ON THE BRANCH OF BH-ALGEBRAS

Qun Zhang, Young Bae Jun and Eun Hwan Roh

Received November 10, 2000

ABSTRACT. In this paper, we give a normal BH-algebra, and we concider the branch in BH-algebra and investigate some related properties.

1. INTRODUCTION

Y. Imai and K. Iséki ([4]) and K. Iséki ([5]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In ([3]), Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([6]) discussed the BH-algebras, which is a generalization of BCH-algebras. Moreover, they introduced the notions of ideal, maximal ideal and translation ideal, and investigated some properties.

In this paper, we give a normal BH-algebra, and we concider the branch in BH-algebra and investigate some related properties. This paper is the some generalization of Chaudhry's results([1]).

2. Preliminaries

A *BH*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(1) x * x = 0,
(2) x * 0 = x,
(3) x * y = 0 and y * x = 0 imply x = y for all x, y in X.

Example 2.1. (a) Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then (X; *, 0) is a BH-algebra, but not a BCH-algebra, since $(2*3)*2 = 1 \neq 2 = (2*2)*3$.

Key words and phrases. $BH(BH_1)$ -algebra, normal BH-algebra, subalgebra, ideal, medial part, medial element, branch.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25.

(b) Let \mathbb{R} be the set of all real numbers and define

$$x*y:= \left\{ \begin{array}{ll} 0 & \text{ if } x=0, \\ \frac{(x-y)^2}{x} & \text{ otherwise,} \end{array} \right.$$

for all $x, y \in \mathbb{R}$, where "-" is the usual substraction of real numbers. Then $(\mathbb{R}; *, 0)$ is a *BH*-algebra, but not a *BCH*-algebra.

The relations between BH-algebras and BCH-algebras (also, BCK/BCI- algebras) are as follows:

Theorem 2.2 ([6]). Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the condition (x * y) * z = (x * z) * y for all $x, y, z \in X$, is a BCH-algebra.

Theorem 2.3 ([6]). Every BH-algebra satisfying the condition (c1) ((x * y) * (x * z)) * (z * y) = 0, $\forall x, y, z \in X$, is a BCL algebra.

is a BCI-algebra.

Theorem 2.4 ([6]). Every BH-algebra satisfying the conditions (c1) and (c2) (x * y) * x = 0, $\forall x, y \in X$, is a BCK-algebra.

A nonempty subset S of a BH-algebra X is called a subalgebra if $x, y \in S$ implies $x * y \in S$. A nonempty subset A of a BH-algebra X is called an *ideal* if $0 \in A$ and if $x * y, y \in A$ imply that $x \in A$.

3. MAIN RESULTS

Now, we see the following examples.

Example 3.1. Let $X = \{0, 1, 2\}$ be a set with the following Cayley table:

Then (X; *, 0) is a *BH*-algebra, but X is not satisfied the identity 0 * (x * y) = (0 * x) * (0 * y)since $0 * (1 * 2) = 0 \neq 2 = (0 * 1) * (0 * 2)$.

Example 3.2. Let $X = \{0, 1, 2\}$ be a set with the following Cayley table:

$$\begin{array}{c|cccc} * & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 2 & 0 \end{array}$$

Then (X; *, 0) is a BH-algebra and X satisfies the identity 0 * (x * y) = (0 * x) * (0 * y).

By Examples 3.1 and 3.2, we will define the following definition.

Definition 3.1. A *BH*-algebra X is called a BH_1 -algebra if it satisfying the following conditions:

(4)
$$0 * (x * y) = (0 * x) * (0 * y).$$

Definition 3.2. Let X be a BH-algebra. Then the set

$$M(X) = \{x \in X | 0 * (0 * x) = x\}$$

is called a *medial part* of X and an element of M(X) is called a *medial element* of X.

Obviously $0 \in M(X)$ and so M(X) is nonempty. In general, M(X) is not a subalgebra of a BH-algebra. But we have the following Theorem.

Theorem 3.1. If X is a BH_1 -algebra, then M(X) is a subalgebra of X.

Proof. Clearly $0 \in M(X)$. Let $x, y \in M(X)$. Then we have 0 * (0 * (x * y)) = (0 * (0 * x)) * (0 * (0 * y)) = x * y. Thus $x * y \in M(X)$ and so M(X) is a subalgebra of X. \Box

Theorem 3.2. Let X be a BH_1 -algebra and let

$$A = \{ x \in X | 0 * x = 0 \}$$

Then A is an ideal and subalgebra of X.

