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ABSTRACT. Let p and o be ordinals with the order topologies. It is known from [KTY]
that metacompactness, screenability and weak submetalindel6fness are equivalent for every
subspace of p x o. However there are a metacompact subspace of (w1 + 1) X (w2 + 1) which
is not subparacompact, and a subparacompact subspace of (w + 1) X (w1 + 1) which is not
paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not difficult to show that these
examples are not paraLindeldf. So it is natural to ask whether all paraLindel6f subspaces of
p X o are paracompact for every ordinals p and o. In this paper, we will see that paralindel6f
subspaces of (p + 1) X (w1 - w) are paracompact for every ordinal p, where w; - w denotes the
ordinal number wi + w1y + - - -(w-times), see [Ku, I Definition 7.19]. Moreover we will show that
paraLindel6f subspaces of (p+ 1)? are paracompact for every ordinal p < w; -w1. And we will
construct a non-paracompact subspace X of (w1 -w1) X (w1 - w + 1) which can be represented
as the locally countable union of clopen paracompact subspaces.

All spaces are assumed to be regular T . Let p and o be ordinals with the order topologies.
It is known from [KTY] that metacompactness, screenability and weak submetaLindel6fness
are equivalent for every subspace of p X . So at least, such paraLindel6f subspaces are
metacompact. However there are a metacompact subspace of (w; + 1) x (w2 + 1) which
is not subparacompact, and a subparacompact subspace of (w + 1) x (w; + 1) which is
not paracompact, see [KTY, Example 4.2 and 4.4]. Moreover it is not difficult to show
that these examples are not paraLindeldf. In this connection, it is known in [KY] that for
subspaces A C p and B C o, A X B is paracompact iff A and B are paracompact. Since,
by [Be], paraLindelof GO-spaces are paracompact, for subspaces A C pand B C o, A X B
is paraLindel6f iff A x B is paracompact. So it is natural to ask whether all paraLindel6f
subspaces of p X o are paracompact for every ordinals p and ¢. In this paper, we will see that
paraLindelof subspaces of (p+1) X (w -w) are paracompact for every ordinal p, where w; -w
denotes the ordinal number w; + wy + - - -(w-times), see [Ku, I Definition 7.19]. Moreover
we will show that paraLindel6f subspaces of (p + 1)? are paracompact for every ordinal
p < wi -wi. And we will construct a non-paracompact subspace X of (wy -wq) X (wy -w+1)
which can be represented as the locally countable union of clopen paracompact subspaces.

We recall basic definitions and introduce specific notation from [KTY].

In our discussion, for some technical reasons, we always assume X C (p + 1) x (o + 1)
for some suitably large ordinals p and o. Moreover, in general, the letters u and v stand
for limit ordinals with 4 < p and v < ¢. For each A C p+1and B C o + 1 put

Xa=Ax(c+1)NX, XB=(p+1)xBNX,

and
X8 =X,nX5.
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For each a < p and 8 < o, put
Va(X) ={B8<0o:(a,B) € X},

Hy(X) = {a < p: {a,B) € X}.

cf u denotes the cofinality of the ordinal u. When cf u > wy, a subset S of u is called
stationary in p if it intersects all cub (i.e., closed and unbounded) sets in u. Moreover for
each A C p, Lim,(A) is the set {a < p : @ = sup(A N a)}, in other words, the set of all
cluster points of A in u. For convenience, we consider sup ) = —1 and —1 is the immediate
predecessor of the ordinal 0. Therefore Lim,(A) is cub in u whenever A is unbounded in
w. We will simply denote Lim,(A) by Lim(A) if the situation is clear in its context. In
particular, assume C' is a cub set in p with cf g > w, then Lim(C') C C. In this case, we
define Succ(C) = C\ Lim(C'), and p(a) = sup(C N a) for each o € C. Note that, for each
a € C, pe(a) € CU{-1}, and pe(a) < a iff a € Succ(C). So pe(a) is the immediate
predecessor of a in C'U {—1} whenever a € Succ(C) . Moreover observe that p\C' is the
union of the pairwise disjoint collection {(p~(a), @) : @ € Succ(C)} of open intervals of 1 and
that p\ Lim(C') is the union of the pairwise disjoint collection {(ps(a),a] : a € Succ(C)}
of clopen intervals of u. For short, let denote Lim = Lim(w;) and Succ = Succ(wy ).

Let x be a regular uncountable cardinal and A C k. Assume that a cub set C. is assigned
for each v € A. Then, by the argument of [Ku, II 6.14], the diagonal intersection

DyeaCy={0<k:Vye AN € C,)}

is cub in k.

