generally, there is a paraLindelöf subspace of $(\omega_1 \cdot \omega_1)^2$ which is not paracompact.

The main open problem on paraLindelöf spaces is the following, see [Wa, Problem 39]:

Problem 9. Are paraLindelöf spaces countably paracompact?

Now we see:

Proposition 10. Let X be a paraLindelöf countably paracompact subspace of $(\mu + 1) \times (\nu + 1)$. Assume that $X_{[0,\mu']}$ and $X^{[0,\nu']}$ are paracompact for each $\mu' < \mu$ and $\nu' < \nu$. Then X is paracompact in the following case:

(c') cf $\mu \leq \nu$, $\omega = cf \nu < \nu$ and ν is uncountable.

851

Proof. Assume that X is not paracompact, then as usual, we can easily show that μ and ν are limit ordinals with cf $\mu \geq \omega_1$ and $\langle \mu, \nu \rangle \notin X$. Take a cub set C in cf μ with $M(C) \cap H_{\nu}(X) = \emptyset$. By Lemma 2, we can also take an open set G with $X^{\{\nu\}} \subset G \subset X \setminus X_{M(C) \cup \{\mu\}}$ and $\operatorname{Cl} G \cap X_{\{\mu\}} = \emptyset$. Let $\mathcal{W} = \{W\} \cup \{W(n) : n \in \omega\}$ be a precise locally finite open refinement of $\mathcal{U} = \{G\} \cup \{X^{[0,N(n)]} : n \in \omega\}$. $X_{M(C) \cup \{\mu\}} \subset \bigcup_{n \in \omega} W(n)$ is obvious. By the local finiteness of \mathcal{W} , $\operatorname{Cl}(\bigcup_{n \in \omega} W(n)) = \bigcup_{n \in \omega} \operatorname{Cl} W(n) \subset X \setminus X^{\{\nu\}}$. Then in a usual way, we can show that X is paracompact, a contradiction. \Box

Using a similar argumet in Corollary 4 and 5, we see:

Corollary 11. For a suitably large ordinal ρ and for each $\sigma < \omega_1 \cdot \omega_1$, paraLindelöf countably paracompact subspaces of $(\rho + 1) \times (\sigma + 1)$ are paracompact. In particular, paraLindelöf countably paracompact subspaces of $(\omega_1 \cdot \omega_1) \times (\sigma + 1)$ are paracompact for each $\sigma < \omega_1 \cdot \omega_1$

Applying this corollary, we can show the positive answer of the conjecture 8 for $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ yields the negative answer of Problem 9, that is:

Corollary 12. If there is a paraLindelöf subspace X of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ which is not paracompact, then X is a paraLindelöf space which is not countably paracompact.

However, strangely, we have also no useful way to show that paraLindelöf countably paracompact subspaces of $(\omega_1 \cdot \omega_1)^2$ are paracompact. Now we conjecture the following:

Conjecture 13. There is a paraLindelöf countably paracompact subspace of $(\omega_1 \cdot \omega_1)^2$ which is not paracompact.

Although the existence of a paraLindelöf non-paracompact subspace of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ still remains open, now we give some informations about the existence of such a subspace.

From now on, consider the normal function M for $\omega_1 \cdot \omega_1$ by letting $M(\gamma) = \omega_1 \cdot \gamma$ for each $\gamma < \omega_1$.

Proposition 14. Let X be a paraLindelöf subspace of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$. Then for each $\alpha \in H_{\omega_1 \cdot \omega}(X)$, there is $g(\alpha) < \omega$ such that $X_{\{\alpha\}}^{(\omega_1, g(\alpha), \omega_1 \cdot \omega]}$ is countable.

