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Abstract. This paper complements the results of Toyooka and Kariya (The Annals

of Statistics, 1986) by evaluating an upper bound for the covariance matrix of a typical

generalized least squares estimator in a heteroscedastic model.

1 Introduction. We consider the problem of estimating the coeÆcient vector of a het-

eroscedastic model with two distinct variances. We investigate the eÆciency of a typical

generalized least squares estimator (GLSE) by evaluating an upper bound for its covari-

ance matrix. The upper bound considered here is the one that Toyooka and Kariya (1986)

derived under a more general setup. In Toyooka and Kariya (1986), under a general lin-

ear regression model with a certain covariance structure which includes a serial correlation

model and a heteroscedastic model as its special cases, the general formula of an upper

bound for the risk matrix of a GLSE was obtained. The result was further applied to sev-

eral typical GLSE's in the above two speci�c models. However, as for the heteroscedastic

model, their evaluation was not explicit and was limited to the common mean model, a

special case of the heteroscedastic model. In this paper, we complement their result by

treating an unbiased GLSE based on the ratio of the two sample variances and obtaining

an explicit expression of the upper bound for its covariance matrix.

In Section 2, we briey review the results of Toyooka and Kariya (1986) on which our

discussion is based. In Section 3, we present the main result. In Section 4, we investigate the

relation between the upper bound evaluated in Section 3 and an alternative upper bound

which has been considered from a di�erent point of view by Kariya (1981), Bilodeau (1990)

and Kurata and Kariya (1996).

2 Preliminaries. The heteroscedastic model considered here is given by

yj =Xj� + "j (j = 1; 2);(1)

where yj : nj � 1; Xj : nj � k, rankXj = k, � : k � 1, "j : nj � 1 and the error terms

"j 's are supposed to be independently distributed as the normal distribution Nnj
(0; �2j Inj

).

The model (1) is a special case of the following general linear regression model of the form

y =X� + " with E(") = 0 and Cov(") = 
 = �2�;(2)

whereX is an n�k known matrix of rank k, 
 = �2� is positive de�nite and� is a function

of an unknown but estimable parameter �, say � = �(�). In fact, letting n = n1 + n2,

y =

�
y1

y2

�
; X =

�
X1

X2

�
; " =

�
"1

"2

�
(3)
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and 
 = �2� with �2 = �21 , � = �21=�
2
2 and

� = �(�) =

�
In1 0

0 ��1In2

�
(4)

in (2) obviously yields the model (1).

Under the general model (2), the Gauss-Markov estimator (GME)

�̂(�) = (X 0��1
X)�1X 0��1

y

is the best linear unbiased estimator of �, provided that � in �(�) is known. In our case

where � is unknown, a GLSE of the form

�̂(�̂) = (X 0�̂
�1
X)�1X 0�̂

�1
y with �̂ = �(�̂)(5)

is often used, where �̂ = �̂(e) is an estimator of � based on the ordinary least squares (OLS)

residual vector

e =Ny with N = In �X(X 0
X)�1X 0:(6)

Kariya (1985), Kariya and Toyooka (1985) and Eaton (1985) proved that if the distribution

of " satis�es

E(u1ju2) = 0 a:s:;(7)

then for any GLSE of the form (5), its risk matrix is bounded below by the covariance

matrix of the GME, that is,

Cov
�
�̂(�)

�
� E

�
(�̂(�̂)� �)(�̂(�̂)� �)0

�
(8)

holds, where u1 =X
0��1

", u2 = Z
0
" and Z is any n� (n� k) matrix such that X 0

Z = 0

and Z 0
Z = In�k. We note that the condition (7) is satis�ed when " is normally distributed.

