ON TOPOLOGICAL BCI-ALGEBRAS II

YOUNG BAE JUN AND XIAO LONG XIN

Received November 29, 1999

Abstract. As a continuation of [7], we introduce the notions of topological subalgebras, topological ideals and topological homomorphisms in topological BCI-algebras and study some related properties. In the section 3, we investigate the compactness in a TBCI-algebra X and quotient TBCI-algebra X/I where I is a topological ideal of X. In the section 4, we introduce the notion of topological homomorphisms, study some properties for this notion and show that an open topological homomorphism f from TBCI-algebra X to TBCI-algebra Y gives rise to a one-to-one correspondence between the closed c-ideals of Y and the closed c-ideals of X which contains ker f.

1. Introduction

The notion of BCK-algebras was proposed by Y. Iami and K. Iseki in 1966. In the same year, K. Iseki [4] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universal structures including lattices and Boolean algebras. R. A. Alo and E. Y. Deeba [1] attempted to study the topological aspects of the BCK-structures, and they initiated the study of various topologies on BCK-algebras analogous to that which has already been studied on lattices, but no attempts have been made to study the topological structures making the BCK-operation continuous. In [7], Y. B. Jun et al. initiated the study of topological BCI-algebras (briefly, TBCI-algebras) and some properties of this structure, and gave a characterization of a TBCI-algebra in terms of neighborhoods, and showed that a TBCI-algebra X is Hausdorff if and only if \{0\} is closed in X. They also gave a filter base \(\Omega\) generating a BCI-topology, and made a BCI-algebra X into a TBCI-algebra for which \(\Omega\) is a fundamental system of neighborhoods of 0. As a continuation of [7], we introduce the notions of topological subalgebras, topological ideals and topological homomorphisms in topological BCI-algebras and study some related properties. In the section 3, we get the following results: (i) If I is a topological ideal of a TBCI-algebra X, then the natural projection \(\Phi_I\) from X to \(X/I\) is open and continuous. (ii) Every topological subalgebra of a compact (locally compact) TBCI-algebra is compact (locally compact). (iii) Let I be a topological ideal of a compact TBCI-algebra X, then I and \(X/I\) are compact. (iv) Let I be a topological c-ideal of a locally compact TBCI-algebra X, then \(X/I\) is locally compact. (v) Let I be a compact topological ideal of a transitive open TBCI-algebra X, \(\beta = \{I_x \mid x \in X\}\) be a base for topological \(\mathcal{F}\) and \(I_x\) compact for each \(x \in X\). Then we have that if \(Q \subseteq X/I\) is compact, so is \(P = \Phi_I(Q)\); and if \(X/I\) is locally compact, then X is locally compact. In
the section 4, we introduce the notion of topological homomorphisms, study some properties
for this notion and show that an open topological homomorphism \(f \) from TBCI-algebra \(X \)
to TBCI-algebra \(Y \) gives rise to a one-to-one correspondence between the closed c-ideals of
\(Y \) and those closed c-ideals of \(X \) which contains \(\text{ker} f \).

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.
Recall that a \(BCI \)-algebra is an algebra \((X, *, 0)\) of type \((2, 0)\) satisfying the following axioms for every \(x, y, z \in X \),

\((I) \) \(((x * y) * (x * z)) * (z * y) = 0 \),

\((II) \) \((x * (x * y)) * y = 0 \),

\((III) \) \(x * x = 0 \),

\((IV) \) \(x * y = 0 \) and \(y * x = 0 \) imply \(x = y \).

A partial ordering \(\leq \) on \(X \) can be defined by \(x \leq y \) if and only if \(x * y = 0 \).
In a \(BCI \)-algebra \(X \), the following hold:

(1) \(x * 0 = x \).

(2) \((x * y) * z = (x * z) * y \).

(3) \(0 * (x * y) = (0 * x) * (0 * y) \).

(4) \(x * y = 0 \) implies \((x * z) * (y * z) = 0 \) and \((z * y) * (z * x) = 0 \).

(5) \(x * 0 = 0 \) implies \(x = 0 \).

A nonempty subset \(S \) of a \(BCI \)-algebra \(X \) is called a \(BCI \)-subalgebra of \(X \) if \(x * y \in S \)
whenever \(x, y \in S \).