A strictly increasing function M :cf p+ 1 — p+ 1 is said to be a normal function for u
if M(y) =sup{M(') : v < v} for each limit ordinal v < cf p and M(cf u) = p. Observe
that, if cf u > wy, then two normal functions for y coincide on a cub set of cf u. Note that
a normal function for p always exists if c¢f 4 > w. So we always fix a normal function M for
each ordinal p with cf g > w. In particular, if y is regular, i.e. cf u = u, then we can fix the
identity map on pu+ 1 as the normal function. Then M carries cf i+ 1 homeomorphically to
the range ran M of M and ran M is closed in p + 1. Note that for all S C p with cf p > wy,
S is stationary in p if and only if M ~1(S) is stationary in cf . For convenience, we define
M(-1)=-1.

A space Y is said to be paraLindeléf if every open cover of Y has a locally countable
open refinement.

The next lemma follows from [KTY, Lemma 2.2].

Lemma 1. Let Y be a subspace of p + 1 for some ordinal p. Then the following are
equivalent:

(A) Y is paracompact,

(B) Y is paraLindeldt,

(C) For every € (p+ 1)\Y with cf p > wy, Y N p is not stationary in p.

Lemma 2. Let X be a paraLindel6f subspace of (u+ 1) x (v + 1) and let E be a closed
subset which is disjoint from X"}, If cf v > wy, then E and X"} are separated by disjoint
open subsets of X .

Proof. Let U = {X \ E} U{X[®N®I].§ < cfv}. Then i is an open cover of X. Since X is
paraLindelof, there is a precise locally countable open refinement W = {W} U {W(4) : § <
cf v} of U, where ”precise” means W C X \ E and W (8) ¢ XN for each § < cf v. Let



PARALINDELOF SUBSPACES IN PRODUCTS OF TWO ORDINALS 845

G = Uscer, W(6), then E C G. It suffices to show X1 C X \ C1G. Let (a,v) € X1}
Take f(a) < a and g(a) < v such that

Do = {0 <cfv: XU 0W () # 0}

is countable. Let v’ = max{g(a),sup D, }. Then ' < v and X((fu( -] o]NG = 0. This implies
(a,v) € X\ CIG. O

Theorem 3. Let X be a paraLindeldf subspace of (u+1) x (v+1). Assume that X|o ) and

X0 are paracompact for each w' < pand v' < v. Then in either cases of the following,
X is paracompact.

(a) cf u < v, moreover either v is regular uncountable or v < w; .
(b) v <cfp.

Proof. Assume that X is not paracompact. Then it follows from Lemma 1 that p and v
are limit ordinals.

Claim 1. (u,v) ¢ X.

Proof. Assume (u,v) € X. Let U be an open cover of X. Take U € U with {(u,v) € U,

moreover take p' < p and v’ < v such that X((" :% C U. Since, X, U X007 s a
paracompact clopen subspace, it is not difficult to construct a locally finite open refinement
of U, a contradiction.

Moreover we have cf > w; or cfv > wy. Indeed, if cfy = cfv = w, then X =
Do X(M(n-1),M(n)] Y Drew X(N(n-1),N(n)] is the union of countably many clopen para-
compact subspaces. Therefore X is paracompact, a contradiction.

We will consider several cases. In all cases, we will derive contradictions. First we
consider the case (a).

Case (a). cf u < v, moreover either v is regular uncountable or v < w;.

In this case, we may assume that cfu < v and v is regular uncountable. Because, if
cf u <v <wy, then cf u = cf v = w, a contradiction.
There are three subcases to consider.

Subcase (a-1). cf p = w.

Since X is paraLindeldf, by Lemma 1, we can take a cub set D in v disjoint from V,,(X).
Then Xy, and XDPUirt are disjoint closed subsets. In particular, Xy and X} are
disjoint closed subsets. Applying Lemma 2, take an open set G' of X such that Xy, C G
and C1G N X = @, Let U = {X \ CIG}U {X[9 . § < v}. Then U is an open
cover of X. Since X is paraLindelof, there is a precise locally countable open refinement
W={W}}J{W(d):§ <v}of U. For each ﬂ € V,(X), we can take f(3) < p and g(8) < 3

such that (g(8),8] N D =0, H(B) = X427 € G and {0 < v : W() NH(B) # 0} is

countable. Let H = {Jsey,, (x) H(B). Then X{u} C H C G is obvious.

Claim 2. S = {6 € D: X1} nClH # 0} is not stationary in v.

Proof. Assume that S is stationary in v. Foreach d € S, take h(d) < p with (h(d),d) € C1H.
Since W is an open cover, there is ¢(8) < v with (h(J),d) € W((d)). Note that (d) > ¢
because of W (1(5)) € X% Since (g(8), 8] N D = § for each 3 € V,,(X) and W (1(5))
is a neighborhood of (h(4),d) € Cl1H, we can find (0) € V,(X) with 3(d) < ¢ such that
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W((0)) N H(B()) # 0. For each § € v\S, define ¢(6) = 0. Then D' = {6 < v : V' <
d(1p(0") < &)} is cub in v. By the PDL(Pressing Down Lemma), there is a stationary set
S"c SND"invand B € V,(X) such that 3(6) = 8 for each 6 € S’. Since § < 9(d) for
each § € S' and S' C D', the members of {¢)(d) : 6 € S’} are all distinct. Therefore H(3)
meets uncountably many W (y(d))’s, 6 € S’, a contradiction.