Based on the inequality (8), Toyooka and Kariya (1986) derived an upper bound for the

risk matrix of a GLSE relative to the covariance matrix of the GME in the case where �

in (2) has the following structure

��1 = �(�)�1 = In + �(�)D with � 2 �:(9)

Here � is an open and nonempty interval in R1, �(�) is a continuous function on �, and D

is a known nonnegative de�nite matrix. As is discussed in their paper, the heteroscedastic

model treated here satis�es the condition (9), since the matrix � in (4) is rewritten as (9)

by letting � = (0;1), �(�) = � � 1 and

D =

�
0 0

0 In2

�
:

In the following lemma, the upper bound obtained in Toyooka and Kariya (1986) is pre-

sented in the context of the heteroscedastic model. (See also Section 3 of their paper.)

Lemma 1 (Toyooka and Kariya (1986)) In the heteroscedastic model (3) with (4), suppose

that an estimator �̂ satis�es �̂ 2 � a:s:, and let

B1 = f y 2 Rn
j �̂ � �g; B2 = f y 2 Rn

j �̂ < �g; W1 = 1; W2 = �2=�̂2; F = ��1D
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and

M = (X 0��1
X)�1=2X 0��1=2

F��1=2
�
In �X(X 0��1

X)�1X 0��1
�
:(10)

Then for the GLSE �̂(�̂) with �̂ = �(�̂),

E
�
(�̂(�̂)� �)(�̂(�̂)� �)0

�
� [1 + h1 + h2]Cov

�
�̂(�)

�
(11)

holds, where hj = E(Hj),

Hj = 1Bj
(�̂ � �)2Wj"

0
M

0
M"=�2 (j = 1; 2)(12)

and 1B denotes the indicator function of a set B.

In Toyooka and Kariya (1986), the evaluation of hj was limited to the common mean model

which is obtained by letting k = 1 and X = (1; � � � ; 1)0 : n � 1 in the model (3). Further,

they did not derive its explicit expression. In Section 3 and 4, we derive it under the model

(3) with general X, and clarify the structure of the upper bound.

3 Evaluation of Upper Bound. For the heteroscedastic model (3) with (4), a minimal

suÆcient statistic is given by (b1; b2;s
2
1;s

2
2), where

bj = (X 0

jXj)
�1
X
0

jyj(13)

and

s2j = y
0

jN jyj = "
0

jN j"j with N j = Inj
�Xj(X

0

jXj)
�1
X
0

j :(14)

The statistics bj 's and s2j=�
2
j 's are independently distributed as Nk(�; �

2
j (X

0

jXj)
�1) and

�2mj
, the �2-distribution with degrees of freedom mj = nj � k, respectively.

A typical estimator of � is of the form

�̂ = cs21=s
2
2 with c > 0:(15)

To apply Lemma 1, we con�rm that the estimator �̂ is a function of the OLS residual vector

e in (6). Letting e = (e01; e
0

2)
0 such that ej : nj � 1, we decompose e1 into two independent

parts as

e1 = y1 �X1(X
0
X)�1X 0

y

= [X1b1 +N1"1]�X1(X
0
X)�1

�
X
0
Xb1 +X

0

2X2(b2 � b1)
�

= N 1"1 �X1(X
0
X)�1X 0

2X2(b2 � b1);

from which s21 = e
0

1N 1e1 follows. Similarly, we obtain s22 = e
0

2N 2e2 and thus we can apply

Lemma 1 to the GLSE of the form

�̂(�̂) = (X 0�̂
�1
X)�1X 0�̂

�1
y with �̂ = �(�̂)(16)

= (X 0

1X1 + �̂X 0

2X2)
�1(X 0

1X1b1 + �̂X 0

2X2b2):

As is well known, the estimator �̂(�̂) is unbiased and has �nite second moments for all

c > 0. A typical choice of c will be c = m2=m1. A lot of researches have been made on the

eÆciency of the GLSE in the literature. See, for example, Khatri and Shah (1974), Taylor

(1977,1978), Swamy and Mehta (1979) and Kubokawa (1998) in addition to the papers

given in the previous sections.
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Lemma 2 For any GLSE of the form (16), the quantity H1 +H2 in (12) is expressed as

H1 +H2 = `(�̂; �) Q(b1 � b2);(17)

where the functions ` and Q are de�ned as

`(�̂; �) = `0(�̂=�) + `0(�=�̂) with `0(t) = (t� 1)21ft>1g(18)

and

Q(x) =
�2

�2
x
0
V x

with

V =X
0

1X1(X
0��1

X)�1X 0

2X2(X
0��1

X)�1X 0

2X2(X
0��1

X)�1X 0

1X1;(19)

respectively.

