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Abstract. Hyperbolic geometry theorems are abstracted to formulate topology theorems

for function spaces. These theorems generalize results which were established for complex

spaces by Kiernan, Kiernan { Kobayashi, Kobayashi, and Noguchi. They also provide some

new results in the framework of complex spaces including characterizations of hyperbolically

imbedded complex subspaces modulo closed complex subspaces in terms of the family of holo-

morphic mappings into such spaces, and extension and convergence theorems for this family

of mappings.

x1. Introduction. Since S. Kobayashi introduced the important notion of intrinsic

pseudodistance in the theory of complex spaces, hyperbolic geometry has proved to be

useful in several areas of study. In [5], [6], formulations of theorems in topology have been

motivated by theorems from hyperbolic geometry. In this paper we present other such

theorems. From these theorems some known results for complex spaces are established by

purely topological methods and some new results are discovered for such spaces.

All spaces in this paper are assumed to be Hausdor� and if X; Y are spaces we represent

the space of continuous functions equipped with the compact { open topology by C(X; Y ):

Bagley and Yang established the following topological Ascoli { Arzel�a Theorem in [3] (

recall that a topological space is a k { space if a subset C of the space is closed in the space

whenever C \Q is closed in Q for each compact Q of the space ):

Theorem A. If X is a k { space, Y a regular space, then 
 � C(X; Y ) is compact i�

(1) 
 is evenly continuous,

(2) 
(x) = ff(x) : f 2 
g is a relatively compact subset of Y for each x 2 X; and

(3) 
 is a closed subset of C(X; Y ):

If 
 � C(X;Y ) we say that 
 is evenly continuous from p 2 X to q 2 Y if for each

U open in Y about q, there exist V;W open in X;Y about p; q respectively such that

ff 2 
 : f(p) 2 Wg � ff 2 
 : f(V ) � Ug: If 
 is evenly continuous from each p 2 X

to each q 2 Y we say that 
 is evenly continuous ( from X to Y ) [9]. The version of the

Ascoli { Arzel�a Theorem given below in Theorem B is readily derived from Theorem A

since 
(x) = 
(x) for each x 2 X and, under the hypothesis, 
 is evenly continuous i� 


is evenly continuous ( Q represents the closure of the subset Q of a topological space ).
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Theorem B. Let X be a k { space and let Y be a regular space. Then 
 � C(X;Y ) is a

relatively compact subset of C(X;Y ) i�

(1) 
 is evenly continuous, and

(2) 
(x) is a relatively compact subset of Y for each x 2 X:

In this paper we use Theorem B to establish several topological criteria for subsets

of function spaces of continuous extensions to be relatively compact and apply these to

spaces of holomorphic mappings from complex manifolds to complex spaces. If X0; Y0 are

subspaces of the topological spaces X;Y respectively and F � C(X0; Y0); C[X;Y ;F ] will
denote the collection of g 2 C(X;Y ) which are extensions of elements of F : Here X0 will be

dense in X and, consequently, each such extension of f 2 C(X0; Y0) will be unique and will

be denoted by ef: It will be evident from the context which spaces X0; Y0; X; Y are under

consideration. If X0; Y0 are complex subspaces of complex spaces X;Y respectively we will

write H[X;Y +;F ] = C[X;Y +;F ] if Y + is a complex space with Y as a complex subspace.

Otherwise, H[X;Y +;F ] = C[X;Y +;F ] \ H(X;Y ): De�nition 1 appears in [5].

De�nition 1. If X and Y are topological spaces and X0 � X is dense, we say that


 � C(X0; Y ) is topologically uniformly normal with respect to (X0; X; Y ) if for each x 2 X ,

y 2 Y and net f(f�; x�; v�)g in 
�X0 �X0 such that x� ! x, v� ! x and f�(x�)! y

we have f�(v�)! y:

For our purposes we extend De�nition 1 in the form of De�nition 2.