Applying Claim 2, take a cub set E C D in v with ENS = ). Then, since H C G and
CIGN X1} =0, X{,) and XPU} are separated by H and X \ C1H. Since

X\ HCX\ Xy €D Xar(n-1).01(ny and

n€w

CIHC X\X"Wc @ xee@®d]
§ESucc(E)

X = (X\H)UCI H is the union of two paracompact closed subspaces. So X is paracompact,
a contradiction.

Subcase (a-2). w; <cfpu <wv.

Since (u,v) ¢ X and cf p > wy, H,(X) is not stationary in u, so we can take a cub set C
in cf 4 such that M (C) N H,(X) = 0. Similarly, for each v € C'U {cf u}, since Vis(y)(X) is
not stationary in v, we can take a cub set D, in v disjoint from Vj;(,)(X) = 0. Put D =
nveC’U{cfu} D.,. Then, since cf p < v = cfv, Disacub set in v and Xy;(c)uqu) and X Puiv}
are disjoint closed subsets. In particular, Xprcyuq,y and X1} are disjoint closed subsets.
By Lemma 2, we can take an open subset G such that Xy (cyuquy C G and canx =¢.
Since U = {X \ CIG}U{X[%% : § < v} is an open cover of the paraLindelsf space X, there
is a precise locally countable open refinement W = {W} U {W(d) : § € v} of U. For each
v € CU {cfpu} and each B € Viy(,)(X), we can take f(vy,8) < M(y) and g(v,3) < 3 such

that (g(7,8), 81N D =0, H(y,8) = X{$(15) ), € G and {8 < v : W(8) N H(v,B) # 0}

is countable. Let

H = U H(y, ).

yeCU{cf u},BEVar(4)(X)
Then Xy (cyuquy C H C G is obvious.
Claim 3. S = {§ € D : X{%} N CL H # 0} is not stationary in v.

Proof. Assume that S is stationary in v. For each ¢ € S take h(4) < p with (h(5),d) € C1H
and take ¢(8) < v with (h(5),8) € W (¢(5)). Note1(5) > &§ because of W (p(5)) € X0-¥(4),
Since (g(v,8),8] N D = 0 for each v € C U {cfpu} and B € Va4 (X), we can take y(0) €
C U {cfu} and B(d) € Var(y(sy)(X) with 3(6) < & such that W(¢(6)) N H(y(9), B(9)) # 0.
As in Claim 2, noting |C U {cf u}| = cf p < v, by the PDL, we find a stationary set S’ C S,
B < vand v € CU{cfpu} such that 3(§) = 8 for each § € S', y(§) = v and members
of {1(d) : 6 € S'} are all distinct. Then H(3,7) meets uncountably many W (1(9))’s, a
contradiction.

Applying Claim 3, take a cub set E C D in v with ENS = . Then, since H C G and
CIGN X1} =0, Xproyuguy and X P} are separated by H and X \ C1H. Since

X\HCX\ Xy C P Xmpe).m) and
vESucc(C)
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ClH c X\ xFev} ¢ @ X (e (8),3]
§ESucc(E)

X \ H and ClH are paracompact. Therefore X = (X \ H) U Cl H is paracompact, a
contradiction.

Subcase (a-3). cf p = v.

Note, in this case, w; < cfu = cfv = v. First we consider the special case that X C
wx (v+1). Since (u,v) ¢ X, A(X) ={y<v:{(M(y),y) € X} is homeomorphic to the
closed subspace X N {{M(¥),7) : v < v} of X, A(X) is not stationary in v. Take a cub set
C in v such that C N A(X) = 0.

Claim 4. X = {X((JI\);(;’L/)&:YY])),M('}/)] : v € Succ(C)} is a discrete collection of clopen paracom-
pact subspaces.

Proof. By the assumption, it suffices to show that X is dicrete. Let (a,08) € X. If a ¢
M(C), then take vy € Succ(C) such that a € (M(pa(7v)), M(7)]- Then X(arp.(v)),m(v)] 18
neighborhood of (a, ) which meets at most one member of X'. Similarly if 3 ¢ C U {v},
we can take a neighborhood of («, 8) which meets at most one member of X. So we may

assume (o, ) € XJ\C;L(J({;)'} Take v(a) € C with M (y(a)) = a. Since C' N A(X) = (), we have

M(B) #a = M(y(a)), so 8 ya.Ifﬂ<7a,thenX[0’ﬁ] is neighborhood of («a, 3
(M(8),e]
which meets no member of X. If 8 > (), then X[((;’S]‘)”B] is neighborhood of {(a, ) which
meets no member of X'. This completes the proof of Claim 4.
Let

Y(0)={(a,8) € X :a > MBI\ (JX).