Proof. Clearly $0 \in A$. Let $x, y \in X$ be such that $x * y \in A$ and $y \in A$. Then 0 * (x * y) = 0 and 0 * y = 0. Thus we have 0 * x = (0 * x) * (0 * y) = 0 * (x * y) = 0, and hence $x \in A$. Therefore A is an ideal of X. Obviously, A is a subalgebra of X. \Box

Next, we see the following examples.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	1
$\frac{1}{2}$	2	3	0	2
3	3	3	0	0

Then (X; *, 0) is a *BH*-algebra in which satisfies the identity (x * y) * x = 0 * y, but not satisfied the identity (x * (x * y)) * y = 0 because $(2 * (2 * 1)) * 1 = 3 \neq 0$.

Example 3.4. Let $X = \{0, 1, 2\}$ be a set with the following Cayley table:

*	0	1	2
0	0	0	1
1	1	0	1
2	2	2	0

Then (X; *, 0) is a *BH*-algebra in which satisfies the identity (x * (x * y)) * y = 0, but not satisfied the identity (x * y) * x = 0 * y because $(1 * 2) * 1 \neq 0 * 2$.

Example 3.5. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
1	1	0	2	0
$\frac{1}{2}$	2	0	0	0
3	3	3	2	0

Then (X; *, 0) is a *BH*-algebra in which satisfies the identities (x * y) * x = 0 * y and (x * (x * y)) * y = 0.

By Examples 3.3, 3.4 and 3.5, next conditions (5) and (6) are independent. We give the following definition.

Definition 3.3. A BH-algebra X is said to be *normal* if it satisfying the following condition: (4) and

(5) (x * y) * x = 0 * y,

(6)
$$(x * (x * y)) * y = 0$$

Example 3.6. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	1	0	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1	0	1	1
2	2	1	0	0
3	3	1	3	0

Then (X; *, 0) is a BH-algebra in which satisfies the identities (4), (5) and (6).

Theorem 3.3. Let X be a normal BH-algebra. Then for each $x \in X$, there is a unique $x_m \in M(X)$ such that $x_m * x = 0$.

Proof. Let $x \in X$, then (0*(0*x))*x = 0 by (6). We take $x_m = 0*(0*x)$, then $x_m*x = 0$. To prove that x_m is in M(X). By (5), we have 0*(0*(0*x)) = ((0*(0*x))*x)*(0*(0*x)) = 0*x. Thus $0*(0*x_m) = 0*(0*(0*(0*x))) = 0*(0*x) = x_m$, and so $x_m \in M(X)$. To prove uniqueness we assume that $y_m \in M(X)$ be such that $y_m * x = 0$. Then by (5), we get $0*y_m = (y_m*x)*y_m = 0*x$. Thus $0*(0*x) = 0*(0*y_m) = y_m$, and hence $x_m = y_m$. □

Corollary 3.4. Let X be a normal BH-algebra and let $x, y \in X$ be such that x * y = 0. Then $x_m = y_m$ where $x_m, y_m \in M(X)$.

Remark. Let X be a normal BH-algebra. If $x_m \in M(X)$ and $y * x_m = 0$, then $y = x_m$. Thus each medial point of a normal BH-algebra is also minimal point.

Theorem 3.5. Let X be a normal BH-algebra. Then for any $x, y \in X$, we have

$$(x*y)_m = x_m * y_m$$

where $(x * y)_m, x_m, y_m \in M(X)$.

Proof. By Theorem 3.1, M(X) is a subalgebra of X, we get $x_m * y_m \in M(X)$. Then by (4) and (6) we have $(x_m * y_m) * (x*y) = ((0*(0*x))*(0*(0*y)))*(x*y) = (0*(0*(x*y)))*(x*y) = 0$. By Theorem 3.3, we know that $(x*y)_m = x_m * y_m$. □

Definition 3.4. Let X be a normal BH-algebra and let $x_m \in M(X)$. The set

$$x \in X | x_m * x = 0 \}$$

is called the *branch* of X determined by x_m and is denoted by $V(x_m)$.