Proof. For each $n \leq \omega$, since $H_{\omega_1 \cdot n}(X)$ is not stationary in $\omega_1 \cdot \omega_1$, take a cub set C_n in ω_1 such that $M(C_n) \cap H_{\omega_1 \cdot n}(X) = \emptyset$. Set $C = \bigcap_{n \leq \omega} C_n$ and $E = \{\omega_1 \cdot n : n \leq \omega\}$. Then $X_{M(C)}$ and X^E are disjoint closed sets of X. For each $\gamma < \omega_1$, let $U(\gamma) = X^{[0,\gamma]} \cup \bigcup_{1 \leq n \in \omega} X^{(\omega_1 \cdot n, \omega_1 \cdot n + \gamma]}$. Take a precise locally countable open refinement $\mathcal{W} = \{W(\gamma) : \gamma < \omega_1\} \cup \{W\}$ of $\mathcal{U} = \{U(\gamma) : \gamma < \omega_1\} \cup \{X \setminus X_{M(C)}\}$. Let $\alpha \in H_{\omega_1 \cdot \omega}(X)$. Since \mathcal{W} is locally countable at $\langle \alpha, \omega_1 \cdot \omega \rangle$, there is $g(\alpha) < \omega$ such that $X^{(\omega_1 \cdot g(\alpha), \omega_1 \cdot \omega]}_{\{\alpha\}}$ meets at most countably many $W(\gamma)$'s. Then this $g(\alpha)$ works. \Box

Proposition 15. Assume that X is a paraLindelöf subspace of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ such that for some $\alpha_0 < \omega_1 \cdot \omega$, $H_{\omega_1 \cdot \omega}(X) \cap [\alpha_0, \alpha]$ is Lindelöf for every $\alpha < \omega_1 \cdot \omega_1$ with $\alpha_0 \leq \alpha$. Then X is paracompact.

Proof. Note that, by Corollary 6 and 7, $X_{[0,\mu']}$ and $X^{[0,\nu']}$ are paracompact for each $\mu' < \omega_1 \cdot \omega_1$ and $\nu' < \omega_1 \cdot \omega$. Since $X_{[0,\alpha_0]}$ is paracompact, we may assume $\alpha_0 = 0$, that is, $H_{\omega_1 \cdot \omega}(X) \cap [0,\alpha]$ is Lindelöf for every $\alpha < \omega_1 \cdot \omega_1$. As in the proof of Proposition 14, define a cub set $C \subset \omega_1$ with $X_{M(C)} \cap X^E = \emptyset$, where $E = \{\omega_1 \cdot n : n \leq \omega\}$. Let $\mathcal{W} = \{W(\gamma) : \gamma < \omega_1\}$ be a precise locally countable open refinement of the open cover $\mathcal{U} = \{X_{[0,M(\gamma))} : \gamma < \omega_1\}$. For each $\alpha \in H_{\omega_1 \cdot \omega}(X)$, take $g(\alpha) < \omega$ and $f(\alpha) < \alpha$ such that

$$\begin{split} H(\alpha) &= X_{(f(\alpha),\alpha]}^{(\omega_1,g(\alpha),\omega_1,\omega]} \text{ meets at most countably many } W(\gamma)\text{'s and } (f(\alpha),\alpha] \cap M(C) = \emptyset. \\ \text{For each } \gamma \in \operatorname{Succ}(C), \text{ since } H_{\omega_1,\omega}(X) \cap [M(\mathbf{p}_C(\gamma)), M(\gamma)] = H_{\omega_1,\omega}(X) \cap (M(\mathbf{p}_C(\gamma)), M(\gamma)) \\ \text{is a clopen subspace of the Lindelöf space } H_{\omega_1,\omega}(X) \cap [0, M(\gamma)], \text{ there is a countable subset } \\ Z(\gamma) \subset H_{\omega_1,\omega}(X) \cap (M(\mathbf{p}_C(\gamma)), M(\gamma)) \text{ such that} \end{split}$$

$$X_{(M(\mathfrak{p}_{C}(\gamma)),M(\gamma))}^{\{\omega_{1}\cdot\omega\}} \subset \bigcup_{\alpha\in Z(\gamma)} H(\alpha) \subset X_{(M(\mathfrak{p}_{C}(\gamma)),M(\gamma))}.$$

Of course, $H = \bigcup_{\gamma \in \text{Succ}(C)} (\bigcup_{\alpha \in Z(\gamma)} H(\alpha))$ covers $X^{\{\omega_1 \cdot \omega\}}$. In a usual way, the following Claim shows that X is paracompact.