Then Y'(0) is clopen subspace of X. Because Y (0) can be represented as {(a,8) € X : a >
MBI\ (UX). Similarly

Y(1)={(e,f) e X :a < MBI\ (J V)
is a clopen subspace of X.

Claim 5. Y(0) is paracompact.

Proof. Note, in this special case, p ¢ Hs(X) for each 6 < v. Therfore Hs(X) is not
stationary in p for each § < v. Take a cub set Cs in cf pu such that M (Cs) N Hs(X) = 0.
Put

c'=Cn As<,Cs

We shall show X7y NY(0) = (. Assume on the countary that (a,3) € Xy NY(0).
Take v(a) € C' with M(y(a)) = a. By the definiton of Y (0), we have M(8) < a =
M(v(a)), so B < y(a). It follows from § < y(a) € C" C As<,Cs that y(a) € Cs. So
a = M(y(a)) € M(Cp) N Hp(X), a contradiction. Hence X sy MY (0) = (. Since Y(0) is
clopen and
Y(0) € X\ Xuey € D Xuioer (.01
yESucce(C")
Y'(0) is paracompact.

Since X =Y (0) (U X) @ Y (1) is not paracompact but [ J X and Y (0) are paracompact,
Y'(1) is not paracompact. By considering Y (1) as X, we may now assume that

X C {{a,B) € px (v+1):a < M(B)}
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is paraLindel6f but not paracompact, moreover Xpg ,/j and X 0.0 are paracompact for each
p < pand v <v.

Since X is paraLindeldf, H,(X) is not stationary in u. So take a cub set C’ in cf p such
that M(C') N H,(X) = 0. Similarly for each v € C’, we can take a cub set C, in v such
that C, N Vis(4) (X) = 0. Put

C=C"NAec Cy.

Claim 6. X ;)N XV = ¢

Proof. Assume on the contrary that (a, 3) € Xy N X} Since M(C') N H,(X) =0
and a € M(C) C M(C"), we have 8 # v so 8 € C C C'. Take y(«a) € C with M (vy(a)) = a.
Since a < M (), we have v(«) < 3. It follows from

Y(a) < pelC CAecC,

that g € C,Y(a). So g € C,Y(a) NVL(X) = C',Y(a) N VM(,Y(O()), a contradiction.

By Claim 6, in particular, Xy ) and X1} are disjoint closed subsets. By Lemma
2, we can find an open subset G' such that X,/ C G and C1G N X{} = @. Since
U={X\CIG}U{X%9) . § < v} is an open cover of the paraLindelof space X, there is
a precise locally countable open refinement W = {W} U {W(J) : § < v} of U. For each
v € C and each 3 € Vi) (X), we can find f(vy,8) < M(y) and g(v,8) < @ such that

(907, 8), BINC =0, H(y,8) = X{$(15) "1y € G and {5 < v W(5) N H(y,8) # 0} is

countable. Let
H = U H(v,B)
YEC,BEV () (X)

Then X ¢y C H C G is obvious.
Claim 7. S = {6 € C: XU} NClIH # 0} is not stationary in v.

Proof. Assume that S is stationary in v. For each ¢ € S take h(4) < p with (h(d),d) € C1H
and take (6) € v with (h(5),d) € W((§)). As in Claim 3, we can take v(d) € C and
B(9) € Var(y(s)) (X) with B(6) < ¢ such that W(y(d)) N H(y(0),B(0)) # 0. Since X C
{a,B) eux (v+1):a< M(3)}, we have M (y(5)) < M(8(5)). Hence v(5) < B(d) < 4.
Applying the PDL twice, we can find a stationary set S’ C Sin v,y € C'and 8 € Vas(y)(X)
such that y(6) = v and 3(d) = § for each 6 € S’, moreover members of {¢)(d) : 6 € S'} are
all distinct. Then H (v, §) meets uncountably many W (¢(d))’s, a contradiction.

Applying Claim 7, take a cub set E C C in v with ENS = (). Then, by a similar
argument of one after Claim 3, we can see that X is paracompact, a contradiction.

Next we consider the general case, that is, X C (u+1) x (v+1). Since X is paraLindel6f,
V,.(X) is not stationary in v, so we can take a cub set D in v such that D NV, (X) = 0.
Then XPY{*} and Xyyy are disjoint closed subsets. By Lemma 2, there is a open subset G
such that XPY} € G and C1G N Xy, = 0. Then

X\GcX\xPutc @ X Po).9] 4nd
§€Succ(D)

and
ClG C X\ Xy Cux(v+1).
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By the special case, C1G is paracompact. Therefore X = (X \ G) UCLG is paracompact, a
contradiction.

Case (b). v < cf p.
There are two subcases.
Subcase (b-1). wy < cfw.

Since cf p > v > cfv > wq, we can find a cub set D in cf v such that N(D) NV, (X) = 0.
Then XVP)U{} and X,y are disjoint closed subsets. Applying Lemma 2, take an open
set G such that XNP)Y} € G and C1G N X,y = 0.

