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Abstract. Let � and � be ordinals with the order topologies. It is known from [KTY]

that metacompactness, screenability and weak submetaLindel�ofness are equivalent for every

subspace of � � �. However there are a metacompact subspace of (!1 + 1) � (!2 + 1) which

is not subparacompact, and a subparacompact subspace of (! + 1) � (!1 + 1) which is not

paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not diÆcult to show that these

examples are not paraLindel�of. So it is natural to ask whether all paraLindel�of subspaces of

�� � are paracompact for every ordinals � and �. In this paper, we will see that paraLindel�of

subspaces of (� + 1) � (!1 � !) are paracompact for every ordinal �, where !1 � ! denotes the

ordinal number !1+!1+ � � �(!-times), see [Ku, I De�nition 7.19]. Moreover we will show that

paraLindel�of subspaces of (�+1)2 are paracompact for every ordinal � < !1 �!1. And we will

construct a non-paracompact subspace X of (!1 � !1)� (!1 � ! + 1) which can be represented

as the locally countable union of clopen paracompact subspaces.

All spaces are assumed to be regular T1. Let � and � be ordinals with the order topologies.

It is known from [KTY] that metacompactness, screenability and weak submetaLindel�ofness

are equivalent for every subspace of � � �. So at least, such paraLindel�of subspaces are

metacompact. However there are a metacompact subspace of (!1 + 1) � (!2 + 1) which

is not subparacompact, and a subparacompact subspace of (! + 1) � (!1 + 1) which is

not paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not diÆcult to show

that these examples are not paraLindel�of. In this connection, it is known in [KY] that for

subspaces A � � and B � �, A � B is paracompact i� A and B are paracompact. Since,

by [Be], paraLindel�of GO-spaces are paracompact, for subspaces A � � and B � �, A� B

is paraLindel�of i� A � B is paracompact. So it is natural to ask whether all paraLindel�of

subspaces of ��� are paracompact for every ordinals � and �. In this paper, we will see that

paraLindel�of subspaces of (�+1)� (!1 �!) are paracompact for every ordinal �, where !1 �!

denotes the ordinal number !1 + !1 + � � �(!-times), see [Ku, I De�nition 7.19]. Moreover

we will show that paraLindel�of subspaces of (� + 1)2 are paracompact for every ordinal

� < !1 �!1. And we will construct a non-paracompact subspace X of (!1 �!1)� (!1 �!+1)

which can be represented as the locally countable union of clopen paracompact subspaces.

We recall basic de�nitions and introduce speci�c notation from [KTY].

In our discussion, for some technical reasons, we always assume X � (� + 1) � (� + 1)

for some suitably large ordinals � and �. Moreover, in general, the letters � and � stand

for limit ordinals with � � � and � � �. For each A � �+ 1 and B � � + 1 put

XA = A� (� + 1) \X; XB = (�+ 1)�B \X;

and

XB
A = XA \X

B :
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For each � � � and � � �, put

V�(X) = f� � � : h�; �i 2 Xg;

H�(X) = f� � � : h�; �i 2 Xg:

cf � denotes the co�nality of the ordinal �. When cf � � !1, a subset S of � is called

stationary in � if it intersects all cub (i.e., closed and unbounded) sets in �. Moreover for

each A � �, Lim�(A) is the set f� < � : � = sup(A \ �)g, in other words, the set of all

cluster points of A in �. For convenience, we consider sup ; = �1 and �1 is the immediate

predecessor of the ordinal 0. Therefore Lim�(A) is cub in � whenever A is unbounded in

�. We will simply denote Lim�(A) by Lim(A) if the situation is clear in its context. In

particular, assume C is a cub set in � with cf � � !, then Lim(C) � C. In this case, we

de�ne Succ(C) = CnLim(C), and pC(�) = sup(C \ �) for each � 2 C. Note that, for each

� 2 C, pC(�) 2 C [ f�1g, and pC(�) < � i� � 2 Succ(C). So pC(�) is the immediate

predecessor of � in C [ f�1g whenever � 2 Succ(C) . Moreover observe that �nC is the

union of the pairwise disjoint collection f(pC(�); �) : � 2 Succ(C)g of open intervals of � and

that �nLim(C) is the union of the pairwise disjoint collection f(pC(�); �] : � 2 Succ(C)g

of clopen intervals of �. For short, let denote Lim = Lim(!1) and Succ = Succ(!1).

Let � be a regular uncountable cardinal and A � �. Assume that a cub set C
 is assigned

for each 
 2 A. Then, by the argument of [Ku, II 6.14], the diagonal intersection

4
2AC
 = fÆ < � : 8
 2 A \ Æ(Æ 2 C
)g

is cub in �.

A strictly increasing function M : cf �+ 1! �+ 1 is said to be a normal function for �

if M(
) = supfM(
0) : 
0 < 
g for each limit ordinal 
 � cf � and M(cf �) = �. Observe

that, if cf � � !1, then two normal functions for � coincide on a cub set of cf �. Note that

a normal function for � always exists if cf � � !. So we always �x a normal function M for

each ordinal � with cf � � !. In particular, if � is regular, i.e. cf � = �, then we can �x the

identity map on �+1 as the normal function. ThenM carries cf �+1 homeomorphically to

the range ranM of M and ranM is closed in �+1. Note that for all S � � with cf � � !1,

S is stationary in � if and only if M�1(S) is stationary in cf �. For convenience, we de�ne

M(�1) = �1.

