ON THE BRANCH OF BH-ALGEBRAS

Qun Zhang, Young Bae Jun and Eun Hwan Roh

Received November 10, 2000

Abstract

In this paper, we give a normal BH-algebra, and we concider the branch in BHalgebra and investigate some related properties.

1. Introduction

Y. Imai and K. Iséki ([4]) and K. Iséki ([5]) introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In ([3]), Q. P. Hu and X. Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([6]) discussed the $B H$-algebras, which is a generalization of $B C H$-algebras. Moreover, they introduced the notions of ideal, maximal ideal and translation ideal, and investigated some properties.

In this paper, we give a normal BH-algebra, and we concider the branch in BH-algebra and investigate some related properties. This paper is the some generalization of Chaudhry's results([1]).

2. Preliminaries

A $B H$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(1) $x * x=0$,
(2) $x * 0=x$,
(3) $x * y=0$ and $y * x=0$ imply $x=y$
for all x, y in X.
Example 2.1. (a) Let $X=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then $(X ; *, 0)$ is a $B H$-algebra, but not a $B C H$-algebra, since $(2 * 3) * 2=1 \neq 2=(2 * 2) * 3$.

[^0](b) Let \mathbb{R} be the set of all real numbers and define
\[

x * y:= $$
\begin{cases}0 & \text { if } x=0 \\ \frac{(x-y)^{2}}{x} & \text { otherwise }\end{cases}
$$
\]

for all $x, y \in \mathbb{R}$, where "-" is the usual substraction of real numbers. Then $(\mathbb{R} ; *, 0)$ is a $B H$-algebra, but not a $B C H$-algebra.

The relations between $B H$-algebras and $B C H$-algebras (also, $B C K / B C I$ - algebras) are as follows:

Theorem 2.2 ([6]). Every $B C H$-algebra is a $B H$-algebra. Every $B H$-algebra satisfying the condition $(x * y) * z=(x * z) * y$ for all $x, y, z \in X$, is a $B C H$-algebra.

Theorem 2.3 ([6]). Every BH-algebra satisfying the condition
$(c 1)((x * y) *(x * z)) *(z * y)=0, \quad \forall x, y, z \in X$,
is a $B C I$-algebra.
Theorem 2.4 ([6]). Every BH-algebra satisfying the conditions (c1) and (c2) $(x * y) * x=0, \quad \forall x, y \in X$,
is a $B C K$-algebra.
A nonempty subset S of a $B H$-algebra X is called a subalgebra if $x, y \in S$ implies $x * y \in S$. A nonempty subset A of a $B H$-algebra X is called an ideal if $0 \in A$ and if $x * y, y \in A$ imply that $x \in A$.

3. Main Results

Now, we see the following examples.
Example 3.1. Let $X=\{0,1,2\}$ be a set with the following Cayley table:

$*$	0	1	2
0	0	2	0
1	1	0	2
2	2	2	0

Then $(X ; *, 0)$ is a $B H$-algebra, but X is not satisfied the identity $0 *(x * y)=(0 * x) *(0 * y)$ since $0 *(1 * 2)=0 \neq 2=(0 * 1) *(0 * 2)$.

Example 3.2. Let $X=\{0,1,2\}$ be a set with the following Cayley table:

$*$	0	1	2
0	0	0	0
1	1	0	2
2	2	2	0

Then $(X ; *, 0)$ is a $B H$-algebra and X satisfies the identity $0 *(x * y)=(0 * x) *(0 * y)$.
By Examples 3.1 and 3.2, we will define the following definition.
Definition 3.1. A $B H$-algebra X is called a $B H_{1}$-algebra if it satisfying the following conditions:
(4) $0 *(x * y)=(0 * x) *(0 * y)$.

Definition 3.2. Let X be a $B H$-algebra. Then the set

$$
M(X)=\{x \in X \mid 0 *(0 * x)=x\}
$$

is called a medial part of X and an element of $M(X)$ is called a medial element of X.
Obviously $0 \in M(X)$ and so $M(X)$ is nonempty. In general, $M(X)$ is not a subalgebra of a BH-algebra. But we have the following Theorem.

Theorem 3.1. If X is a $B H_{1}$-algebra, then $M(X)$ is a subalgebra of X.
Proof. Clearly $0 \in M(X)$. Let $x, y \in M(X)$. Then we have $0 *(0 *(x * y))=(0 *(0 * x)) *$ $(0 *(0 * y))=x * y$. Thus $x * y \in M(X)$ and so $M(X)$ is a subalgebra of X.