Claim 8. S = {y < cfpu: Xqp()3 NCIG # 0} is not stationary in cf p.

Proof. Assume that S is stationary in cf y. Foreachy € S, fix h(y) < v with (M (v), h(%)) €
ClG. By v < cf 4 and the PDL, we can find a stationary set S’ C S in cf p and v’ < v such
that h(y) = v for each v € S’. Then M(S') C H, (X), therefore H, (X) N p is stationary
in u. Since X is paraLindel6f and H,.(X) N w is stationary in u, we have u € H,(X). So

(m, vy € C{{M (), V") : v € 'y N Xy € CIG N Xy,

a contradiction.

By Claim 8, we can take a cub set C in cf g such that C NS = (). Then we have
XNDWAYE @ and Xu(oyuguy NCLG = 0. Since

X\GcX\xNO o @ xWeo) NGO apg
§E€Succ(D)

ClG C X\ Xuup € P Xtwe().m)»
vESucc(C)

X = (X \G) UClQG is paracompact, a contradicion.
Subcase (b-2). cfv = w.

Note that in this case, we have w; < cf p. By Lemma 2, take an open set G with X{*} ¢ G
and CIG N X{H} = 0.

By a similar argument of Claim 8, S' = {y < cf 1 : X{p1()3NCIG # 0} is not stationary in
cf u. Then by a similar argument of one after Claim 2, we can show that X is paracompact,
a contradiction. [

Corollary 4. Let X be a paraLindel6f subspace of (p + 1) X (v + 1) for a suitably large
ordinal p such that X 0.v] js paracompact for each v' < v. If v is regular uncountable or
v < wy, then X is paracompact.

Proof. Assume that X is not paracompact and let
p=min{y" < p: X, is not paracompact }.

Then X|g , is not paracompact. First assume v is regular uncountable. Then by Theorem
3, in either cases of cfpu < v or v < cfu, Xpp ) is paracompact, a contradiction. Next
assume v < wi. Similarly by Theorem 3, X|o, ) is paracompact, a contradiction. [

This Corollary immediately yields:
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Corollary 5. For a suitably large ordinal p, paraLindel6f subspaces of (p + 1) x (w; + 1)
are paracompact.

Corollary 6. For a suitably large ordinal p, paraLindel6f subspaces of (p + 1) X (w1 - w)
are paracompact.

Proof. Let X be a paraLindelof subspace of (p + 1) X (w1 - w) . Put Ty = [0,w] and
T, = (w1 -n,ws - (n+1)] for each n € w with n > 1. Since Tj, is homeomorphic to (w; + 1),
X N(p+1) x T, is homeomorphic to a subspace of (p + 1) x (w1 + 1). By Corollary 5,

X=@PIXn(p+1)x T

nEw

is the free union of paracompact clopen subspaces, so X is paracompact. [
Corollary 7. For each p < w; - wi, paraLindeléf subspaces of (p + 1)? are paracompact.

Proof. Assume that there is a paraLindeldf subspace X of (p+1)? which is not paracompact
for some p < wy - wy. Let

p=min{y" < p: X, is not paracompact },

[0,']

v=min{v' <p: Xpo ’:] is not paracompact }.

]

Since X[{g’:] is a clopen subspace of X, we may assume that X = X[{g’:]]. Note that X is

not paracompact, Xjg,, and X 0.7 are paracompact for each p’ < p and v/ < v. As in
the proof of Theorem 3, we can show that (u,r) ¢ X moreover that cf p > w; or cf v > wy.
So we may assume cfrv = w;. Since v < p < wi - wy, there is a £ € Succ such that
v =w; & Let £ —1 be the immediate predecessor of £. Since (wy - (§ — 1),wy - £] is
homeomorphic to wy + 1, by Corllary 6, X («“r-(€=1).«1€] i 4 clopen paracompact subspace.
Then X = X0« (=Dl y x (wi-(€=1).w1-€] ig the union of two clopen paracompact subspaces,
so X is paracompact, a contradiction. [

The reader should observe that, if Theorem 3 also holds for the following remaining case
(c):
(¢c) cf p < v, cfv < v and v is uncountable.

then all paraLindel6f subspaces of products of two ordinals are paracompact.
However, we have no useful way to extend Corollary 6 for subspaces of (p+1) X (w1 -w+1)
and Corollary 7 for subspaces of (w; - wi)2. Now we conjecture the following.

Conjecture 8. There is a paraLindeldf subspace of (wq - w1) X (w1 - w + 1) which is not
paracompact. Or more generally, there is a paraLindeldf subspace of (w; -wy)? which is not
paracompact.