A space Y is said to be paraLindel�of if every open cover of Y has a locally countable

open re�nement.

The next lemma follows from [KTY, Lemma 2.2].

Lemma 1. Let Y be a subspace of � + 1 for some ordinal �. Then the following are

equivalent:

(A) Y is paracompact,

(B) Y is paraLindel�of,

(C) For every � 2 (�+ 1)nY with cf � � !1, Y \ � is not stationary in �.

Lemma 2. Let X be a paraLindel�of subspace of (� + 1) � (� + 1) and let E be a closed

subset which is disjoint from Xf�g. If cf � � !1, then E and Xf�g are separated by disjoint

open subsets of X .

Proof. Let U = fX nEg [ fX [0;N(Æ)] : Æ < cf �g. Then U is an open cover of X . Since X is

paraLindel�of, there is a precise locally countable open re�nement W = fWg [ fW (Æ) : Æ <

cf �g of U , where "precise" means W � X nE and W (Æ) � X [0;N(Æ)] for each Æ < cf �. Let
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G =
S
Æ<cf �W (Æ), then E � G. It suÆces to show Xf�g � X n ClG. Let h�; �i 2 Xf�g.

Take f(�) < � and g(�) < � such that

D� = fÆ < cf � : X
(g(�);�]

(f(�);�]
\W (Æ) 6= ;g

is countable. Let �0 = maxfg(�); supD�g. Then �
0 < � and X

(�0;�]

(f(�);�]
\G = ;. This implies

h�; �i 2 X nClG. �

Theorem 3. Let X be a paraLindel�of subspace of (�+1)�(�+1). Assume that X[0;�0] and

X [0;�0] are paracompact for each �0 < � and �0 < �. Then in either cases of the following,

X is paracompact.

(a) cf � � �, moreover either � is regular uncountable or � < !1.

(b) � < cf �.

Proof. Assume that X is not paracompact. Then it follows from Lemma 1 that � and �

are limit ordinals.

Claim 1. h�; �i =2 X .

Proof. Assume h�; �i 2 X . Let U be an open cover of X . Take U 2 U with h�; �i 2 U ,

moreover take �0 < � and �0 < � such that X
(�0;�]

(�0;�]
� U . Since, X[0;�0] [ X [0;�0] is a

paracompact clopen subspace, it is not diÆcult to construct a locally �nite open re�nement

of U , a contradiction.

Moreover we have cf � � !1 or cf � � !1. Indeed, if cf � = cf � = !, then X =L
n2!X(M(n�1);M(n)] [

L
n2!X(N(n�1);N(n)] is the union of countably many clopen para-

compact subspaces. Therefore X is paracompact, a contradiction.

We will consider several cases. In all cases, we will derive contradictions. First we

consider the case (a).

Case (a). cf � � �, moreover either � is regular uncountable or � < !1.

In this case, we may assume that cf � � � and � is regular uncountable. Because, if

cf � � � < !1, then cf � = cf � = !, a contradiction.

There are three subcases to consider.

Subcase (a-1). cf � = !.

Since X is paraLindel�of, by Lemma 1, we can take a cub set D in � disjoint from V�(X).

Then Xf�g and XD[f�g are disjoint closed subsets. In particular, Xf�g and Xf�g are

disjoint closed subsets. Applying Lemma 2, take an open set G of X such that Xf�g � G

and ClG \ Xf�g = ;. Let U = fX n ClGg [ fX [0;Æ) : Æ < �g. Then U is an open

cover of X . Since X is paraLindel�of, there is a precise locally countable open re�nement

W = fWg[ fW (Æ) : Æ < �g of U . For each � 2 V�(X), we can take f(�) < � and g(�) < �

such that (g(�); �] \ D = ;, H(�) = X
(g(�);�]

(f(�);�]
� G and fÆ < � : W (Æ) \ H(�) 6= ;g is

countable. Let H =
S
�2V�(X)H(�). Then Xf�g � H � G is obvious.

Claim 2. S = fÆ 2 D : XfÆg \ClH 6= ;g is not stationary in �.

Proof. Assume that S is stationary in �. For each Æ 2 S, take h(Æ) < � with hh(Æ); Æi 2 ClH .

Since W is an open cover, there is  (Æ) < � with hh(Æ); Æi 2 W ( (Æ)). Note that  (Æ) > Æ

because of W ( (Æ)) � X [0; (Æ)). Since (g(�); �] \D = ; for each � 2 V�(X) and W ( (Æ))

is a neighborhood of hh(Æ); Æi 2 ClH , we can �nd �(Æ) 2 V�(X) with �(Æ) < Æ such that
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W ( (Æ)) \ H(�(Æ)) 6= ;. For each Æ 2 �nS, de�ne  (Æ) = 0. Then D0 = fÆ < � : 8Æ0 <

Æ( (Æ0) < Æ)g is cub in �. By the PDL(Pressing Down Lemma), there is a stationary set

S0 � S \ D0 in � and � 2 V�(X) such that �(Æ) = � for each Æ 2 S0. Since Æ <  (Æ) for

each Æ 2 S0 and S0 � D0, the members of f (Æ) : Æ 2 S0g are all distinct. Therefore H(�)

meets uncountably many W ( (Æ))'s, Æ 2 S0, a contradiction.

Applying Claim 2, take a cub set E � D in � with E \ S = ;. Then, since H � G and

ClG \Xf�g = ;, Xf�g and X
E[f�g are separated by H and X nClH . Since

X nH � X nXf�g �

M
n2!