Claim. $S = \{\delta \in C : X_{\{M(\gamma)\}} \cap \operatorname{Cl} H \neq \emptyset\}$ is not stationary in ω_1 .

Proof. Assume that S is stationary. For each $\delta \in S$, fix $h(\delta) \leq \omega_1 \cdot \omega$ and $\psi(\delta) > \delta$ such that $\langle M(\delta), h(\delta) \rangle \in \operatorname{Cl} H \cap W(\psi(\delta))$. Moreover since $\bigcup_{\alpha \in Z(\gamma)} H(\alpha) \subset X_{(M(\mathfrak{p}_C(\gamma)), M(\gamma))}$ for each $\gamma \in \operatorname{Succ}(C)$, we can find $\varphi(\delta) \in \operatorname{Succ}(C) \cap \delta$ with $(\bigcup_{\alpha \in Z(\varphi(\delta))} H(\alpha)) \cap W(\psi(\delta)) \neq \emptyset$. Applying the PDL, we can find a stationary set $S' \subset S$ and $\delta_0 \in \operatorname{Succ}(C)$ such that $\varphi(\delta) = \delta_0$ for each $\delta \in S'$ and the members of $\{\psi(\delta) : \delta \in S'\}$ are all distinct. Then $\bigcup_{\alpha \in Z(\delta_0)} H(\alpha)$ meets uncountably many $W(\psi(\delta))$'s, $\delta \in S'$. Since $Z(\delta_0)$ is countable, we can find $\alpha_0 \in Z(\delta_0)$ such that $H(\alpha_0)$ meets uncountably many $W(\psi(\delta))$'s, a contradiction. \Box

Corollary 16. Assume that there exists a paraLindelöf subspace X of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$ which is not paracompact. Then $I = \{\alpha \in \omega_1 \cdot \omega_1 \setminus H_{\omega_1 \cdot \omega}(X) : \text{cf } \alpha = \omega_1\}$ is unbounded in $\omega_1 \cdot \omega_1$.

Proof. Assume that I is bounded by some $\alpha_0 < \omega_1 \cdot \omega_1$. The following general fact shows that $H_{\omega_1 \cdot \omega}(X) \cap [\alpha_0, \alpha]$ is Lindelöf for every $\alpha < \omega_1 \cdot \omega_1$ with $\alpha_0 \leq \alpha$.

Fact. If Z is a subspace of $\rho+1$ for some ordinal ρ such that cf $\beta \leq \omega$ for every $\beta \in (\rho+1) \setminus Z$, then Z is Lindelöf.

Proof. Assume that Z is not Lindelöf and let

 $\mu = \min\{\mu' \le \rho : Z \cap [0, \mu'] \text{ is not Lindelöf } \}.$

Then we see that $\mu \notin Z$, μ is limit, $Z \cap [0, \mu']$ is Lindelöf for every $\mu' < \mu$ and $Z \cap [0, \mu]$ is not Lindelöf. Since $\mu \notin Z$, we have cf $\mu = \omega$. Then $Z \cap [0, \mu] = \bigcup_{n \in \omega} (Z \cap [0, \mu(n)])$ can be represented as the countable union of Lindelöf subspaces, where $\{\mu(n) : n \in \omega\}$ is a strictly increasing cofinal sequence in μ , so it is Lindelöf, a contradiction. \Box

Taking account of these informations, the authors have tried to construct a paraLindelöf non-paracompact subspace of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$. But now we present the following by-product of these considerations. Here note that the locally finite union of clopen paracompact subspaces are also paracompact.