De�nition 2. If X and Y are topological spaces, X0 � X is dense, and � is a closed subset

of Y we say that 
 � C(X0; Y ) is topologically uniformly normal modulo � with respect to

(X0; X; Y ) if 
 is topologically uniformly normal with respect to (X0; X; Y ��): We will

use the abbreviation 'mod �' for ' modulo �0:

The motivation for this de�nition will become evident in the section on applications.

If Y is a topological space we let Y1 = Y [f1g represent the one { point compacti�cation

of Y if Y is not compact, Y1 = Y if Y is compact; if � satis�es � � � � � [ f1g we

represent the quotient space obtained from Y1 by collasping a nonempty � to a point by

Y1

� ; and the induced canonical projection by P� ( Y1

;
= Y1 and P;(y) = y ): Topology

function space theorems proved in x2 and applied in x3 include the following: Let X0 be

a dense subset of the k { space X; let Y be locally compact, let � � Y; let � = � [ f1g
where � is a closed subset of Y; and suppose 
 � C(X0; Y ) is topologically uniformly

normal mod � with respect to (X0; X; Y ): Then

(1Æ) For each f 2 
; P� Æ f extends to g 2 C(X;Y1

� ):

(2Æ) C[X; Y1

� ;P� Æ 
] is a relatively compact subset of C(X;Y1

� ) ( where P� Æ 
 =

fP� Æ f : f 2 
g ):

(3Æ) C[X; Y1

� ;P� Æ
] is a compact subset of C(X;Y1

� ):

(4Æ) If ff�g is a net in 
 and f� ! f then ^P� Æ f� !^P� Æ f:

If, in addition, we assume that at each x 2 X there is a base of neighborhoods �(x) such

that V \ X0 is connected for each V 2 �(x) then (1Æ) � (4Æ) hold for the closed subsets

� of Y1 satisfying � � � � � [ f1g ( D = fz 2 C : jzj < 1g; the unit disk in the

complex plane, D� = D � f0g; the punctured disk, satisfy this additional property and

�(x) represents the family of open sets having x as an element unless otherwise speci�ed ).

We now give de�nitions and background for the purpose of stating some of our applica-

tions of the results in x2 to the theory of complex spaces ( see [13] for more information
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on complex spaces ). Let X be a complex space with a length function E ( see [13] ). We

recall the de�nition of the Kobayashi intrinsic pseudo-distance kX ; kX(p; q) = inf� `(�),

where � is a chain of holomorphic disks f'igi=1;:::;m � H(D; X) such that '1(0) = p,

'i(zi) = 'i+1(0) for i = 1; :::, m� 1 and 'm(zm) = q, and `(�) =
P

m

i=1 dD(0; zi), where dD
is the Poincar�e distance on D:

The pseudo-distance kX has an in�nitesmal form given by

KX(p; v) = inffr > 0 : '(0) = p, (d')0(re) = v for some ' 2 H(D;M)g

where p 2 X , v 2 Tp(X), the tangent space of X at p, d' is the tangent map for ' and

e is the unit vector 1 at 0 2 D ( see [13][14] ). If Y is a complex space and E is a length

function on Y we denote by dE the distance function generated on Y by E [13]. The norm

jdf jE of the tangent map for f 2 H(X;Y ) with respect to E is de�ned by

jdf jE = supfj(df)pjE : p 2 Xg where

j(df)pjE = supfE(f(p); (df)p(v)) : KX(p; v) = 1g

( we use simply jdf j and j(df)pj when no confusion may arise ). A complex space X is

called hyperbolic if the pseudo { distance kX is a distance function. Let X be a relatively

compact open subset of a complex space Y and let � be a closed subspace of Y: In [12]

X is said to be hyperbolically imbedded in Y mod � if for every pair of distinct points

p; q�X not both elements of �, there exist neighborhoods U of p and V of q in Y such that

kX(U \X , V \X) > 0 . If � = ;, X is said to be hyperbolically imbedded in Y . The notion

of hyperbolic imbeddedness was introduced by Kobayashi in [13] and used to produce the

generalization of the Big Picard Theorem given in Theorem C.