ł

Theorem 3.6. Let X be a normal BH-algebra. Then
(i)
$$X = \bigcup_{x_m \in M(X)} V(x_m)$$

(ii) $V(x_m) \cap V(y_m) = \emptyset$ if $x_m \neq y_m$ and $x_m, y_m \in M(X)$

Proof. (i). Clearly $V(x_m) \subseteq X$ for all $x_m \in M(X)$. Thus $\bigcup_{x_m \in M(X)} V(x_m) \subseteq X$. Let $y \in X$, then there is $y_m \in M(X)$ such that $y_m * y = 0$. Thus $y \in V(y_m) \subseteq \bigcup_{x_m \in M(X)} V(x_m)$. Hence $X \subseteq \bigcup_{x_m \in M(X)} V(x_m)$. Therefore $X = \bigcup_{x_m \in M(X)} V(x_m)$.

$$\begin{split} X &\subseteq \bigcup_{\substack{x_m \in M(X) \\ \text{(ii). Let } z \in V(x_m) \cap V(y_m) \text{ where } x_m \neq y_m \text{ in } M(X).} V(x_m). \end{split}$$

(ii). Let $z \in V(x_m) \cap V(y_m)$ where $x_m \neq y_m$ in M(X). Then $x_m * z = 0$ and $y_m * z = 0$. Thus z has two medial points, a contradiction to Theorem 3.3. Hence $V(x_m) \cap V(y_m) = \emptyset$ if $x_m \neq y_m$. \Box **Theorem 3.7.** Let X be a normal BH-algebra. Then

- (i) If $x * y \in A$ and $y * x \in A$, then $x, y \in V(x_m)$ for some $x_m \in M(X)$,
- (ii) If $x \in V(x_m)$, $y \in V(y_m)$ and $x_m \neq y_m$, then $x * y, y * x \in X A$.

Proof. (i). Let $x * y \in A$ and $y * x \in A$. If $x \in V(x_m)$ and $y \in V(y_m)$. Then by Theorem 3.5 gives $(x * y)_m = x_m * y_m$ and $(y * x)_m = y_m * x_m$. Since $x * y, y * x \in A = V(0)$, we have $(x * y)_m = 0 = (y * x)_m$. Now uniqueness of medial point gives $x_m * y_m = 0 = y_m * x_m$. Thus $x_m = y_m$. Hence $x, y \in V(x_m)$ for some $x_m \in M(X)$.

(ii). Let $x \in V(x_m)$, $y \in V(y_m)$ and $x_m \neq y_m$. If $x * y \in A = V(0)$, then by Theorem 3.5, we get $(x * y)_m = x_m * y_m$. Thus $x * y \in V(x_m * y_m)$. Hence $x_m * y_m = 0$. Thus $(x_m * y_m) * x_m = 0 * x_m$, which gives $0 * y_m = 0 * x_m$ and hence $0 * (0 * y_m) = 0 * (0 * x_m)$. Thus $x_m = y_m$, a contradiction. Hence $x * y \in X - A$. Similarly we can be shown that $y * x \in X - A$. \Box

Remark. We know that every BCH-algebra satisfies conditions (1) - (6). Thus this note is the generalization of Chaudhry's results.

Acknowledgements

This work was done during the second and third authors stay at the Affairs of South-Central University for Ethnic Communities, P. R. China. The second and third authors are highly grateful to the Foreign Affairs Office of South-Central University for Ethnic Communities for their supporting.

References

- [1] M. A. Chaudhry, On BCH-algebras, Math. Japonica 36, No. 4 (1991), 665-676.
- W. A. Dudek and J. Thomys, On decomposition of BCH-algebras, Math. Japonica 35, No. 6 (1990), 1131-1138.
- [3] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
- Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
- [5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26-29.
- [6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1, No. 3 (1998), 347-354.
- Y. B. Jun, E. H. Roh and Q. Zhang, On fuzzy translation BH-ideals in BH-algebras, J. Fuzzy Math. 8(2) (2000), 361-370.
- [8] E. H. Roh, On (fuzzy) ideals in BCK/BCI-algebras, Ph. D. Thesis, Gyeongsang National University, Korea, 1996.
- [9] E. H. Roh and S. Y. Kim, On BH*-subalgebras of transtive BH*-algebras, Far East J. Math. Sci. 1(2) (1999), 255-263.

Q. Zhang, Department of Mathematics, South-Central University for Ethnic Communities, Wuhan 430074, P. R. China. *e-mail*: qzhang@scuec.edu.cn

Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. *e-mail* : ybjun@nongae.gsnu.ac.kr

E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea. *e-mail* : ehroh@cue.ac.kr