A non-empty subset \(I \) of a \(BCI \)-algebra \(X \) is called a \(BCI \)-ideal of \(X \) if

(i) \(0 \in I \),

(ii) \(x * y \in I \) and \(y \in I \) imply \(x \in I \).

A \(BCI \)-ideal \(I \) of a \(BCI \)-algebra \(X \) is said to be \text{closed} if \(0 * x \in I \) whenever \(x \in I \). Here
we call this a \(c \)-\text{ideal} of \(X \).

3. Compactness in topological \(BCI \)-algebras

In this paper we shorten the statement “\(U \) is an open set containing \(x \)” to the phrase
“\(U \) is a neighborhood of \(x \)”.

\textbf{Definition 3.1.} (Jun et al. [7]) A topology \(\mathcal{T} \) on a \(BCI \)-algebra \(X \) is said to be a \(BCI \)-
topology, and \(X \), furnished with \(\mathcal{T} \), is called a \text{topological \(BCI \)-algebra} (briefly, \text{\(TBCI \)-algebra})
if \(\langle x, y \rangle \mapsto x * y \) is continuous from \(X \times X \), furnished with the cartesian product topology
defined by \(\mathcal{T} \), to \(X \). Moreover if \(X \) is a \(p \)-semisimple \(BCI \)-algebra, we say that \(X \), furnished
with \(\mathcal{T} \), is a \(p \)-\text{semisimple \(TBCI \)-algebra}.

\textbf{Example 3.2.} (Jun et al. [7]) (1) A \(BCI \)-algebra with discrete or indiscrete topology is a
\(TBCI \)-algebra.

(2) Consider a \(BCI \)-algebra \(X = \{0, a, b, c, d\} \) with Cayley table (Table 1) and Hasse
diagram (Figure 1):
Table 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1

Note that $\mathcal{T} := \{\emptyset, X, \{b\}, \{c\}, \{d\}, \{0, a\}, \{b, c\}, \{b, d\}, \{c, d\}, \{0, a, b\}, \{0, a, c\}, \{0, a, d\}, \{b, c, d\}, \{0, a, b, c\}, \{0, a, b, d\}, \{0, a, c, d\}\}$ is a BCI-topology. By routine calculations we know that X furnished with \mathcal{T} is a TBCI-algebra.

We first give a characterization of a TBCI-algebra in terms of neighborhoods.

Lemma 3.3. (Jun et al. [7]) Let \mathcal{T} be a BCI-topology for a BCI-algebra X. Then X, furnished with \mathcal{T}, is a TBCI-algebra if and only if for each x and y in X and each neighborhood W of $x \ast y$ there are neighborhoods U of x and V of y such that $U \ast V \subseteq W$.

Lemma 3.4. (Jun et al. [7]) Let X be a TBCI-algebra. If A is both an open subset in topological space and an ideal of BCI-algebra X, then it is a closed subset in topological space X.

Lemma 3.5. (Jun et al. [7]) Let X be a TBCI-algebra. Then $\{0\}$ is closed subset if and only if X is Hausdorff in topological space X.

Definition 3.6. A nonempty subset S of a TBCI-algebra X is called a topological subalgebra of X if

(i) S is a BCI-subalgebra of X considered as an algebraic BCI-algebra,

(ii) S is a closed set in the topological space X.

Definition 3.7. A nonempty subset I of a TBCI-algebra X is called a topological ideal of X if

(i) I is a BCI-ideal of X considered as an algebraic BCI-algebra,

(ii) I is open in the topological space X.

Definition 3.8. A nonempty subset I of a TBCI-algebra X is called a topological c-ideal of X if

(i) I is a c-ideal of X considered as an algebraic BCI-algebra,

(ii) I is open in the topological space X.

Example 3.9. Let $X = \{0, a, b, c, d\}$ be a TBCI-algebra as in Example 3.2(2). By routine calculations we know that $A = \{0, c\}$ is a topological subalgebra which is not a topological ideal, and $B = \{0, a\}$ is a topological ideal.

Proposition 3.10. Every topological ideal of a TBCI-algebra X is a closed subset of X considered as a topological space.