X(M(n�1);M(n)] and

ClH � X nXE[f�g
�

M
Æ2Succ(E)

X(p
E
(Æ);Æ];

X = (XnH)[ClH is the union of two paracompact closed subspaces. SoX is paracompact,

a contradiction.

Subcase (a-2). !1 � cf � < �.

Since h�; �i =2 X and cf � � !1, H�(X) is not stationary in �, so we can take a cub set C

in cf � such that M(C) \H�(X) = ;. Similarly, for each 
 2 C [ fcf �g, since VM(
)(X) is

not stationary in �, we can take a cub set D
 in � disjoint from VM(
)(X) = ;. Put D =T

2C[fcf �gD
 . Then, since cf � < � = cf �, D is a cub set in � andXM(C)[f�g andX

D[f�g

are disjoint closed subsets. In particular, XM(C)[f�g and X
f�g are disjoint closed subsets.

By Lemma 2, we can take an open subset G such that XM(C)[f�g � G and ClG\Xf�g = ;.

Since U = fX nClGg[ fX [0;Æ) : Æ < �g is an open cover of the paraLindel�of space X , there

is a precise locally countable open re�nement W = fWg [ fW (Æ) : Æ 2 �g of U . For each


 2 C [ fcf �g and each � 2 VM(
)(X), we can take f(
; �) < M(
) and g(
; �) < � such

that (g(
; �); �] \D = ;, H(
; �) = X
(g(
;�);�]

(f(
;�);M(
)]
� G and fÆ < � : W (Æ) \H(
; �) 6= ;g

is countable. Let

H =
[


2C[fcf �g;�2VM(
)(X)

H(
; �):

Then XM(C)[f�g � H � G is obvious.

Claim 3. S = fÆ 2 D : XfÆg \ClH 6= ;g is not stationary in �.

Proof. Assume that S is stationary in �. For each Æ 2 S take h(Æ) < � with hh(Æ); Æi 2 ClH

and take  (Æ) < � with hh(Æ); Æi 2W ( (Æ)). Note  (Æ) > Æ because ofW ( (Æ)) � X [0; (Æ)).

Since (g(
; �); �] \ D = ; for each 
 2 C [ fcf �g and � 2 VM(
)(X), we can take 
(Æ) 2

C [ fcf �g and �(Æ) 2 VM(
(Æ))(X) with �(Æ) < Æ such that W ( (Æ)) \ H(
(Æ); �(Æ)) 6= ;.

As in Claim 2, noting jC [ fcf �gj = cf � < �, by the PDL, we �nd a stationary set S0 � S,

� < � and 
 2 C [ fcf �g such that �(Æ) = � for each Æ 2 S0, 
(Æ) = 
 and members

of f (Æ) : Æ 2 S0g are all distinct. Then H(�; 
) meets uncountably many W ( (Æ))'s, a

contradiction.

Applying Claim 3, take a cub set E � D in � with E \ S = ;. Then, since H � G and

ClG \Xf�g = ;, XM(C)[f�g and X
E[f�g are separated by H and X nClH . Since

X nH � X nXM(C)[f�g �

M

2Succ(C)

X(M(p
C
(
));M(
)] and



PARALINDEL�OF SUBSPACES IN PRODUCTS OF TWO ORDINALS 847

ClH � X nXE[f�g
�

M
Æ2Succ(E)

X(p
E
(Æ);Æ];

X n H and ClH are paracompact. Therefore X = (X n H) [ ClH is paracompact, a

contradiction.

Subcase (a-3). cf � = �.

Note, in this case, !1 � cf � = cf � = �. First we consider the special case that X �

� � (� + 1). Since h�; �i =2 X , �(X) = f
 < � : hM(
); 
i 2 Xg is homeomorphic to the

closed subspace X \ fhM(
); 
i : 
 < �g of X , �(X) is not stationary in �. Take a cub set

C in � such that C \�(X) = ;.

Claim 4. X = fX
(p
C
(
);
]

(M(p
C
(
));M(
)]

: 
 2 Succ(C)g is a discrete collection of clopen paracom-

pact subspaces.

Proof. By the assumption, it suÆces to show that X is dicrete. Let h�; �i 2 X . If � =2

M(C), then take 
 2 Succ(C) such that � 2 (M(pC(
));M(
)]. Then X(M(p
C
(
));M(
)] is

neighborhood of h�; �i which meets at most one member of X . Similarly if � =2 C [ f�g,

we can take a neighborhood of h�; �i which meets at most one member of X . So we may

assume h�; �i 2 X
C[f�g

M(C)
. Take 
(�) 2 C with M(
(�)) = �. Since C \�(X) = ;, we have

M(�) 6= � =M(
(�)), so � 6= 
(�). If � < 
(�), then X
[0;�]

(M(�);�]
is neighborhood of h�; �i

which meets no member of X . If � > 
(�), then X
(
(�);�]

[0;�]
is neighborhood of h�; �i which

meets no member of X . This completes the proof of Claim 4.

Let

Y (0) = fh�; �i 2 X : � > M(�)g n (
[

X ):

Then Y (0) is clopen subspace of X . Because Y (0) can be represented as fh�; �i 2 X : � �

M(�)g n (
S
X ). Similarly

Y (1) = fh�; �i 2 X : � < M(�)g n (
[

X )

is a clopen subspace of X .

Claim 5. Y (0) is paracompact.