Proof. From (12), we readily obtain H1 = `0(�̂=�) "
0
M

0
M" (�2=�2) and H2=`0(�=�̂)

"
0
M

0
M" (�2=�2). Hence we have

H1 +H2 = `(�̂; �) "0M 0
M" (�2=�2):

Since ��1=2
F��1=2 =D, we get

M" = (X 0��1
X)�1=2X 0

D
�
In �X(X 0��1

X)�1X 0��1
�
":(20)

Substituting

X
0
D" =X

0

2X2(b2 � �)

and

X
0
DX(X 0��1

X)�1X 0��1
"(21)

=X
0

2X2(X
0��1

X)�1
�
X
0

1X1(b1 � b2) + (X 0

1X1 + �X 0

2X2)(b2 � �)
�

=X
0

2X2(X
0��1

X)�1X 0

1X1(b1 � b2) +X
0

2X2(b2 � �)

into (20) proves (17), where the last equality of (21) is due to

X
0��1

X =X
0

1X1 + �X 0

2X2:2

Since �̂ depends only on s2j 's, the quantities `(�̂; �) and Q(b1 � b2) are independent.

Hence we see that

h1 + h2 = E(H1 +H2) = E
�
`(�̂; �)

�
E (Q(b1 � b2))

� �(c;m1;m2) E (Q(b1 � b2)) ;(22)

where the last equality de�nes the function �(c;m1;m2) = E(`(�̂; �)). The second factor of

(22) is further calculated in the following lemma.

Lemma 3

E (Q(b1 � b2)) =

kX
i=1

�ri

(1 + �ri)2
� q(r1; � � � ; rk; �) (say);(23)

where r1; � � � ; rk are the latent roots of the matrix (X 0

1X1)
�1=2

X
0

2X2(X
0

1X1)
�1=2.
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Proof. Let G be a k � k nonsingular matrix such that

X
0

1X1 = GG
0 and X

0

2X2 =GRG
0 with R = diagfr1; � � � ; rkg;

where diag denotes the diagonal matrix. Then the matrices V in (19) and Cov(b1 � b2)

are expressed as

V = GG
0(GG0 + �GRG0)�1GRG0(GG0 + �GRG0)�1GRG0(GG0 + �GRG0)�1GG0

= G diagfr21=(1 + �r1)
3; � � � ; r2k=(1 + �rk)

3
g G

0

and

Cov(b1 � b2) = �2[(X 0

1X1)
�1 + ��1(X 0

2X2)
�1]

= �2G0�1
diagf(1 + �r1)=(�r1); � � � ; (1 + �rk)=(�rk)g G

�1;

respectively. Thus the result follows since E(Q(b1 � b2)) = (�2=�2)tr(V Cov(b1 � b2)):2

Note that the function q in (23) does not depend on the choice of c in �̂ = cs21=s
2
2.

On the other hand, the quantity �(c;m1;m2) = E(`(�̂; �)) reects the loss of eÆciency

caused by estimating unknown �. As a loss function for estimating �, the function `(�̂; �)

depends only on �̂=�, say `(�̂; �) = ~̀(�̂=�). It has the following symmetric inverse property

~̀(t) = ~̀(1=t) for any t > 0;

which means that the loss function equally penalizes the underestimate and the overestimate

of �. The term \symmmetric inverse" is due to Bilodeau (1990).