Proof. Follows from Lemma 3.4. □

Proposition 3.11. Let X be a TBCI-algebra and I a BCI-ideal of X considered as an algebraic BCI-algebra. Define a map $\Phi_I : X \rightarrow X/I$ by $\Phi_I(x) = I_x$ for each $x \in X$ where I_x is the equivalence class containing x. Then the set

$$\mathcal{T}_{X/I} := \{O \subseteq X/I | \Phi_I^{-1}(O) \text{ is open in } X\}$$
is a topology on X/I, which is called the quotient topology on X/I.

Proof. Straightforward. □

Proposition 3.12. If I is a topological ideal of a TBCI-algebra X, then the mapping Φ_I as in Proposition 3.11 is open and continuous.

Proof. Clearly Φ_I is continuous. In order to prove Φ_I is open, let W be an open set in X and $W' = \Phi_I(W)$. We shall show that W' is open in X/I or equivalently $\Phi_I^{-1}(W')$ is open in X. Let $y \in \Phi_I^{-1}(W')$. Then $\Phi_I(y) \in W'$ and $\Phi_I(y) = \Phi_I(w)$ for some $w \in W$. It follows that $y \ast w \in I$ and $w \ast y \in I$. Note that $f : X \times X \to X$, $(x, y) \mapsto x \ast y$, is continuous. Then $B := \{(a, b) \in X \times X | a \ast b \in I\} = \{(a, b) \in X \times X | f(a, b) \in I\} = f^{-1}(I)$ is open in $X \times X$ since I is open. Hence $B = \bigcup_{i \in \Lambda} (U_i \times V_i)$ for some open sets U_i and V_i in X where Λ is an index set and $i \in \Lambda$. It follows from $y \ast w \in I$ that there exists $i_0 \in \Lambda$ such that $y \in U_{i_0}$, $w \in V_{i_0}$ and $U_{i_0} \ast V_{i_0} \subseteq I$. Similarly $w \ast y \in I$ implies that there exists $j_0 \in \Lambda$ such that $w \in U_{j_0}$, $y \in V_{j_0}$ and $U_{j_0} \ast V_{j_0} \subseteq I$. Thus $y \in U_{i_0} \cap V_{j_0}$ and $w \in U_{j_0} \cap V_{i_0}$. Note that $(U_{i_0} \cap V_{j_0}) \ast (U_{j_0} \cap V_{i_0}) \subseteq U_{i_0} \ast V_{i_0} \subseteq I$ and $(U_{j_0} \cap V_{i_0}) \ast (U_{i_0} \cap V_{j_0}) \subseteq U_{j_0} \ast V_{j_0} \subseteq I$.

Let $x \in G$ where $G = U_{i_0} \cap V_{j_0}$. It follows that $x \ast w \in I$ and $w \ast x \in I$. Hence $I_x = I_w = \Phi_I(w) \in \Phi_I(W) = W'$, and so $G \subseteq \Phi_I^{-1}(W')$. Note that $y \in G \subseteq \Phi_I^{-1}(W')$ we have $\Phi_I^{-1}(W')$ is open in X. □

Theorem 3.13. If I is a topological ideal of a TBCI-algebra X with topology \mathcal{T}_X, then X/I is a TBCI-algebra with topology $\mathcal{T}_{X/I}$.

Proof. It is sufficient to prove that $(I_x, I_y) \to I_x \ast I_y$ is continuous. Let $x, y \in X$ and let W be a neighborhood of $I_x \ast I_y$. Then $\Phi_I^{-1}(W)$ is open in X and $x \ast y \in \Phi_I^{-1}(W)$. Since X is a TBCI-algebra, there exists neighborhoods U' of x and V' of y such that $U' \ast V' \subseteq \Phi_I^{-1}(W)$ by Lemma 3.3. Put $U := \Phi_I(U')$ and $V := \Phi_I(V')$. Then U and V are open in X/I since Φ_I is open. Note that $I_x \in U$, $I_y \in V$ and

$$U \ast V = \{\Phi_I(u) \ast \Phi_I(v) | u \in U' \text{ and } v \in V'\}$$

$$= \{\Phi_I(u \ast v) | u \in U' \text{ and } v \in V'\}$$

$$= \Phi_I(U' \ast V') \subseteq W$$

so from Lemma 3.3 that $(I_x, I_y) \to I_x \ast I_y$ is continuous. □

Theorem 3.14. Let X be a TBCI-algebra. Then

(i) If X is compact (resp. locally compact), then every topological subalgebra S of X is compact (resp. locally compact).