Proof. Note, in this special case, � =2 HÆ(X) for each Æ < �. Therfore HÆ(X) is not

stationary in � for each Æ < �. Take a cub set CÆ in cf � such that M(CÆ) \ HÆ(X) = ;.

Put

C 0 = C \�Æ<�CÆ

We shall show XM(C0) \ Y (0) = ;. Assume on the countary that h�; �i 2 XM(C0) \ Y (0).

Take 
(�) 2 C 0 with M(
(�)) = �. By the de�niton of Y (0), we have M(�) < � =

M(
(�)), so � < 
(�). It follows from � < 
(�) 2 C 0 � �Æ<�CÆ that 
(�) 2 C� . So

� =M(
(�)) 2M(C�)\H�(X), a contradiction. Hence XM(C0) \ Y (0) = ;. Since Y (0) is

clopen and

Y (0) � X nXM(C0) �

M

2Succ(C0)

X(M(p
C0 (
));M(
)];

Y (0) is paracompact.

SinceX = Y (0)
L
(
S
X )
L
Y (1) is not paracompact but

S
X and Y (0) are paracompact,

Y (1) is not paracompact. By considering Y (1) as X , we may now assume that

X � fh�; �i 2 �� (� + 1) : � < M(�)g
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is paraLindel�of but not paracompact, moreover X[0;�0] and X
[0;�0] are paracompact for each

�0 < � and �0 < �.

Since X is paraLindel�of, H�(X) is not stationary in �. So take a cub set C 0 in cf � such

that M(C 0) \ H�(X) = ;. Similarly for each 
 2 C 0, we can take a cub set C
 in � such

that C
 \ VM(
)(X) = ;. Put

C = C 0
\�
2C0C
 :

Claim 6. XM(C) \X
C[f�g = ;.

Proof. Assume on the contrary that h�; �i 2 XM(C) \X
C[f�g. Since M(C 0) \H�(X) = ;

and � 2M(C) �M(C 0), we have � 6= � so � 2 C � C 0. Take 
(�) 2 C withM(
(�)) = �.

Since � < M(�), we have 
(�) < �. It follows from


(�) < � 2 C � �
2C0C


that � 2 C
(�). So � 2 C
(�) \ V�(X) = C
(�) \ VM(
(�)), a contradiction.

By Claim 6, in particular, XM(C) and Xf�g are disjoint closed subsets. By Lemma

2, we can �nd an open subset G such that XM(C) � G and ClG \ Xf�g = ;. Since

U = fX n ClGg [ fX [0;Æ) : Æ < �g is an open cover of the paraLindel�of space X , there is

a precise locally countable open re�nement W = fWg [ fW (Æ) : Æ < �g of U . For each


 2 C and each � 2 VM(
)(X), we can �nd f(
; �) < M(
) and g(
; �) < � such that

(g(
; �); �] \ C = ;, H(
; �) = X
(g(
;�);�]

(f(
;�);M(
)]
� G and fÆ < � : W (Æ) \ H(
; �) 6= ;g is

countable. Let

H =
[


2C;�2VM(
)(X)

H(
; �)

Then XM(C) � H � G is obvious.

Claim 7. S = fÆ 2 C : XfÆg \ ClH 6= ;g is not stationary in �.

Proof. Assume that S is stationary in �. For each Æ 2 S take h(Æ) < � with hh(Æ); Æi 2 ClH

and take  (Æ) 2 � with hh(Æ); Æi 2 W ( (Æ)). As in Claim 3, we can take 
(Æ) 2 C and

�(Æ) 2 VM(
(Æ))(X) with �(Æ) < Æ such that W ( (Æ)) \ H(
(Æ); �(Æ)) 6= ;. Since X �

fh�; �i 2 � � (� + 1) : � < M(�)g, we have M(
(Æ)) < M(�(Æ)). Hence 
(Æ) < �(Æ) < Æ.

Applying the PDL twice, we can �nd a stationary set S0 � S in �, 
 2 C and � 2 VM(
)(X)

such that 
(Æ) = 
 and �(Æ) = � for each Æ 2 S0, moreover members of f (Æ) : Æ 2 S0g are

all distinct. Then H(
; �) meets uncountably many W ( (Æ))'s, a contradiction.

Applying Claim 7, take a cub set E � C in � with E \ S = ;. Then, by a similar

argument of one after Claim 3, we can see that X is paracompact, a contradiction.

Next we consider the general case, that is, X � (�+1)�(�+1). Since X is paraLindel�of,

V�(X) is not stationary in �, so we can take a cub set D in � such that D \ V�(X) = ;.

Then XD[f�g and Xf�g are disjoint closed subsets. By Lemma 2, there is a open subset G

such that XD[f�g � G and ClG \Xf�g = ;. Then

X nG � X nXD[f�g
�

M
Æ2Succ(D)

X(p
D
(Æ);Æ] and

and

ClG � X nXf�g � �� (� + 1):
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By the special case, ClG is paracompact. Therefore X = (X nG) [ClG is paracompact, a

contradiction.

Case (b). � < cf �.

There are two subcases.

Subcase (b-1). !1 � cf �.

Since cf � > � � cf � � !1, we can �nd a cub set D in cf � such that N(D) \ V�(X) = ;.

Then XN(D)[f�g and Xf�g are disjoint closed subsets. Applying Lemma 2, take an open

set G such that XN(D)[f�g � G and ClG \Xf�g = ;.