Example 17. There exists a non-paracompact subspace X of $(\omega_1 \cdot \omega_1) \times (\omega_1 \cdot \omega + 1)$, which can be represented as the locally countable union of clopen paracompact subspaces, such that $X_{[0,\mu]}$ and $X^{[0,\nu]}$ are paracompact for each $\mu < \omega_1 \cdot \omega_1$ and $\nu < \omega_1 \cdot \omega$. In fact, unfortunately, this X is not paraLindelöf.

Our space is defined as follows:

$$X = \left[\bigcup_{\gamma,\beta \in \text{Succ}} \{\omega_1 \cdot (\gamma - 1) + \beta\} \times \left(\{\omega_1 \cdot \omega\} \cup \bigcup_{n \in \omega} \text{Succ}((\omega_1 \cdot n, \omega_1 \cdot n + \beta))\right)\right]$$

$$\cup \left[\bigcup_{\delta \in \operatorname{Lim}} \{\omega_1 \cdot \delta\} \times \left(\bigcup_{n \in \omega} \{\omega_1 \cdot n + \delta + 1\}\right)\right],$$

where $\operatorname{Succ}((\omega_1 \cdot n, \omega_1 \cdot n + \beta))$ denotes the set of all successor ordinals in the open interval $(\omega_1 \cdot n, \omega_1 \cdot n + \beta)$. Observe that $X_{\{\omega_1 \cdot \gamma\}} = \emptyset$ for each $\gamma \in \operatorname{Succ}$ and $X^{\{\omega_1 \cdot n\}} = \emptyset$ for each $n \in \omega$.

Claim 1. $X^{[0,\nu]}$ is paracompact for each $\nu < \omega_1 \cdot \omega$.

Proof. Since $X^{(0,\omega_1]}$ is homeomorphic to $X^{(\omega_1\cdot n,\omega_1\cdot (n+1)]}$ for each $n \in \omega$, it suffices to show that $X^{[0,\omega_1]}$ is paracompact. Note that for each $\eta < \omega_1$, $H_\eta(X)$ has at most one limit ordinal, so $X^{\{\eta\}}$ is paracompact. Since $X^{\{\eta\}} = \emptyset$ for each $\eta \in \operatorname{Lim} \cup \{\omega_1\}$, $X^{[0,\omega_1]} = \bigoplus_{\eta \in \operatorname{Succ}} X^{\{\eta\}}$ is paracompact.

Claim 2. $X_{[0,\mu]}$ is paracompact for each $\mu < \omega_1 \cdot \omega_1$.

proof. Note that for each $\zeta < \omega_1 \cdot \omega_1, V_{\zeta}(X)$ has at most one limit ordinal $(\omega_1 \cdot \omega \text{ if it has})$, so $X_{\{\zeta\}}$ is paracompact. Assuming that $X_{[0,\mu]}$ is not paracompact for some $\mu < \omega_1 \cdot \omega_1$, let $\mu < \omega_1 \cdot \omega_1$ be the such minimal one. Then μ is limit and $\langle \mu, \omega_1 \cdot \omega \rangle \notin X_{[0,\mu]}$. If cf $\mu = \omega$, then

$$X_{[0,\mu]} = \left(\bigoplus_{n \in \omega} X_{(M(n-1),M(n)]}\right) \cup \left(\bigoplus_{n \in \omega} X_{[0,\mu]}^{(\omega \cdot (n-1),\omega \cdot n]}\right)$$

can be represented as the countable union of paracompact clopen subspaces. Therefore $X_{[0,\mu]}$ is paracompact, a contradiction. If cf $\mu = \omega_1$, then $\mu = \omega_1 \cdot \gamma$ for some $\gamma \in$ Succ. Since $X_{(\omega_1 \cdot (\gamma-1), \omega_1 \cdot \gamma]} = \bigoplus_{\beta \in \text{Succ}} X_{\{\omega_1 \cdot (\gamma-1) + \beta\}}$ is paracompact, by the minimality of μ , $X_{[0,\mu]} = X_{[0,\omega_1 \cdot (\gamma-1)]} \bigoplus X_{(\omega_1 \cdot (\gamma-1), \omega_1 \cdot \gamma]}$ is paracompact, a contradiction.