Theorem C. Let X be a relatively compact hyperbolically imbedded complex subspace

of a complex space Y: Then each f 2 H(D�; X) extends to ef 2 H(D; Y ):

The concept of hyperbolic inbeddedness modulo closed complex subspaces, due to Kier-

nan and Kobayashi [12], was utilized to restate results of Bloch [2] and Cartan [4] in a more

general setting by using the Kobayashi intrinsic pseudo { distance de�ned on a complex

space and the concept of tautness of Wu [17]. ( The example which they had in mind is the

one where Y is the complex projective space Pn(C); X is the complement of n+ 2 hyper-

planes in general position in Pn(C) and � is the union of a certain collection of hyperplanes

in Pn(C) ). Abate [1] showed that a complex space X is hyperbolic if and only if H(D; X)

is a relatively compact subset of C(D; X1): In [10], Kiernan established that a relatively

compact complex subspace X of a complex space Y is hyperbolically imbedded in Y if and

only if H(D; X) is a relatively compact subset of H(D; Y ); and in [8] the authors have

recently proved that a complex subset X of a complex space Y is hyperbolically imbedded

in Y if and only if there is a distance function d on Y such that d(f(x); f(y)) � kD�(x; y)

for all x; y 2 D� and f 2 H(D�; X): Kobayashi and Kiernan [12] proved that a relatively

compact complex subspace X is hyperbolically imbedded in Y mod �, where � is a closed

complex subspace of Y , if H(D; X) is relatively compact in H(D; Y ) mod �. It is known

[14] that H(D; X) is a relatively compact subset of H(D; Y ) mod � ( locally relatively com-

pact in Lang [14] ), if given any sequence F in H(D; X), there is a subsequence ffng such
that either it converges uniformly on compact subsets of D to an element of H(D; Y ) or

given a neighborhood U of � in Y and a compact subset K of D; fn(K) � U ultimately.

In x3 we generalize and unify these results , and o�er characterizations of hyperbolically

imbedded mod � complex subspaces in terms of function spaces, providing an answer to a

question which was left open in [12] and [14]. We also extend the following theorems due
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to Noguchi [15], [16] to non { relatively compact hyperbolically imbedded mod � spaces.

The methods used in this paper should be compared with the complex space and measure {

theoretic based methods of the aforementioned authors ( see [1], [10]{ [13], pp. 43 | 64 in

[14], and [16] ). A divisor A on a complex manifoldM of dimension m has normal crossings

( see [14] ) if at each point in A there exists a system of coordin complexates z1; :::; zm for

M such that, locally,

M �A = (D�)r �Ds with r + s = m:

Theorem D. Let X be a relatively compact hyperbolically imbedded complex subspace

of a complex space Y: Let M be a complex manifold and A be a divisor on M with normal

crossings.

(1) If ffng is a sequence in H(D�; X) and fn ! f 2 H(D�; Y ) then ef 2 H(D; Y ) exists

and efn ! ef:
(2) If ffng is a sequence in H(M �A; X) and fn ! f 2 H(M �A; Y ) then ef 2 H(M; Y )

exists and efn ! ef:

x2. Topological function space theorems. Lemmas 1 and 2 will be used in conjunction

with results from [6] to establish our function space theorems.

Lemma 1. Let X0 be a dense subset of the k { space X; let Y be a locally compact space,

let � = � [ f1g where � is a closed subset of Y and let 
 � C(X0; Y ): Then 
 is

topologically uniformly normal mod � with respect to (X0; X; Y ) i� P� Æ
is topologically
uniformly normal with respect to (X0; X; Y

1

� ):

Proof. Necessity. Suppose (f�; x�; v�) is a net in 
�X0 �X0 and let x 2 X; y; z 2 Y

satisfy P� Æ f�(x�) ! P�(y); P� Æ f�(v�) ! P�(z) 6= P�(y); x� ! x; v� ! x: We may

assume that y 62 � and hence that f�(x�)! y; z = y; a contradiction.