Claim 8. S = f
 < cf � : XfM(
)g \ ClG 6= ;g is not stationary in cf �.

Proof. Assume that S is stationary in cf �. For each 
 2 S, �x h(
) � � with hM(
); h(
)i 2

ClG. By � < cf � and the PDL, we can �nd a stationary set S0 � S in cf � and �0 � � such

that h(
) = �0 for each 
 2 S0. Then M(S0) � H�0(X), therefore H�0(X) \ � is stationary

in �. Since X is paraLindel�of and H�0(X) \ � is stationary in �, we have � 2 H�0(X). So

h�; �0i 2 ClfhM(
); �0i : 
 2 S0g \Xf�g � ClG \Xf�g;

a contradiction.

By Claim 8, we can take a cub set C in cf � such that C \ S = ;. Then we have

XN(D)[f�g � G and XM(C)[f�g \ ClG = ;. Since

X nG � X nXN(D)[f�g
�

M
Æ2Succ(D)

X(N(p
D
(Æ));N(Æ)] and

ClG � X nXM(C)[f�g �

M

2Succ(C)

X(M(p
C
(
));M(
)];

X = (X nG) [ ClG is paracompact, a contradicion.

Subcase (b-2). cf � = !.

Note that in this case, we have !1 � cf �. By Lemma 2, take an open set G with Xf�g � G

and ClG \Xf�g = ;.

By a similar argument of Claim 8, S = f
 < cf � : XfM(
)g\ClG 6= ;g is not stationary in

cf �. Then by a similar argument of one after Claim 2, we can show that X is paracompact,

a contradiction. �

Corollary 4. Let X be a paraLindel�of subspace of (� + 1) � (� + 1) for a suitably large

ordinal � such that X [0;�0] is paracompact for each �0 < �. If � is regular uncountable or

� < !1, then X is paracompact.

Proof. Assume that X is not paracompact and let

� = minf�0 � � : X[0;�0] is not paracompact g:

Then X[0;�] is not paracompact. First assume � is regular uncountable. Then by Theorem

3, in either cases of cf � � � or � < cf �, X[0;�] is paracompact, a contradiction. Next

assume � < !1. Similarly by Theorem 3, X[0;�] is paracompact, a contradiction. �

This Corollary immediately yields:
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Corollary 5. For a suitably large ordinal �, paraLindel�of subspaces of (� + 1)� (!1 + 1)

are paracompact.

Corollary 6. For a suitably large ordinal �, paraLindel�of subspaces of (� + 1) � (!1 � !)

are paracompact.

Proof. Let X be a paraLindel�of subspace of (� + 1) � (!1 � !) . Put T0 = [0; !1] and

Tn = (!1 �n; !1 � (n+1)] for each n 2 ! with n � 1. Since Tn is homeomorphic to (!1 +1),

X \ (�+ 1)� Tn is homeomorphic to a subspace of (�+ 1)� (!1 + 1). By Corollary 5,

X =
M
n2!

[X \ (�+ 1)� Tn]

is the free union of paracompact clopen subspaces, so X is paracompact. �

Corollary 7. For each � < !1 � !1, paraLindel�of subspaces of (�+ 1)2 are paracompact.

Proof. Assume that there is a paraLindel�of subspace X of (�+1)2 which is not paracompact

for some � < !1 � !1. Let

� = minf�0 � � : X[0;�0] is not paracompact g;

� = minf�0 � � : X
[0;�0]

[0;�]
is not paracompact g:

Since X
[0;�]

[0;�]
is a clopen subspace of X , we may assume that X = X

[0;�]

[0;�]
. Note that X is

not paracompact, X[0;�0] and X
[0;�0] are paracompact for each �0 < � and �0 < �. As in

the proof of Theorem 3, we can show that h�; �i =2 X moreover that cf � � !1 or cf � � !1.

So we may assume cf � = !1. Since � � � < !1 � !1, there is a � 2 Succ such that

� = !1 � �. Let � � 1 be the immediate predecessor of �. Since (!1 � (� � 1); !1 � �] is

homeomorphic to !1 + 1, by Corllary 6, X(!1�(��1);!1��] is a clopen paracompact subspace.

Then X = X [0;!1�(��1)][X(!1�(��1);!1��] is the union of two clopen paracompact subspaces,

so X is paracompact, a contradiction. �

The reader should observe that, if Theorem 3 also holds for the following remaining case

(c):

(c) cf � � �, cf � < � and � is uncountable.

then all paraLindel�of subspaces of products of two ordinals are paracompact.

However, we have no useful way to extend Corollary 6 for subspaces of (�+1)�(!1 �!+1)

and Corollary 7 for subspaces of (!1 � !1)
2. Now we conjecture the following.

Conjecture 8. There is a paraLindel�of subspace of (!1 � !1) � (!1 � ! + 1) which is not

paracompact. Or more generally, there is a paraLindel�of subspace of (!1 �!1)
2 which is not

paracompact.

The main open problem on paraLindel�of spaces is the following, see [Wa, Problem 39]:

Problem 9. Are paraLindel�of spaces countably paracompact?