Claim 3. Let $V(\gamma) = X_{(\omega_1 \cdot (\gamma - 1), \omega_1 \cdot \gamma)}$ for each $\gamma \in \text{Succ and } V(\delta, n) = X_{[0, \omega_1 \cdot \delta]}^{\{\omega_1 \cdot n + \delta + 1\}}$ for each $\delta \in \text{Lim}$ and $n \in \omega$. Then $\mathcal{V} = \{V(\gamma) : \gamma \in \text{Succ}\} \cup \{V(\delta, n) : \langle \delta, n \rangle \in \text{Succ} \times \omega\}$ is a locally countable open refinement of the open cover $\mathcal{U} = \{X_{[0, \omega_1 \cdot \gamma]} : \gamma < \omega_1\}$.

proof. Since other properties are not so hard, we only show that \mathcal{V} is locally countable. Let $\langle \zeta, \eta \rangle \in X$.

First assume $\zeta \in (\omega_1 \cdot (\gamma - 1), \omega_1 \cdot \gamma)$ for some $\gamma \in \text{Succ.}$ Then there is $\beta \in \text{Succ}$ with $\zeta = \omega_1 \cdot (\gamma - 1) + \beta$. If $\gamma' \in \text{Succ}$ with $\gamma' \neq \gamma$, then $X_{\{\zeta\}} \cap V(\gamma') = \emptyset$. Moreover if $\delta \in \text{Lim}$ with $\beta \leq \delta$, then $X_{\{\zeta\}} \cap V(\delta, n) = \emptyset$ for each $n \in \omega$. Therefore $X_{\{\zeta\}}$ is a neighborhood of $\langle \zeta, \eta \rangle$ which witnesses the local countability of \mathcal{V} at $\langle \zeta, \eta \rangle$.

Next assume $\zeta = \omega_1 \cdot \delta$ for some $\delta \in \text{Lim}$. Then by the construction of X, it is not difficult to show that $X_{[0,\zeta]}^{\{\eta\}}$ is a neighborhood of $\langle \zeta, \eta \rangle$ which witnesses the local countability of \mathcal{V} at $\langle \zeta, \eta \rangle$.

Since $V(\gamma)$'s and $V(\delta, n)$'s are clopen in X, Claim 2 and 3 say that X can be represented as the locally countable union of clopen paracompact subspaces.

Claim 4. X is not paraLindelöf.

Proof. Let $V(\gamma, \beta) = X_{\{\omega_1 \cdot (\gamma-1)+\beta\}}$ for each $\gamma, \beta \in \text{Succ}, V(\delta, n) = X_{[0,\omega_1 \cdot \delta]}^{\{\omega_1 \cdot n+\delta+1\}}$ for each $\delta \in \text{Lim}$ and $n \in \omega$. Assume that there is a precise locally countable open refinement $\mathcal{W} = \{W(\gamma, \beta) : \langle \gamma, \beta \rangle \in \text{Succ} \times \text{Succ}\} \cup \{W(\delta, n) : \langle \delta, n \rangle \in \text{Lim} \times \omega\}$ of the open cover $\mathcal{V} = \{V(\gamma, \beta) : \langle \gamma, \beta \rangle \in \text{Succ} \times \text{Succ}\} \cup \{V(\delta, n) : \langle \delta, n \rangle \in \text{Lim} \times \omega\}$. Let $\delta \in \text{Lim}$ and $n \in \omega$. Since $\{W(\gamma, \beta) : \langle \gamma, \beta \rangle \in \text{Succ} \times \text{Succ}\}$ is locally countable, we can take $f(\delta, n) < \delta$ such that