Theorem 3.2. Let X be a $B H_{1}$-algebra and let

$$
A=\{x \in X \mid 0 * x=0\} .
$$

Then A is an ideal and subalgebra of X.
Proof. Clearly $0 \in A$. Let $x, y \in X$ be such that $x * y \in A$ and $y \in A$. Then $0 *(x * y)=0$ and $0 * y=0$. Thus we have $0 * x=(0 * x) *(0 * y))=0 *(x * y)=0$, and hence $x \in A$. Therefore A is an ideal of X. Obviously, A is a subalgebra of X.

Next, we see the following examples.
Example 3.3. Let $X=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	3	0	2
3	3	3	0	0

Then $(X ; *, 0)$ is a $B H$-algebra in which satisfies the identity $(x * y) * x=0 * y$, but not satisfied the identity $(x *(x * y)) * y=0$ because $(2 *(2 * 1)) * 1=3 \neq 0$.
Example 3.4. Let $X=\{0,1,2\}$ be a set with the following Cayley table:

$*$	0	1	2
0	0	0	1
1	1	0	1
2	2	2	0

Then $(X ; *, 0)$ is a $B H$-algebra in which satisfies the identity $(x *(x * y)) * y=0$, but not satisfied the identity $(x * y) * x=0 * y$ because $(1 * 2) * 1 \neq 0 * 2$.

Example 3.5. Let $X=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	2	0
2	2	0	0	0
3	3	3	2	0

Then $(X ; *, 0)$ is a $B H$-algebra in which satisfies the identities $(x * y) * x=0 * y$ and $(x *(x * y)) * y=0$.

By Examples 3.3, 3.4 and 3.5, next conditions (5) and (6) are independent. We give the following definition.

Definition 3.3. A $B H$-algebra X is said to be normal if it satisfying the following condition: (4) and
(5) $(x * y) * x=0 * y$,
(6) $(x *(x * y)) * y=0$.

Example 3.6. Let $X=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2	2	1	0	0
3	3	1	3	0

Then $(X ; *, 0)$ is a $B H$-algebra in which satisfies the identities (4), (5) and (6).
Theorem 3.3. Let X be a normal BH-algebra. Then for each $x \in X$, there is a unique $x_{m} \in M(X)$ such that $x_{m} * x=0$.
Proof. Let $x \in X$, then $(0 *(0 * x)) * x=0$ by (6). We take $x_{m}=0 *(0 * x)$, then $x_{m} * x=0$. To prove that x_{m} is in $M(X)$. By (5), we have $0 *(0 *(0 * x))=((0 *(0 * x)) * x) *(0 *(0 * x))=0 * x$. Thus $0 *\left(0 * x_{m}\right)=0 *(0 *(0 *(0 * x)))=0 *(0 * x)=x_{m}$, and so $x_{m} \in M(X)$. To prove uniqueness we assume that $y_{m} \in M(X)$ be such that $y_{m} * x=0$. Then by (5), we get $0 * y_{m}=\left(y_{m} * x\right) * y_{m}=0 * x$. Thus $0 *(0 * x)=0 *\left(0 * y_{m}\right)=y_{m}$, and hence $x_{m}=y_{m}$.

Corollary 3.4. Let X be a normal $B H$-algebra and let $x, y \in X$ be such that $x * y=0$. Then $x_{m}=y_{m}$ where $x_{m}, y_{m} \in M(X)$.
Remark. Let X be a normal $B H$-algebra. If $x_{m} \in M(X)$ and $y * x_{m}=0$, then $y=x_{m}$. Thus each medial point of a normal BH -algebra is also minimal point.

Theorem 3.5. Let X be a normal $B H$-algebra. Then for any $x, y \in X$, we have

$$
(x * y)_{m}=x_{m} * y_{m} .
$$

where $(x * y)_{m}, x_{m}, y_{m} \in M(X)$.
Proof. By Theorem 3.1, $M(X)$ is a subalgebra of X, we get $x_{m} * y_{m} \in M(X)$. Then by (4) and (6) we have $\left(x_{m} * y_{m}\right) *(x * y)=((0 *(0 * x)) *(0 *(0 * y))) *(x * y)=(0 *(0 *(x * y))) *(x * y)=0$. By Theorem 3.3, we know that $(x * y)_{m}=x_{m} * y_{m}$.
Definition 3.4. Let X be a normal $B H$-algebra and let $x_{m} \in M(X)$. The set

$$
\left\{x \in X \mid x_{m} * x=0\right\}
$$

is called the branch of X determined by x_{m} and is denoted by $V\left(x_{m}\right)$.
Theorem 3.6. Let X be a normal $B H$-algebra. Then
(i) $X=\bigcup_{x_{m} \in M(X)} V\left(x_{m}\right)$
(ii) $V\left(x_{m}\right) \cap V\left(y_{m}\right)=\emptyset$ if $x_{m} \neq y_{m}$ and $x_{m}, y_{m} \in M(X)$.