To describe �(c;m1;m2), we use the hypergeometric function

2F1(a1; a2; a3; z) =

1X
j=0

(a1)j(a2)j

(a3)j

zj

j!
with (a)j =

j�1Y
i=0

(a+ i) and (a)0 = 1;

which converges for jzj < 1. (See, for example, Abramowitz and Stegun (1972))

Theorem 1 Let mj > 4 (j = 1; 2). Then, for any �̂ = cs21=s
2
2 (c > 0), the equality

�(c;m1;m2) =

8<
:

�1(c;m1;m2) (0 < c < 1)

�2(m1;m2) (c = 1)

�3(c;m1;m2) (1 < c)

holds, where �1; �2 and �3 are given by

�1(c;m1;m2) =
1

B
�
m1

2
; m2

2

� �B �m2

2
� 2; 3

�
cm2=2

2F1

�
m1 +m2

2
;
m2

2
� 2;

m2

2
+ 1; �c

�(24)

+B
�m1

2
� 2; 3

�
cm2=2

�
1

1 + c

�(m1+m2)=2

2F1

�
m1 +m2

2
; 3;

m1

2
+ 1;

1

1 + c

�#
;

(25)

�2(m1;m2) =
1

2(m1+m2)=2B
�
m1

2
; m2

2

� �B �m2

2
� 2; 3

�
2F1

�
m1 +m2

2
; 3;

m2

2
+ 1;

1

2

�

+ B
�m1

2
� 2; 3

�
2F1

�
m1 +m2

2
; 3;

m1

2
+ 1;

1

2

��
;



70 : e4- 6 HIROSHI KURATA

and

�3(c;m1;m2) = �1(1=c;m2;m1);(26)

respectively. (Thus, for any GLSE �̂(�(�̂)) with �̂ = cs21=s
2
2,

Cov
�
�̂(�(�̂))

�
� [1 + �(c;m1;m2)q(r1; � � � ; rk; �)]Cov

�
�̂(�(�))

�
holds.)

Proof. Let vj = s2j=�
2
j so that vj � �2mj

. Then, by (18), we have

�(c;m1;m2) = E (`0(cv1=v2)) +E (`0(v2=cv1)) ;(27)

from which the following equality

�(c;m1;m2) = �(1=c;m2;m1)(28)

is obtained.

We �rst prove (24) and (25). Letting a = 1=(2(m1+m2)=2�(m1=2)�(m2=2)), the �rst

term of the right hand side of (27) is written as

E (`0(cv1=v2)) = a

Z Z
cv1=v2�1

(cv1=v2 � 1)2v
m1=2�1
1 v

m2=2�1
2 exp (�(v1 + v2)=2) dv1dv2:

Making transformation z1 = v1 and z2 = v2=(cv1) with dv1dv2 = cz1dz1dz2 and integrating

with respect to z1 yields

a cm2=2

Z 1

0

z
(m2=2�2)�1
2 (1� z2)

2

�Z
1

0

z
(m1+m2)=2�1
1 exp (�(1 + cz2)z1=2) dz1

�
dz2(29)

= a0
Z 1

0

z
(m2=2�2)�1
2 (1� z2)

2(1 + cz2)
�(m1+m2)=2dz2

with a0 = a � cm2=2�((m1 +m2)=2)2
(m1+m2)=2 = cm2=2=B(m1=2;m2=2). To evaluate (29)

in the case where 0 < c < 1, we use the following well known formulaZ 1

0

ta2�1(1� t)a3�a2�1(1� zt)�a1dt = B(a2; a3 � a2) 2F1(a1; a2; a3; z);(30)

which is valid for 0 < a2 < a3 and jzj < 1. Applying the formula (30) to the right hand

side of (29) proves the �rst term of the right hand side of (24). When 1 � c, applying the

following formula

Z 1

0

ta2�1(1� t)a3�a2�1(1� zt)�a1dt = (1� z)�a1B(a2; a3 � a2) 2F1

�
a1; a3 � a2; a3;

z

z � 1

�
;

(31)

which is valid for 0 < a2 < a3 and z � �1, establishes

E (`0(cv1=v2)) =
B(m2=2� 2; 3)

B(m1=2;m2=2)
(1 + c)�(m1+m2)=2cm2=2

2F1

�
m1 +m2

2
; 3;

m2

2
+ 1;

c

1 + c

�
:

(32)
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Substituting c = 1 into (32) yields the �rst term of (25).