Now we see:

Proposition 10. Let X be a paraLindel�of countably paracompact subspace of (� + 1) �

(� +1). Assume that X[0;�0] and X
[0;�0] are paracompact for each �0 < � and �0 < �. Then

X is paracompact in the following case:

(c') cf � � �, ! = cf � < � and � is uncountable.
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Proof. Assume that X is not paracompact, then as usual, we can easily show that � and

� are limit ordinals with cf � � !1 and h�; �i =2 X . Take a cub set C in cf � with M(C) \

H�(X) = ;. By Lemma 2, we can also take an open set G with Xf�g � G � XnXM(C)[f�g

and ClG \ Xf�g = ;. Let W = fWg [ fW (n) : n 2 !g be a precise locally �nite open

re�nement of U = fGg [ fX [0;N(n)] : n 2 !g. XM(C)[f�g �
S
n2!W (n) is obvious. By the

local �niteness of W , Cl(
S
n2!W (n)) =

S
n2! ClW (n) � XnXf�g. Then in a usual way,

we can show that X is paracompact, a contradiction. �

Using a similar argumet in Corollary 4 and 5, we see:

Corollary 11. For a suitably large ordinal � and for each � < !1 � !1, paraLindel�of

countably paracompact subspaces of (� + 1) � (� + 1) are paracompact. In particular,

paraLindel�of countably paracompact subspaces of (!1 � !1) � (� + 1) are paracompact for

each � < !1 � !1

Applying this corollary, we can show the positive answer of the conjecture 8 for (!1 �

!1)� (!1 � ! + 1) yields the negative answer of Problem 9, that is:

Corollary 12. If there is a a paraLindel�of subspace X of (!1 � !1)� (!1 � ! + 1) which is

not paracompact, then X is a paraLindel�of space which is not countably paracompact.

However, strangely, we have also no useful way to show that paraLindel�of countably

paracompact subspaces of (!1 � !1)
2 are paracompact. Now we conjecture the following:

Conjecture 13. There is a paraLindel�of countably paracompact subspace of (!1 � !1)
2

which is not paracompact.

Although the existence of a paraLindel�of non-paracompact subspace of (!1 � !1)� (!1 �

! + 1) still remains open, now we give some informations about the existence of such a

subspace.

From now on, consider the normal function M for !1 � !1 by letting M(
) = !1 � 
 for

each 
 < !1.

Proposition 14. Let X be a paraLindel�of subspace of (!1 � !1) � (!1 � ! + 1). Then for

each � 2 H!1�!(X), there is g(�) < ! such that X
(!1�g(�);!1�!]

f�g
is countable.

Proof. For each n � !, since H!1�n(X) is not stationary in !1 � !1, take a cub set Cn in

!1 such that M(Cn) \ H!1�n(X) = ;. Set C =
T
n�! Cn and E = f!1 � n : n � !g.

Then XM(C) and X
E are disjoint closed sets of X . For each 
 < !1, let U(
) = X [0;
] [S

1�n2!X
(!1�n;!1�n+
]. Take a precise locally countable open re�nement W = fW (
) : 
 <

!1g [ fWg of U = fU(
) : 
 < !1g [ fXnXM(C)g. Let � 2 H!1�!(X). Since W is locally

countable at h�; !1 �!i, there is g(�) < ! such that X
(!1�g(�);!1�!]

f�g
meets at most countably

many W (
)'s. Then this g(�) works. �

Proposition 15. Assume that X is a paraLindel�of subspace of (!1 �!1)� (!1 �!+1) such

that for some �0 < !1 � !, H!1�!(X)\ [�0; �] is Lindel�of for every � < !1 � !1 with �0 � �.

Then X is paracompact.

Proof. Note that, by Corollary 6 and 7, X[0;�0] and X
[0;�0] are paracompact for each �0 <

!1 � !1 and �0 < !1 � !. Since X[0;�0] is paracompact, we may assume �0 = 0, that is,

H!1�!(X) \ [0; �] is Lindel�of for every � < !1 � !1. As in the proof of Proposition 14,

de�ne a cub set C � !1 with XM(C) \ XE = ;, where E = f!1 � n : n � !g. Let

W = fW (
) : 
 < !1g be a precise locally countable open re�nement of the open cover

U = fX[0;M(
)) : 
 < !1g. For each � 2 H!1�!(X), take g(�) < ! and f(�) < � such that
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H(�) = X
(!1�g(�);!1�!]

(f(�);�]
meets at most countably many W (
)'s and (f(�); �] \M(C) = ;.

For each 
 2 Succ(C), since H!1�!(X)\ [M(pC(
));M(
)] = H!1�!(X)\(M(pC(
));M(
))

is a clopen subspace of the Lindel�of space H!1�!(X)\ [0;M(
)], there is a countable subset

Z(
) � H!1�!(X) \ (M(pC(
));M(
)) such that

X
f!1�!g

(M(p
C
(
));M(
))

�

[
�2Z(
)

H(�) � X(M(p
C
(
));M(
)):

Of course, H =
S

2Succ(C)(

S
�2Z(
)H(�)) covers Xf!1�!g. In a usual way, the following

Claim shows that X is paracompact.

Claim. S = fÆ 2 C : XfM(
)g \ ClH 6= ;g is not stationary in !1.

Proof. Assume that S is stationary. For each Æ 2 S, �x h(Æ) � !1 � ! and  (Æ) > Æ such

that hM(Æ); h(Æ)i 2 ClH \W ( (Æ)). Moreover since
S
�2Z(
)H(�) � X(M(p

C
(
));M(
)) for

each 
 2 Succ(C), we can �nd '(Æ) 2 Succ(C) \ Æ with (
S
�2Z('(Æ))H(�)) \W ( (Æ)) 6= ;.