SuÆciency. Let (x; y) 2 X�(Y ��) and (f�; x�; v�) be a net in 
�X0�X0 satisfying

f�(x�)! y; x� ! x; v� ! x: There exist W 2 �(y) such that W \ (�[f1g) = ;: Hence
P� Æ f�(x�)! P�(y): Hence P� Æ f�(v�)! P�(y): and f�(v�)! y: �

Lemma 2. Let X0 be a dense subset of the k { space X; let Y be a locally compact space,

let � be a closed subset of Y ; suppose for each x 2 X there is a base of neighborhoods

�(x) such that V \ X0 is connected for each V 2 �(x)and let 
 � C(X0; Y ): Then 
is

topologically uniformly normal mod � with respect to (X0; X; Y ): i� P�Æ
is topologically
uniformly normal with respect to (X0; X; Y

1

� ); for each � closed in Y1 satisfying � = �

or � = � [ f1g:

Proof. SuÆciency. This is obvious from Lemma 1.

Necessity. Let x 2 X and (f�; x�; v�) be a net in 
 � X0 � X0 satisfying x� !
x; v� ! x; P� Æ f�(x�) ! P�(y); P� Æ f�(v�) ! P�(z) and P�(y) 6= P�(z): It follows

that y 6= z and that y; z 2 �[f1g: If � 6= � then1 2 �; so y; z 2 � and P�(y) = P�(z):

Hence � = �; � is compact and we may assume y = 1: Let W be open in Y1 such that

1 2 W and W \ � = ;: There is a subnet of ff�g; called again ff�g; a net fs�g; and a

q 2 Y \ @W such that s� ! x and f�(s�)! q: Thus y = z; a contradiction. �

Theorem E appears in [6] and when applied in concert with Lemmas 1 and 2 yields

Theorems 1 and 2. In each instance below the space X is assumed to be a k { space and Y

is assumed to be locally compact.
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Theorem E. Let X0 be a dense subset of the space X . The following statements are

equivalent for 
 � C(X0; Y ):

(1) 
is topologically uniformly normal with respect to (X0; X; Y ):

(2) 
 satis�es the following two properties:

(a) Each f 2 
 extends to ef 2 C(X;Y1), and

(b) C[X;Y1; 
] is a relatively compact subset of C(X;Y1):

Theorem 1. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y and let � = �[ f1g: The following statements are equivalent for 
 � C(X0; Y ) :

(1) 
is topologically uniformly normal mod � with respect to (X0; X; Y ):

(2) 
 satis�es the following two properties:

(a) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(b) C[X;Y1

� ;P� Æ 
] is a relatively compact subset of C(X;Y1

� ):

Theorem 2. Let X0 be a dense subset of the space X; let � be a closed subset of the space

Y ; suppose that at each x 2 X there is a base of neighborhoods �(x) such that V \X0 is

connected for each V 2 �(x) and let 
 � C(X0; Y ): The following are equivalent:

(1) 
is topologically uniformly normal mod � with respect to (X0; X; Y ):

(2) 
 satis�es the following two properties for � closed in Y1 where � = � or � = �[f1g :

(a) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(b) C[X;Y1

� ;P� Æ 
] is a relatively compact subset of C(X;Y1

� ):

Theorems 3, 4, 5 and 6 are derived from Theorems F and G which are proved in [6], and

Lemmas 1 and 2.