(ii) If X is compact and I is a topological ideal, then I and X/I are compact.

(iii) If X is locally compact, then every topological ideal I is locally compact.

(iv) If X is locally compact and I is a topological c-ideal, then X/I is locally compact.

Proof. (i) Note that S is closed so that S is compact if X is compact. If X is locally compact, then $\forall x \in S \exists$ a neighborhood G of x whose closure is compact in X. Then $U := G \cap S$ is a neighborhood of x in S and $\overline{U} \subseteq \overline{G} \cap S = \overline{G} \cap S$. Since $\overline{S} \cap S$ is compact in S, it follows that \overline{U} is compact in S. Hence S is locally compact.

(ii) Let X be compact and I a topological ideal. Then I is closed by Proposition 3.10. Hence I is compact. Note that Φ_I is a continuous mapping from X onto X/I. Therefore X/I is compact.

(iii) It is similar to the proof of (i).

(iv) Assume that X is locally compact and I is a topological c-ideal. Let $a \in X$, $A = \Phi_I(a)$ and let U be a neighborhood of a in X such that \overline{U} is compact. Since I is
a c-ideal of X, we have \(\Phi_I(I) = \{I_0\} \) which is an open set in \(X/I \) because \(I \) is open in \(X \) and \(\Phi_I \) is open. Note that \(\{I_0\} \) is a BCI-ideal of \(X/I \) so that \(\{I_0\} \) is a closed set in \(X/I \) by Lemma 3.4. It follows from Lemma 3.5 that \(X/I \) is Hausdorff. Since \(\overline{\Phi_I(U)} \) is compact, the continuous image \(\Phi_I(U) \) is compact, and hence \(\overline{\Phi_I(U)} \) is closed in \(X/I \). From \(\Phi_I(U) \subseteq \Phi_I(U) \) it follows that \(\Phi_I(U) \subseteq \Phi_I(U) \) so that \(\Phi_I(U) \) is compact. On the other hand, put \(U^* = \{I_x \mid I_x \cap U \neq \emptyset\} \). Since \(a \in I_x \cap U = A \cap U \), we get \(A \in U^* \). Now we claim that \(U^* = \Phi_I(U) \) and then \(U^* \) is a neighborhood of \(A \). Let \(I_x \in U^* \). Then \(I_x \cap U \neq \emptyset \) and so \(\exists y \in I_x \cap U \). Hence \(I_x = I_y \in \Phi_I(U) \) and therefore \(U^* \subseteq \Phi_I(U) \). Conversely let \(I_x = \Phi_I(x) \in \Phi_I(U) \). Then \(x \in U \) and thus \(x \in I_x \cap U \), i.e., \(I_x \cap U \neq \emptyset \) which means that \(I_x \in U^* \). Consequently \(U^* = \Phi_I(U) \) and \(\overline{U^*} = \Phi_I(U) \) is a compact set in \(X/I \). Therefore \(X/I \) is locally compact. This completes the proof. \(\square \)

For a fixed element \(a \) of a TBCI-algebra \(X \), define a self-map \(f_a : X \to X \) by \(f_a(x) = a \ast x \) for all \(x \in X \).

Definition 3.15. A TBCI-algebra \(X \) is said to be transitive open if for each \(a \in X \) the self-map \(f_a \) is open and continuous.

Lemma 3.16. Let \(U \) be an open set in a transitive open TBCI-algebra \(X \) and let \(a \in X \). Then

(i) \(a \ast U \) is open.

(ii) \(f_a^{-1}(U) = \{x \in X \mid a \ast x \in U\} \) is open.

(iii) \(A \ast U \) is open for every subset \(A \) of \(X \).