The main open problem on paraLindel6f spaces is the following, see [Wa, Problem 39]:
Problem 9. Are paraLindeldf spaces countably paracompact?
Now we see:

Proposition 10. Let X be a paraLindel6f countably paracompact subspace of (i + 1) X
(v +1). Assume that Xy, and X001 are paracompact for each i/ < p and v' < v. Then
X is paracompact in the following case:

(¢) cfp <v,w=cfv <v and v is uncountable.
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Proof. Assume that X is not paracompact, then as usual, we can easily show that u and
v are limit ordinals with cf 4 > wy and (u,v) ¢ X. Take a cub set C in cf p with M(C) N
H,(X) = 0. By Lemma 2, we can also take an open set G with X1} ¢ G ¢ X\Xnmrcyuiuy
and CIGN X,y = 0. Let W = {W}U{W(n) : n € w} be a precise locally finite open
refinement of ¢/ = {G} U {XN™]:n € w}. Xareyugur C Upen W(n) is obvious. By the
local finiteness of W, C1(U,.c., W (7)) = Une., CLW(n) € X\X{"}. Then in a usual way,
we can show that X is paracompact, a contradiction. [

Using a similar argumet in Corollary 4 and 5, we see:

Corollary 11. For a suitably large ordinal p and for each ¢ < wi - wy, paraLindel6f
countably paracompact subspaces of (p + 1) x (o + 1) are paracompact. In particular,
paraLindel6f countably paracompact subspaces of (w; - wy) X (0 + 1) are paracompact for
each o < wy -wy

Applying this corollary, we can show the positive answer of the conjecture 8 for (w; -
w1) X (w1 - w+ 1) yields the negative answer of Problem 9, that is:

Corollary 12. If there is a a paraLindel6f subspace X of (w; -w1) X (wy - w + 1) which is
not paracompact, then X is a paraLindel6f space which is not countably paracompact.

However, strangely, we have also no useful way to show that paraLindel6f countably
paracompact subspaces of (w; - w;)? are paracompact. Now we conjecture the following:

Conjecture 13. There is a paraLindeldf countably paracompact subspace of (w; - wy)?
which is not paracompact.

Although the existence of a paralindelof non-paracompact subspace of (wq - wy) X (wy -
w + 1) still remains open, now we give some informations about the existence of such a
subspace.

From now on, consider the normal function M for w; - w; by letting M () = w; - v for
each v < wy.

Proposition 14. Let X be a paraLindelof subspace of (wy - w1) X (w1 - w+ 1). Then for

each a € H,, .,,(X), there is g(a) < w such that ngi'g(a)’wl'wl is countable.

Proof. For each n < w, since H,,.,(X) is not stationary in w; - wy, take a cub set C,, in
wi such that M(Cy) N Hy,.(X) = 0. Set C = (,c,Cn and E = {w; - n : n < w}.
Then X7y and XF are disjoint closed sets of X. For each v < wi, let U(y) = X01U
Ui <new X(wrnwintal Take a precise locally countable open refinement W = {W (y) : v <
wifU{W}hofU = {U(y) : v <wi} U{X\Xn )} Let @ € Hy, ., (X). Since W is locally
countable at {a, w; -w), there is g(a) < w such that Xﬁ;i'g(a)’wl'w] meets at most countably
many W (v)’s. Then this g(a) works. O

Proposition 15. Assume that X is a paraLindel6f subspace of (w; -wy) X (wy -w+ 1) such
that for some ay < w; -w, Hy,,.,(X) N[ao,a] is Lindeldf for every a < wy -wy with o < .
Then X is paracompact.

Proof. Note that, by Corollary 6 and 7, X|p ,,; and X 0.4 are paracompact for each p' <
wi -wp and ¥ < wy - w. Since X[ 4, is paracompact, we may assume ap = 0, that is,
H,,..(X)N]0,qa] is Lindelof for every @ < wy - w;i. As in the proof of Proposition 14,
define a cub set C' C wi with Xy ey N X = 0, where E = {w; -n : n < w}. Let
W = {W(y) : v < w1} be a precise locally countable open refinement of the open cover
U = {Xjo,m(v)) : ¥ <wi}. For each a € Hy,.,(X), take g(a) <w and f(a) < a such that
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H(a) = X((;J(log(z])’wl'w] meets at most countably many W (y)’s and (f(a),a] N M(C) = 0.
For each v € Succ(C), since Hy, .o, (X)N[M (pe (7)), M ()] = Hu, o (X)N(M (pe (7)), M (7))
is a clopen subspace of the Lindel6f space H,,,..,(X) N[0, M ()], there is a countable subset
2(1) C Hey o(X) 1 (M(po (1), M(2)) such that
{1}
Xiteenmen € U H@) € Xarpe i)
a€Z(y)

Of course, H = U, csuce(c) (Uanez () H(a)) covers X{er@} In a usual way, the following
Claim shows that X is paracompact.

Claim. S = {6 € C: Xy} NCLH # 0} is not stationary in w .