Applying the PDL, we can �nd a stationary set S0 � S and Æ0 2 Succ(C) such that

'(Æ) = Æ0 for each Æ 2 S0 and the members of f (Æ) : Æ 2 S0g are all distinct. ThenS
�2Z(Æ0)

H(�) meets uncountably manyW ( (Æ))'s, Æ 2 S0. Since Z(Æ0) is countable, we can

�nd �0 2 Z(Æ0) such that H(�0) meets uncountably many W ( (Æ))'s, a contradiction. �

Corollary 16. Assume that there exists a paraLindel�of subspace X of (!1 �!1)�(!1 �!+1)

which is not paracompact. Then I = f� 2 !1 � !1nH!1�!(X) : cf � = !1g is unbounded in

!1 � !1.

Proof. Assume that I is bounded by some �0 < !1 � !1. The following general fact shows

that H!1�!(X) \ [�0; �] is Lindel�of for every � < !1 � !1 with �0 � �.

Fact. If Z is a subspace of �+1 for some ordinal � such that cf � � ! for every � 2 (�+1)nZ,

then Z is Lindel�of.

Proof. Assume that Z is not Lindel�of and let

� = minf�0 � � : Z \ [0; �0] is not Lindel�of g:

Then we see that � =2 Z, � is limit, Z \ [0; �0] is Lindel�of for every �0 < � and Z \ [0; �] is

not Lindel�of. Since � =2 Z, we have cf � = !. Then Z \ [0; �] =
S
n2!(Z \ [0; �(n)]) can be

represented as the countable union of Lindel�of subspaces, where f�(n) : n 2 !g is a strictly

increasing co�nal sequence in �, so it is Lindel�of, a contradiction. �

Taking account of these informations, the authors have tried to construct a paraLindel�of

non-paracompact subspace of (!1 � !1) � (!1 � ! + 1). But now we present the follow-

ing by-product of these considerations. Here note that the locally �nite union of clopen

paracompact subspaces are also paracompact.

Example 17. There exists a non-paracompact subspace X of (!1 � !1) � (!1 � ! + 1),

which can be represented as the locally countable union of clopen paracompact subspaces,

such that X[0;�] and X
[0;�] are paracompact for each � < !1 � !1 and � < !1 � !. In fact,

unfortunately, this X is not paraLindel�of.

Our space is de�ned as follows:

X =

2
4 [

;�2Succ

f!1 � (
 � 1) + �g �

 
f!1 � !g [

[
n2!

Succ((!1 � n; !1 � n+ �))

!3
5
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[

" [
Æ2Lim

f!1 � Æg �

 [
n2!

f!1 � n+ Æ + 1g

!#
;

where Succ((!1 � n; !1 � n+ �)) denotes the set of all successor ordinals in the open interval

(!1 � n; !1 � n+ �). Observe that Xf!1�
g = ; for each 
 2 Succ and Xf!1�ng = ; for each

n 2 !.

Claim 1. X [0;�] is paracompact for each � < !1 � !.

Proof. Since X(0;!1] is homeomorphic to X(!1�n;!1�(n+1)] for each n 2 !, it suÆces to show

thatX [0;!1] is paracompact. Note that for each � < !1, H�(X) has at most one limit ordinal,

so Xf�g is paracompact. Since Xf�g = ; for each � 2 Lim[f!1g, X
[0;!1] =

L
�2SuccX

f�g

is paracompact.

Claim 2. X[0;�] is paracompact for each � < !1 � !1.

proof. Note that for each � < !1 � !1, V�(X) has at most one limit ordinal (!1 � ! if it has),

so Xf�g is paracompact. Assuming that X[0;�] is not paracompact for some � < !1 � !1, let

� < !1 � !1 be the such minimal one. Then � is limit and h�; !1 � !i =2 X[0;�]. If cf � = !,

then

X[0;�] =

 M
n2!

X(M(n�1);M(n)]

!
[

 M
n2!

X
(!�(n�1);!�n]

[0;�]

!

can be represented as the countable union of paracompact clopen subspaces. Therefore

X[0;�] is paracompact, a contradiction. If cf � = !1, then � = !1 � 
 for some 
 2 Succ.

Since X(!1�(
�1);!1�
] =
L

�2SuccXf!1�(
�1)+�g is paracompact, by the minimality of �,

X[0;�] = X[0;!1�(
�1)]

L
X(!1�(
�1);!1�
] is paracompact, a contradiction.

Claim 3. Let V (
) = X(!1�(
�1);!1�
) for each 
 2 Succ and V (Æ; n) = X
f!1�n+Æ+1g

[0;!1�Æ]
for

each Æ 2 Lim and n 2 !. Then V = fV (
) : 
 2 Succg [ fV (Æ; n) : hÆ; ni 2 Succ�!g is a

locally countable open re�nement of the open cover U = fX[0;!1�
] : 
 < !1g.

proof. Since other properties are not so hard, we only show that V is locally countable. Let

h�; �i 2 X .

First assume � 2 (!1 � (
 � 1); !1 � 
) for some 
 2 Succ. Then there is � 2 Succ with

� = !1 � (
 � 1) + �. If 
0 2 Succ with 
0 6= 
, then Xf�g \ V (

0) = ;. Moreover if Æ 2 Lim

with � � Æ, then Xf�g \ V (Æ; n) = ; for each n 2 !. Therefore Xf�g is a neighborhood of

h�; �i which witnesses the local countability of V at h�; �i.