Theorem F. Let X0 be a dense subset of the space X and suppose 
 � C(X0; Y ) is

topologically uniformly normal with respect to (X0; X; Y ). Then

(1) Each f 2 
 extends to ef 2 C(X;Y1):

(2) If ff�g is a net in 
 and f� ! f , then ef� ! ef:
Theorem G. LetX0 be a dense subset of the spaceX . Then 
 � C(X0; Y ) is topologically

uniformly normal with respect to (X0; X; Y ) i� the following two conditions hold:

(1) Each f 2 
 extends to ef 2 C(X;Y1), and

(2) C[X;Y1; 
] is a compact subset of C(X;Y1):

Theorem 3. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y; let � = � [ f1g; and suppose 
 � C(X0; Y )is topologically uniformly normal

mod � with respect to (X0; X; Y ): Then

(1) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(2) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f:

Proof. This follows from Lemma 1 and the fact that f� ! f for a net ff�g in 
 i�

P� Æ f� ! P� Æ f: �

Theorem 4. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y; let � = � [ f1g; and suppose 
 � C(X0; Y ) is topologically uniformly normal

mod � with respect to (X0; X; Y ): The following are equivalent:

(1) 
is topologically uniformly normal mod � with respect to (X0; X; Y ):

(2) 
 satis�es the following two properties:

(a) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(b) C[X;Y1

� ;P� Æ 
] is a compact subset of C(X;Y1

� ):
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Theorem 5. Let X0 be a dense subset of the space X; let � be a closed subset of the space

Y ; suppose that at each x 2 X there is a base of neighborhoods �(x) such that V \X0 is

connected for each V 2 �(x)and let 
 � C(X0; Y ): Then

(1) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(2) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f; for � closed in Y1 where

� = � or � = � [ f1g:

Theorem 6. Let X0 be a dense subset of the space X; let � be a closed subset of the space

Y ; suppose that at each x 2 X there is a base of neighborhoods �(x) such that V \X0 is

connected for each V 2 �(x)and let 
 � C(X0; Y ): The following are equivalent:

(1) 
is topologically uniformly normal mod � with respect to (X0; X; Y ):

(2) 
 satis�es the following two properties for � closed in Y1 where � = � or � = �[f1g :

(a) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(b) C[X;Y1

� ;P� Æ 
] is a compact subset of C(X;Y1

� ):

Theorems 7, 8, 9 and 10, our �nal results in this section, 
ow from Theorems H and I (

proved in [6] ) and Lemmas 1 and 2.

Theorem H. Let X0 be a dense subset of the space X and suppose that 
 � C(X0; Y ) is

topologically uniformly normal with respect to (X0; X; Y ). Then

(1) 
 is a relatively compact subset of C(X0; Y
1), and

(2) If ff�g is a net in 
 and f� ! f , then ef� ! ef:
Theorem I. Let X0 be a dense subset of the space X . Then 
 � C(X0; Y ) is topologically

uniformly normal with respect to (X0; X; Y ) i� the following three conditions hold:

(1) 
 is a relatively compact subset of C(X0; Y
1);

(2) Each f 2 
 extends to ef 2 C(X;Y1), and

(3) If ff�g is a net in 
 and f� ! f , then ef� ! ef:
Theorem 7. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y; let � = � [ f1g; and suppose 
 � C(X0; Y ) is topologically uniformly normal

mod � with respect to (X0; X; Y ): Then

(1) P� Æ
 is a relatively compact subset of C(X0; Y
1

� ), and

(2) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f:

Theorem 8. Let X0 be a dense subset of the space X; let � be a closed subset of the space

Y ; suppose that at each x 2 X there is a base of neighborhoods �(x) such that V \X0 is

connected for each V 2 �(x)and let 
 � C(X0; Y ): Then, for each � closed in Y1 where

� = � or � = � [ f1g :

(1) P� Æ
 is a relatively compact subset of C(X0; Y
1

� ), and

(2) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f:

Theorem 9. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y; let � = � [ f1g: Then 
 � C(X0; Y ) is topologically uniformly normal mod �

with respect to (X0; X; Y ) i� the following three conditions hold:

(1) P� Æ
 is a relatively compact subset of C(X0; Y
1

� );

(2) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(3) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f:
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Theorem 10. Let X0 be a dense subset of the space X; let � be a closed subset of the

space Y ; suppose that at each x 2 X there is a base of neighborhoods �(x) such that V \X0

is connected for each V 2 �(x). Then 
 � C(X0; Y ) is topologically uniformly normal mod