$$I(\delta, n) = \{ \langle \gamma, \beta \rangle \in \text{Succ} \times \text{Succ} : W(\gamma, \beta) \cap X^{\{\omega_1 \cdot n + \delta + 1\}}_{(\omega_1 \cdot f(\delta, n), \omega_1 \cdot \delta]} \neq \emptyset \}$$

is countable. Fix $n \in \omega$ and moving $\delta \in \text{Lim}$, by the PDL, we can find a stationary set $S(n) \subset \text{Lim}$ and $f(n) < \omega_1$ such that $f(\delta, n) = f(n)$ for each $\delta \in S(n)$. Let $\gamma_0 = \sup\{f(n) : n \in \omega\}$ and fix $\gamma \in \text{Succ}$ with $\gamma_0 < \gamma$. Note $\gamma_0 \leq \gamma - 1$. For each $\beta \in \text{Succ}$, since the unique member of \mathcal{V} which contains the point $\langle \omega_1 \cdot (\gamma - 1) + \beta, \omega_1 \cdot \omega \rangle$ is $V(\gamma, \delta)$, $W(\gamma, \delta)$ also contains the point $\langle \omega_1 \cdot (\gamma - 1) + \beta, \omega_1 \cdot \omega \rangle$. So there is $n_0 \in \omega$ and an uncountable subset $K \subset \text{Succ}$ such that $X_{\{\omega_1 \cdot (\gamma - 1) + \beta\}}^{(\omega_1 \cdot n_0, \omega_1 \cdot \omega]} \subset W(\gamma, \beta)$ for each $\beta \in K$. Fix $\delta \in S(n_0)$ with $\gamma < \delta$. Since $I(\delta, n_0)$ is countable and K is uncountable, we can find $\beta \in K$ with $\delta + 1 < \beta$ and $\langle \gamma, \beta \rangle \notin I(\delta, n_0)$. By $\delta + 1 < \beta$, the point $\langle \omega_1 \cdot (\gamma - 1) + \beta, \omega_1 \cdot n_0 + \delta + 1 \rangle$ belongs to X. Moreover,

$$\langle \omega_1 \cdot (\gamma - 1) + \beta, \omega_1 \cdot n_0 + \delta + 1 \rangle \in X^{\{\omega_1 \cdot n_0, \omega_1 \cdot \omega]}_{\{\omega_1 \cdot (\gamma - 1) + \beta\}} \cap X^{\{\omega_1 \cdot n_0 + \delta + 1\}}_{(\omega_1 \cdot \gamma_0, \omega_1 \cdot \delta]}$$
$$\subset W(\gamma, \beta) \cap X^{\{\omega_1 \cdot n_0 + \delta + 1\}}_{(\omega_1 \cdot f(\delta, n_0), \omega_1 \cdot \delta]}.$$

Therefore $\langle \gamma, \beta \rangle \in I(\delta, n_0)$, a contradiction. \Box

In this connection, note that, as is well known, the space ω_1 is the locally countable union of closed paracompact subspaces $\{\alpha\}$'s, $\alpha < \omega_1$, but ω_1 is not paralindelöf. But:

Proposition 18. Let $X \subset \rho+1$ for some ordinal ρ . Assume that X is the locally countable union of clopen paracompact subspaces $X(\lambda)$'s, $\lambda \in \Lambda$. Then X is paracompact.

Proof. Assume that X is not paracompact. Let

 $\mu = \min\{\mu' \le \rho : X \cap [0, \mu'] \text{ is not paracompact } \}.$

Then by the minimality of μ , μ is limit ordinal, $\mu \notin X$, cf $\mu \ge \omega_1$ and $X \cap [0, \mu]$ is stationary in μ . By identifying $X = X \cap [0, \mu]$, we may assume that X is a stationary subset of μ and $X \cap [0, \mu']$ is paracompact for each $\mu' < \mu$.