Proof. Assume that S is stationary. For each § € S, fix h(§) < w; - w and ¥(d) > d such
that <M(6),h(5)> e ClHN W(l/}(é)) Moreover since UozGZ(’y) H(Oé) C X(M(pc(’y)),M('Y)) for
each v € Succ(C), we can find ¢(6) € Suce(C) Né with (U,ez(,6)) H (@) NW((6)) # 0.
Applying the PDL, we can find a stationary set S’ C S and ¢y € Succ(C) such that
©(0) = 0 for each § € S’ and the members of {¢(§) : § € S’} are all distinct. Then
Uaez(sy) H (@) meets uncountably many W(1(9))’s, 6 € S". Since Z(do) is countable, we can
find ag € Z(do) such that H(ap) meets uncountably many W (t(4))’s, a contradiction. O

Corollary 16. Assume that there exists a paraLindeldf subspace X of (w1 -w1) X (w1 -w+1)
which is not paracompact. Then I = {a € w; - wi\Hy,.(X) : cf @ = wy } is unbounded in
w1 " W1-

Proof. Assume that I is bounded by some ap < w; - wy. The following general fact shows
that Hy,..(X) N [ao, ] is Lindeldf for every a < w; -wy with ag < a.

Fact. If Z is a subspace of p+1 for some ordinal p such that cf 8 < w for every 8 € (p+1)\Z,
then Z is Lindeldf.

Proof. Assume that Z is not Lindelof and let
p=min{y' < p:ZnN[0,u'] is not Lindelsf }.

Then we see that p ¢ Z, p is limit, Z N[0, '] is Lindeldf for every p' < p and Z N0, ] is
not Lindeldf. Since p ¢ Z, we have cf p = w. Then Z N[0, u] =, (Z N[0, u(n)]) can be
represented as the countable union of Lindel6f subspaces, where {u(n) : n € w} is a strictly
increasing cofinal sequence in p, so it is Lindel6f, a contradiction. O

Taking account of these informations, the authors have tried to construct a paraLindel6f
non-paracompact subspace of (w; - wi) X (w1 - w + 1). But now we present the follow-
ing by-product of these considerations. Here note that the locally finite union of clopen
paracompact subspaces are also paracompact.

Example 17. There exists a non-paracompact subspace X of (w; - wi) X (w; - w + 1),
which can be represented as the locally countable union of clopen paracompact subspaces,
such that Xpo , and X041 are paracompact for each p < wy - w;y and v < wy - w. In fact,
unfortunately, this X is not paraLindelof.

Our space is defined as follows:

X = U {wi - (y—=1)+ B} x ({wl cwiU U Succe((w1 - n,wy -n—l—ﬂ)))

~,BESucc new
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U {wr -6} x (U{wl-n+5+1}>

dE€ELIim new

U

where Succ((wy - n,wr - n + 3)) denotes the set of all successor ordinals in the open interval
(w1 -m,wy -n+ B). Observe that Xy, .3 = 0 for each v € Succ and X {1} = ¢ for each
neEw.

Claim 1. X% js paracompact for each v < wy - w.

Proof. Since X (%1l is homeomorphic to X (w1« (n+D] for each n € w, it suffices to show
that X[0«1] is paracompact. Note that for each n < wy, H, (X)) has at most one limit ordinal,
so X1 is paracompact. Since X" = {) for each n € Lim U{w; }, X[0«1] = @nesuch{”}
is paracompact.

Claim 2. Xy, ) is paracompact for each i < wy - w1.

proof. Note that for each ( < wy -wq, V¢ (X) has at most one limit ordinal (w; - w if it has),
so Xy¢) is paracompact. Assuming that Xj, , is not paracompact for some p < wy - wy, let
p < wi -w; be the such minimal one. Then p is limit and (u,w; - w) ¢ X 1. If cf p = w,

then
n— 1) w- n]
Xo,u) = (@X (M(n—1), ) (@ X[o,u] )

new new

can be represented as the countable union of paracompact clopen subspaces. Therefore
X, is paracompact, a contradiction. If c¢f p = w;, then p = w; -y for some v € Succ.
Since X(u,.(v—1),w19] = ®B€Succ X{wi-(v—1)43} is paracompact, by the minimality of p,
X0, = X[0,w1-(v=1)] D X(w1-(v=1),w1 4] I8 Paracompact, a contradiction.

Claim 3. Let V() = X(u,.(y—1)w,9) for each € Succ and V(,n) = X271 for
each 6 € Lim and n € w. Then V = {V(v) : v € Succ} U {V(d,n) : (§,n) € Succ xw} is a
locally countable open refinement of the open cover U = {X[g ;4] 1 7 < w1}

proof. Since other properties are not so hard, we only show that V is locally countable. Let
(GmeX

First assume ¢ € (w1 + (y — 1),wy - y) for some v € Succ. Then there is 8 € Succ with
(=wi-(y—1)+ 3. If ¥ € Succ with ' # v, then Xy NV (v') = 0. Moreover if § € Lim
with 3 <0, then X¢y NV (d,n) = 0 for each n € w. Therefore Xy} is a neighborhood of
(¢, n) which witnesses the local countability of V at ((,n).