� with respect to (X0; X; Y ) i� the following three conditions hold for � closed in Y1

where � = � or � = � [ f1g :
(1) P� Æ
 is a relatively compact subset of C(X0; Y

1

� );

(2) For each f 2 
; P� Æ f extends to^P� Æ f 2 C(X;Y1

� ), and

(3) If ff�g is a net in 
 and f� ! f , then ^P� Æ f� !^P� Æ f:

x3. Applying the topological function space theorems to complex spaces. In

this section we utilize the results in x2 to extend and generalize some theorems for complex

spaces due to Abate [1], Kiernan [10], [11], Kiernan and Kobayashi [12], and Noguchi [15],

[16]. Let X be a complex subspace ( not necessarily relatively compact ) of a complex space

Y and let � be a closed complex subspace of Y . We say that X is hyperbolically imbedded

in Y mod � if for every pair of distinct points p; q 2 X not both elements of �, there exist

neighborhoods U of p and V of q in Y such that kX (U \X , V \X) > 0. To establish the

results of this section we employ the notion of hyperbolic point for a complex subspace. Let

X be a relatively compact complex subspace of the complex space Y: Kobayashi has called

a point p 2 X a hyperbolic point for X if for each U 2 �(p) some V 2 �(p) satis�es V � U

and kX(V \ X; X � U) > 0: We extend the notion of hyperbolic point in this paper by

dropping the requirement of relative compactness on X: Lemma 3 characterizes hyperbolic

point in terms of KX :

Lemma 3. Let X be a complex subspace of the complex space Y: Then p 2 X is a

hyperbolic point for X i� there is a U 2 �(p) and a c > 0 such that KX � cE on U \X:

Proof. Necessity. If no such c exists there is a sequence f(fn; vn)g such that (fn; vn) 2

H(D; X)�Tfn(0)(X); KX(fn(0); vn) = 1 for each n; fn(0)! p; j(dfn)0j ! 1: From the

hypothesis, there is a hyperbolic neighborhood U of p with U compact and a neighborhood

N of 0 in D such that fn(N) � U ultimately. There is a subsequence of ffng; called again

ffng; such that fn ! g 2 H(N; Y ); an impossibility.

SuÆciency. Let U; V 2 �(p) and c > 0 satisfy V � U and KX � cE on U \X: Then

kX(V \X; X � U) � cdE(@V; @U) > 0: �

Theorem 11. The following statements are equivalent for a complex subspace X of a

complex space Y; closed complex subspace � of Y and closed subset � of Y1 where � = �

or � = � [ f1g :

(1) X is hyperbolically imbedded in Y mod �:

(2) C[D; Y1

� ;P� ÆH(D�; X)] is a relatively compact subset of C(D; Y1

� ):

(3) C[D; Y1

� ;P� ÆH(D�; X)] is a compact subset of C(D; Y1

� ):

(4) C[M; Y1

� ;P� ÆH(M � A; X)] is a relatively compact subset of C(M; Y1

� ) for each

complex manifold M and divisor A on M with normal crossings.

(5) C[M; Y1

� ;P� ÆH(M �A; X)] is a compact subset of C(M; Y1

� ) for each complex

manifold M and divisor A on M with normal crossings.

(6) P� ÆH(M; X) is a relatively compact subset of C(M; Y1

� ) for each complex manifold

M:

(7) P� ÆH(D; X) is a relatively compact subset of C(D; Y1

� ):

Proof. The implications (5))(6))(7), (3))(2))(7), (5))(4))(6), (5))(3) are all

obvious. To assist in establishing the remaining necessary implications we prove Lemma 4

which will be utilized in conjunction with results from x2.
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Lemma 4. Let X be a complex subspace of the complex space Y and let � be a closed

complex subpace of Y: The following statements are equivalent:

(i) X is hyperbolically imbedded in Y mod �:

(ii) Each point in X �� is a hyperbolic point.