Claim. $X(\lambda)$ is bounded in μ for each $\lambda \in \Lambda$.

Proof. Since $X(\lambda)$ is paracompact, it is not stationary in μ . So there is a cub set $C \subset$ Lim(cf μ) such that $X(\lambda) \cap M(C) = \emptyset$, where M is a normal function for μ . For each $\gamma \in C \cap M^{-1}(X)$, fix $f(\gamma) < \gamma$ such that $X(\lambda) \cap (M(f(\gamma)), M(\gamma)] = \emptyset$. Then by the PDL, we find a stationary set $S \subset C \cap M^{-1}(X)$ and $\gamma_0 < \text{cf } \mu$ such that $f(\gamma) = \gamma_0$ for each $\gamma \in S$. Then $X(\lambda) \subset [0, M(\gamma_0)]$, and so $X(\lambda)$ is bounded.

Since $X(\lambda)$'s cover X and are open, for each $\gamma \in M^{-1}(X) \cap \operatorname{Lim}(\operatorname{cf} \mu)$, fix $f(\gamma) < \gamma$, $\lambda(\gamma) \in \Lambda$ and $g(\gamma) < \operatorname{cf} \mu$ such that $X \cap (M(f(\gamma)), M(\gamma)] \subset X(\lambda(\gamma)) \subset [0, M(g(\gamma))]$. By the PDL, we find a stationary set $S \subset M^{-1}(X) \cap \operatorname{Lim}(\operatorname{cf} \mu)$ and $\gamma_0 < \operatorname{cf} \mu$ such that $f(\gamma) = \gamma_0$ for each $\gamma \in S$. Set $g(\gamma) = 0$ for each $\gamma \in \operatorname{cf} \mu \setminus (M^{-1}(X) \cap \operatorname{Lim}(\operatorname{cf} \mu))$ and $C = \{\gamma < \operatorname{cf} \mu : \forall \gamma' < \gamma(g(\gamma') < \gamma)\}$. Then members of $\{\lambda(\gamma) : \gamma \in S \cap C\}$ are distinct. Take $\alpha \in X$ with $M(\gamma_0) < \alpha$. Then $\alpha \in X(\lambda(\gamma))$ for each $\gamma \in S \cap C$ with $\alpha < M(\gamma)$. This contradicts the local countability of $\{X(\lambda) : \lambda \in \Lambda\}$. \Box

Burke [Bu] proved that submetacompact spaces in which every open cover has a σ -locally countable closed refinement are subparacompact. Using this we can see:

Proposition 19. ParaLindelöf subspaces of products of two ordinals are subparacompact.

Proof. Let X be a paraLindelöf subspace of products of two ordinals. Then by [KTY, Theorem 2.3], it is metacompact. By the regularity of X, every open cover has a σ -locally countable closed refinement. So by the result of [Bu], it is subparacompact. \Box

$\operatorname{References}$

- [Be] H. R. Bennett, Point countability in ordered spaces, Proc. Amer. Math. Soc. 28 (1971), 598-606.
- [Bu] D. K. Burke, Refinements of locally countable collections, Top. Proc. 4 (1979), 19-27.
- [Ku] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [KTY] N. Kemoto, K. Tamano and Y. Yajima, Generalized paracompactness of subspaces in products of two ordinals, Top. Appl. 104(2000), 141-154.
- [KY] N. Kemoto and Y. Yajima, Orthocompactness in products, Tsukuba Jour. Math. 16 (1992), 407-422.
- [Wa] S. Watson, Problems I wish I could solve, Open problems in Topology (ed. J. van Mill and G. M. Reed), North-Holland, Amsterdam, 1990, pp. 37-76.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, OITA UNIVERSITY, DANNOHARU, OITA, 870-1192, JAPAN

E-mail: nkemoto@cc.oita-u.ac.jp

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIHARA, OSAKA, 582-8582, JAPAN *E-mail*: kuwa_k@mua.biglobe.ne.jp