Next we consider the second term of the right hand side of (27). By interchanging m1

and m2 and replacing c by 1=c in (29), we obtain

E (`0(v2=cv1)) = a00
Z 1

0

z
(m1=2�2)�1
1 (1� z1)

2(1 + c�1z1)
�(m1+m2)=2dz1(33)

with a00 = 1=(cm1=2B(m1=2;m2=2)). Since 0 < c � 1 is equivalent to 1 � c�1, applying

(31) to the right hand side of (33) establishes the second term of (24). The second term of

(25) is obtained by letting c = 1. Thus (24) and (25) are proved. Finally, (26) is obtained

from (28). 2

In the table below, we treat the GLSE with c = m2=m1 and summarize the values

of �(m2=m1;m1;m2) for m1;m2 = 5; 10; 15; 20; 25; 50. The table is symmetric in m1 and

m2, which is a consequence of (28). We can observe that the upper bound monotonically

decreases in m1 and m2.

Table of �(m2=m1;m1;m2)

P
P
P
P
P
P

m2

m1
5 10 15 20 25 50

5 18.3875 8.8474 7.7853 7.3423 7.0956 6.6356

10 8.8474 1.8203 1.2826 1.0879 0.9873 0.8138

15 7.7853 1.2826 0.8156 0.6518 0.5687 0.4288

20 7.3423 1.0879 0.6518 0.5013 0.4258 0.3001

25 7.0956 0.9873 0.5687 0.4258 0.3544 0.2369

50 6.6356 0.8138 0.4288 0.3001 0.2369 0.1349

4 Comparison with Another Upper Bound. In this section, we investigate the re-

lation between the upper bound 1 + �(c;m1;m2) q(r1; � � � ; rk; �) and an alternative upper

bound considered in the literature. In Kariya (1981) and Bilodeau (1990), it is shown that

for any GLSE �̂(�(�̂)) of the form (16), the following inequality

Cov
�
�̂(�(�̂))

�
�

h
1 +E(a(�̂; �))

i
Cov

�
�̂(�(�))

�
(34)

holds, where a(�̂; �) is a symmetric inverse loss function given by

a(�̂; �) =
1

4

h
�̂=� + �=�̂ � 2

i
=

(�̂=� � 1)2

4�̂=�
:

The inequality (34) is derived from the structure of the conditional covariance matrix of

�̂(�(�̂)) given �̂. An extension of this result is given in Kurata and Kariya (1996) and

Kurata (1999).

We show that the relation between the two upper bounds is inde�nite. More precisely,

Theorem 2 (i) The relation between `(�̂; �) and a(�̂; �) is given by

`(�̂; �)=4 � a(�̂; �):(35)

(ii) The range of the function q is given by

0 < q(r1; � � � ; rk; �) � k=4;

and its maximum is attained when r1 = � � � = rk = 1=�. As ri� goes to either 0 or 1

(i = 1; � � � ; k), the function q converges to 0.
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Proof. (i) is proved as

`(�̂; �) = (�̂=� � 1)21
f�̂=�>1g + (�=�̂ � 1)21

f�=�̂>1g

�
(�̂=� � 1)2

�̂=�
1
f�̂=�>1g +

(�=�̂ � 1)2

�=�̂
1
f�=�̂>1g

=
(�̂=� � 1)2

�̂=�
1
f�̂=�>1g +

(�̂=� � 1)2

�̂=�
1
f�̂=�<1g

=
(�̂=� � 1)2

�̂=�
= 4a(�̂; �):

(ii) is obvious from (23).2

The inequality (35) clearly implies that 1 + �(c;m1;m2)=4 � 1 + E(a(�̂; �)). However,

the factor q(r1; � � � ; rk; �) can be so small (or large) that

1 + �(c;m1;m2)q(r1; � � � ; rk ; �) � (or �) 1 +E(a(�̂; �))

holds. While the upper bound 1 + �(c;m1;m2)q(r1; � � � ; rk; �) depends on the regressor

matrix X through ri's, the alternative upper bound 1 +E(a(�̂; �)) ignores the information

contained in X.
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