Next assume ( = wy -6 for some & € Lim. Then by the construction of X, it is not difficult
to show that X{"} is a neighborhood of (¢,7n) which witnesses the local countability of V

[0,¢]
at (C,m).

Since V(y)’s and V' (0,n)’s are clopen in X, Claim 2 and 3 say that X can be represented
as the locally countable union of clopen paracompact subspaces.

Claim 4. X is not paraLindeldf.

Proof. Let V(v,3) = X{u,.(v—1)+g} for each v, 3 € Succ, V(d,n) = X[{Ow;ln;]_&"_l} for each
0 € Lim and n € w. Assume that there is a precise locally countable open refinement
W = {W(v,8) : (v,8) € Succx Succ} U{W(d,n) : (§,n) € Lim xw} of the open cover
V={V(v,8) : (7,8) € Succ x Succ} U{V(4,n) : (4,n) € Lim xw}. Let 6 € Lim and n € w.
Since {W (v, 3) : (v,8) € Succ x Succ} is locally countable, we can take f(d,n) < ¢ such
that

1(6,n) = {{7,8) € Succ x Suce : W (y, ) 0 X[ 7041 2 g

(w1-f(8,n),w1-
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is countable. Fix n € w and moving § € Lim, by the PDL, we can find a stationary set
S(n) C Lim and f(n) < w; such that f(§,n) = f(n) for each 6 € S(n). Let v = sup{f(n) :
n € w} and fix v € Succ with 79 < 7. Note 79 < v — 1. For each 3 € Succ, since the
unique member of V which contains the point (w; - (y — 1) + 8,w1 - w) is V(v,6), W (v, 9)
also contains the point (wy - (y — 1) + B,w1 - w). So there is ny € w and an uncountable
subset K C Succ such that X{(:??ﬁ’_wf)'i/]@,} C W(y,B) for each g € K. Fix § € S(ng) with
v < 4. Since I(§,np) is countable and K is uncountable, we can find f € K with 0 +1 < 8
and (7, 3) ¢ 1(0,n0). By § + 1 < 3, the point (wy - (v — 1) + B,w1 - ng + 0 + 1) belongs to
X. Moreover,

(w1ng,w1-w] {wi-no+d8+1}
(- (y =1+ Brwnmo+ 0+ 1) € X 00) Loy N X (G4

{wi-no+d+1}
C W(’Y /6) n X Lu'11 f(% ng),wl 5]

Therefore (v, ) € I(4,n0), a contradiction. O

In this connection, note that, as is well known, the space w; is the locally countable
union of closed paracompact subspaces {a}’s, @ < wy, but wy is not paralindel6f. But:

Proposition 18. Let X C p+1 for some ordinal p. Assume that X is the locally countable
union of clopen paracompact subspaces X (\)’s, A € A. Then X is paracompact.

Proof. Assume that X is not paracompact. Let
p=min{y < p: X N[0,u] is not paracompact }.

Then by the minimality of p, u is limit ordinal, p ¢ X, cf u > w; and X N0, u] is stationary
in p. By identifying X = X N[0, u], we may assume that X is a stationary subset of  and
X N[0, '] is paracompact for each u' < p.

Claim. X ()\) is bounded in p for each A € A.

Proof. Since X () is paracompact, it is not stationary in p. So there is a cub set C' C
Lim(cf ) such that X(A\) N M(C) = @, where M is a normal function for p. For each
v e CNM~YX), fix f() < such that X(X\) N (M (f(v)), M ()] = 0. Then by the PDL,
we find a stationary set S C CNM ~1(X) and 7y < cf pu such that f(y) = 7o for each y € S.
Then X (X) C [0, M(70)], and so X () is bounded.

Since X ()\)’s cover X and are open, for each v € M~Y(X) N Lim(cf ), fix f(y) < 7,
Aly) € A and g(y) < cfp such that X1 (M(f (7)), M(n)] C X(A(7)) < [0,M(g(7)].
By the PDL, we find a stationary set S C M ~(X) N Lim(cf u) and o < cf p such that
f(7) = 7o for each v € S. Set g(y) = 0 for each v € cf p\(M 1(X) N Lim(cf p)) and
C={y<cfu:vy <) <)} Then members of {A(y) : v € SN C} are distinct.
Take a € X with M(v) < a. Then a € X(\(7)) for each v € SN C with a < M (). This
contradicts the local countability of {X(A) : A € A}. O

Burke [Bu] proved that submetacompact spaces in which every open cover has a o-locally
countable closed refinement are subparacompact. Using this we can see:

Proposition 19. ParaLindeldf subspaces of products of two ordinals are subparacompact.

Proof. Let X be a paraLindeldf subspace of products of two ordinals. Then by [KTY,
Theorem 2.3], it is metacompact. By the regularity of X, every open cover has a o-locally
countable closed refinement. So by the result of [Bu], it is subparacompact. O
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