Next assume � = !1 �Æ for some Æ 2 Lim. Then by the construction of X , it is not diÆcult

to show that X
f�g

[0;�]
is a neighborhood of h�; �i which witnesses the local countability of V

at h�; �i.

Since V (
)'s and V (Æ; n)'s are clopen in X , Claim 2 and 3 say that X can be represented

as the locally countable union of clopen paracompact subspaces.

Claim 4. X is not paraLindel�of.

Proof. Let V (
; �) = Xf!1�(
�1)+�g for each 
; � 2 Succ, V (Æ; n) = X
f!1�n+Æ+1g

[0;!1�Æ]
for each

Æ 2 Lim and n 2 !. Assume that there is a precise locally countable open re�nement

W = fW (
; �) : h
; �i 2 Succ� Succg [ fW (Æ; n) : hÆ; ni 2 Lim�!g of the open cover

V = fV (
; �) : h
; �i 2 Succ� Succg [ fV (Æ; n) : hÆ; ni 2 Lim�!g. Let Æ 2 Lim and n 2 !.

Since fW (
; �) : h
; �i 2 Succ� Succg is locally countable, we can take f(Æ; n) < Æ such

that

I(Æ; n) = fh
; �i 2 Succ� Succ :W (
; �) \X
f!1�n+Æ+1g

(!1�f(Æ;n);!1�Æ]
6= ;g
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is countable. Fix n 2 ! and moving Æ 2 Lim, by the PDL, we can �nd a stationary set

S(n) � Lim and f(n) < !1 such that f(Æ; n) = f(n) for each Æ 2 S(n). Let 
0 = supff(n) :

n 2 !g and �x 
 2 Succ with 
0 < 
. Note 
0 � 
 � 1. For each � 2 Succ, since the

unique member of V which contains the point h!1 � (
 � 1) + �; !1 � !i is V (
; Æ), W (
; Æ)

also contains the point h!1 � (
 � 1) + �; !1 � !i. So there is n0 2 ! and an uncountable

subset K � Succ such that X
(!1�n0;!1�!]

f!1�(
�1)+�g
� W (
; �) for each � 2 K. Fix Æ 2 S(n0) with


 < Æ. Since I(Æ; n0) is countable and K is uncountable, we can �nd � 2 K with Æ +1 < �

and h
; �i =2 I(Æ; n0). By Æ + 1 < �, the point h!1 � (
 � 1) + �; !1 � n0 + Æ + 1i belongs to

X . Moreover,

h!1 � (
 � 1) + �; !1 � n0 + Æ + 1i 2 X
(!1�n0;!1�!]

f!1�(
�1)+�g
\X

f!1�n0+Æ+1g

(!1�
0;!1�Æ]

�W (
; �) \X
f!1�n0+Æ+1g

(!1�f(Æ;n0);!1�Æ]
:

Therefore h
; �i 2 I(Æ; n0), a contradiction. �

In this connection, note that, as is well known, the space !1 is the locally countable

union of closed paracompact subspaces f�g's, � < !1, but !1 is not paralindel�of. But:

Proposition 18. Let X � �+1 for some ordinal �. Assume that X is the locally countable

union of clopen paracompact subspaces X(�)'s, � 2 �. Then X is paracompact.

Proof. Assume that X is not paracompact. Let

� = minf�0 � � : X \ [0; �0] is not paracompact g:

Then by the minimality of �, � is limit ordinal, � =2 X , cf � � !1 and X\ [0; �] is stationary

in �. By identifying X = X \ [0; �], we may assume that X is a stationary subset of � and

X \ [0; �0] is paracompact for each �0 < �.

Claim. X(�) is bounded in � for each � 2 �.

Proof. Since X(�) is paracompact, it is not stationary in �. So there is a cub set C �

Lim(cf �) such that X(�) \ M(C) = ;, where M is a normal function for �. For each


 2 C \M�1(X), �x f(
) < 
 such that X(�) \ (M(f(
));M(
)] = ;. Then by the PDL,

we �nd a stationary set S � C \M�1(X) and 
0 < cf � such that f(
) = 
0 for each 
 2 S.

Then X(�) � [0;M(
0)], and so X(�) is bounded.

Since X(�)'s cover X and are open, for each 
 2 M�1(X) \ Lim(cf �), �x f(
) < 
,

�(
) 2 � and g(
) < cf � such that X \ (M(f(
));M(
)] � X(�(
)) � [0;M(g(
))].

By the PDL, we �nd a stationary set S � M�1(X) \ Lim(cf �) and 
0 < cf � such that

f(
) = 
0 for each 
 2 S. Set g(
) = 0 for each 
 2 cf �n(M�1(X) \ Lim(cf �)) and

C = f
 < cf � : 8
0 < 
(g(
0) < 
)g. Then members of f�(
) : 
 2 S \ Cg are distinct.

Take � 2 X with M(
0) < �. Then � 2 X(�(
)) for each 
 2 S \ C with � < M(
). This

contradicts the local countability of fX(�) : � 2 �g. �

Burke [Bu] proved that submetacompact spaces in which every open cover has a �-locally

countable closed re�nement are subparacompact. Using this we can see:

Proposition 19. ParaLindel�of subspaces of products of two ordinals are subparacompact.

Proof. Let X be a paraLindel�of subspace of products of two ordinals. Then by [KTY,

Theorem 2.3], it is metacompact. By the regularity of X , every open cover has a �-locally

countable closed re�nement. So by the result of [Bu], it is subparacompact. �
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