Proof. (i). Clearly $V\left(x_{m}\right) \subseteq X$ for all $x_{m} \in M(X)$. Thus $\bigcup_{x_{m} \in M(X)} V\left(x_{m}\right) \subseteq X$. Let $y \in X$, then there is $y_{m} \in M(X)$ such that $y_{m} * y=0$. Thus $y \in V\left(y_{m}\right) \subseteq \bigcup_{x_{m} \in M(X)} V\left(x_{m}\right)$. Hence $X \subseteq \bigcup_{x_{m} \in M(X)} V\left(x_{m}\right)$. Therefore $X=\bigcup_{x_{m} \in M(X)} V\left(x_{m}\right)$.
(ii). Let $z \in V\left(x_{m}\right) \cap V\left(y_{m}\right)$ where $x_{m} \neq y_{m}$ in $\mathrm{M}(\mathrm{X})$. Then $x_{m} * z=0$ and $y_{m} * z=0$. Thus z has two medial points, a contradiction to Theorem 3.3. Hence $V\left(x_{m}\right) \cap V\left(y_{m}\right)=\emptyset$ if $x_{m} \neq y_{m}$.

Theorem 3.7. Let X be a normal $B H$-algebra. Then
(i) If $x * y \in A$ and $y * x \in A$, then $x, y \in V\left(x_{m}\right)$ for some $x_{m} \in M(X)$,
(ii) If $x \in V\left(x_{m}\right), y \in V\left(y_{m}\right)$ and $x_{m} \neq y_{m}$, then $x * y, y * x \in X-A$.

Proof. (i). Let $x * y \in A$ and $y * x \in A$. If $x \in V\left(x_{m}\right)$ and $y \in V\left(y_{m}\right)$. Then by Theorem 3.5 gives $(x * y)_{m}=x_{m} * y_{m}$ and $(y * x)_{m}=y_{m} * x_{m}$. Since $x * y, y * x \in A=V(0)$, we have $(x * y)_{m}=0=(y * x)_{m}$. Now uniqueness of medial point gives $x_{m} * y_{m}=0=y_{m} * x_{m}$. Thus $x_{m}=y_{m}$. Hence $x, y \in V\left(x_{m}\right)$ for some $x_{m} \in M(X)$.
(ii). Let $x \in V\left(x_{m}\right), y \in V\left(y_{m}\right)$ and $x_{m} \neq y_{m}$. If $x * y \in A=V(0)$, then by Theorem 3.5 , we get $(x * y)_{m}=x_{m} * y_{m}$. Thus $x * y \in V\left(x_{m} * y_{m}\right)$. Hence $x_{m} * y_{m}=0$. Thus $\left(x_{m} * y_{m}\right) * x_{m}=0 * x_{m}$, which gives $0 * y_{m}=0 * x_{m}$ and hence $0 *\left(0 * y_{m}\right)=0 *\left(0 * x_{m}\right)$. Thus $x_{m}=y_{m}$, a contradiction. Hence $x * y \in X-A$. Similarly we can be shown that $y * x \in X-A$.

Remark. We know that every BCH-algebra satisfies conditions (1)-(6). Thus this note is the generalization of Chaudhry's results.

Acknowledgements

This work was done during the second and third authors stay at the Affairs of SouthCentral University for Ethnic Communities, P. R. China. The second and third authors are highly grateful to the Foreign Affairs Office of South-Central University for Ethnic Communities for their supporting.

References

[1] M. A. Chaudhry, On BCH-algebras, Math. Japonica 36, No. 4 (1991), 665-676.
[2] W. A. Dudek and J. Thomys, On decomposition of BCH-algebras, Math. Japonica 35, No. 6 (1990), 1131-1138.
[3] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
[4] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26-29.
[6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1, No. 3 (1998), 347-354.
[7] Y. B. Jun, E. H. Roh and Q. Zhang, On fuzzy translation BH-ideals in BH-algebras, J. Fuzzy Math. 8(2) (2000), 361-370.
[8] E. H. Roh, On (fuzzy) ideals in BCK/BCI-algebras, Ph. D. Thesis, Gyeongsang National University, Korea, 1996.
[9] E. H. Roh and S. Y. Kim, On B H^{*}-subalgebras of transtive $B H^{*}$-algebras, Far East J. Math. Sci. 1(2) (1999), 255-263.
Q. Zhang, Department of Mathematics, South-Central University for Ethnic Communities, Wuhan 430074, P. R. China. e-mail : qzhang@scuec.edu.cn
Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. e-mail: ybjun@nongae.gsnu.ac.kr
E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Chinju 660756, Korea. e-mail : ehroh@cue.ac.kr

[^0]: Key words and phrases. $B H\left(B H_{1}\right)$-algebra, normal BH -algebra, subalgebra, ideal, medial part, medial element, branch.

 2000 Mathematics Subject Classification: 06F35, 03G25 .