(iii) H(D�; X) is topologically uniformly normal mod � with respect to (D�; D; Y ):

(iv) H(M�A; X) is topologically uniformly normal mod � with respect to (M�A; M; Y )

for each complex manifold M and divisor A on M with normal crossings.

Proof. The equivalences (ii)() (iii)() (iv) are veri�ed in [7]( see theorems 1 and 7 in

[7] ).

(i))(ii). If p 2 X is not a hyperbolic point then, by Lemma 3 and the homogeniety of

D; there are sequences fzng; ffng in D; H(D; X) respectively and U 2 �(p) satisfying

zn ! 0; fn(0)! p; and fn(zn)! q 2 @U: It follows for V 2 �(p); W 2 �(q) that

kX (V \X; W \X) � kX(fn(0); fn(zn)) � dD(0; zn) ultimately so p 2 �:

(ii))(i). The argument used in establishing ( in Lemma 3 may be applied here. �

(1))(5). Follows from Lemma 3 and Theorem 6.

(7))(1). Suppose P� ÆH(D; X) is relatively compact in C(D; Y1

� ) and let p 2 X ��

be a point in Y which is not a hyperbolic point for X . We may assume that there is a

sequence ffng in H(D; X) and g 2 C(D; Y1

� ) such that P� Æ fn ! g; j(dfn)0j ! 1

and fn(0) ! p. Let W be a hyperbolic neighborhood of p such that W is compact and

W \ � = ;. Then P�(W ) is a neighborhood of g(0). There is a neighborhood V of 0 in D

such that P� Æ fn(V ) � P�(W ) and hence fn(V ) � W ultimately. This is a contradiction

since j(dfn)0j ! 1. In view of Lemma 4 the proof of Theorem 11 is complete. �

Results in x2, in [7] and Lemma 4 enable us to extend Theorem D ( due to Noguchi [15],

[16] ) to hyperbolically imbedded mod � spaces in the form of Theorems 12, 13 and 14.

Theorem 12. Let X be a complex subspace of the complex space Y and let � be a closed

complex subpace of Y: X is hyperbolically imbedded in Y mod � i� the following three

conditions hold for � closed in Y1 where � = � or � = � [ f1g :
(1) P� ÆH(D�; X) is a relatively compact subset of C(D�; Y1

� );

(2) For each f 2 H(D�; X); P� Æ f extends to^P� Æ f 2 C(D; Y1

� ), and

(3) If ff�g is a net in H(D�; X) and f� ! f 2 C(D�; Y1, then ^P� Æ f� !^P� Æ f:

Proof. From Theorem 10 and Lemma 4. �

Theorem 13. Let X be a complex subspace of the complex space Y and let � be a closed

complex subpace of Y: X is hyperbolically imbedded in Y mod � i� the following three

conditions hold for any complex manifold M; divisor A on M with normal crossings, and �

closed in Y1 where � = � or � = � [ f1g :

(1) P� ÆH(M �A; X) is a relatively compact subset of C(M; Y1

� );

(2) For each f 2 H(M �A; X); P� Æ f extends to^P� Æ f 2 C(M; Y1

� ), and

(3) If ff�g is a net in H(M �A; X) and f� ! f 2 C(M �A; Y1, then ^P� Æ f� !^P� Æ f:

Proof. From Theorem 10 and Lemma 4. �

Theorem 14. Let X be a complex subspace of the complex space Y and let � be a

closed complex subpace of Y such that X is hyperbolically imbedded in Y mod �: Then
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the following conditions hold for any complex manifold M; divisor A on M with normal

crossings, and � closed in Y1 where � = � or � = � [ f1g :

(1) If ff�g is a net in H(D�; X) and f� ! f 2 C(D�; Y1), then ^P� Æ f� !^P� Æ f:

(2) If ff�g is a net in H(M �A; X) and f� ! f 2 C(M�A; Y1), then ^P� Æ f� !^P� Æ f:

Proof. From Theorem 8 and Lemma 4. �
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