Proof. Note that \(f_a(U) = a \ast U, f_a^{-1}(U) = V \) and \(A \ast U = \cup_{a \in A}(a \ast U) \). Hence we get the desired results. \(\square \)

Theorem 3.17. Every \(p \)-semisimple TBCI-algebra \(X \) is transitive open.

Proof. Let \(a \in X \). We shall prove that \(f_a \) is open and continuous. Let \(x \in X \) and let \(W \) be a neighborhood of \(f_a(x) = a \ast x \). Then there exist neighborhoods \(U \) and \(V \) of \(a \) and \(x \), respectively, such that \(U \ast V \subseteq W \) by Lemma 3.3. It follows that \(f_a(V) = a \ast V \subseteq U \ast V \subseteq W \), which means that \(f_a \) is continuous. Now let \(G \) be an open set in \(X \). We claim that \(f_a(G) \) is open. Let \(x \in f_a(G) \). Then \(x = f_a(u) = a \ast u \) for some \(u \in G \), and so \(u = a \ast (a \ast u) = a \ast x \) since \(X \) is \(p \)-semisimple. It follows that \(a \ast x \in G \) so that there exist neighborhoods \(P \) and \(Q \) of \(a \) and \(x \), respectively, such that \(P \ast Q \subseteq G \), which implies \(f_a(Q) = a \ast Q \subseteq P \ast Q \subseteq G \). Thus \(f_a(q) \in G \) for all \(q \in Q \), and so \(q = a \ast (a \ast q) = a \ast f_a(q) \in f_a(G) \), i.e., \(Q \subseteq f_a(G) \). Therefore \(f_a \) is an open map, ending the proof. \(\square \)

Proposition 3.18. Let \(\Delta_0 \) be a collection of closed subsets of a TBCI-algebra \(X \) having the finite intersection property. Then there is a maximal collection \(\Delta' \) of closed subsets of \(X \) having the finite intersection property such that \(\Delta_0 \subseteq \Delta' \).

Proof. Let \(\mathcal{F} = \{\Delta \mid \Delta \text{ is a collection of closed subsets of } X \text{ having the finite intersection property and } \Delta_0 \subseteq \Delta \} \). We shall prove that \(\mathcal{F} \) has a maximal element with respect to the partial order “\(\subseteq \)” on \(\mathcal{F} \). Let \(\Delta_1 \subseteq \Delta_2 \subseteq \cdots \subseteq \Delta_m \subseteq \cdots \) be a chain in \(\mathcal{F} \) and let \(\Delta = \bigcup_{i=1}^{\infty} \Delta_i \). Then \(\Delta_0 \subseteq \Delta \). We also can show that \(\Delta \) has the finite intersection property. In fact, let \(U_1, U_2, \ldots, U_n \in \Delta \), then there is an integer \(m \) such that \(U_1, U_2, \ldots, U_n \in \Delta_m \) and so \(\cap_{i=1}^{n} U_i \neq \emptyset \) since \(\Delta_m \in \mathcal{F} \). It follows that \(\Delta \in \mathcal{F} \) and hence it is an upper bound of the chain \(\{\Delta_i : i = 1, 2, \ldots, n, \ldots\} \). By Zorn’s Lemma, \(\mathcal{F} \) has a maximal element \(\Delta' \), it is the desired one.
Theorem 3.19. Let X be a transfinite open TBCI-algebra and I a compact topological ideal of X. Let $\beta := \{ I_x \mid x \in X \}$ be a base for topology T, where I_x is compact for each $x \in X$. Then

(i) If $Q \subseteq X/I$ is compact, then so is $P = \Phi^{-1}_T(Q)$.

(ii) If X/I is compact (resp. locally compact), then X is compact (resp. locally compact).

Proof. (i) By Proposition 3.18, we only need to prove the theorem for a maximal collection Δ of the closed subsets in the subspace P having the finite intersection property. We shall show that it also has non-empty intersection.

In the space Q, consider the collection Δ^* of all sets of the form $\Phi_I(F)$ such that $F \in \Delta$. Since Δ has the finite intersection property, so is the system Δ^*. Let Δ^* denote the collection $\{ \Phi_I(F) \cap Q \mid F \in \Delta \}$. Then Δ^* is a collection of closed subsets in the space Q having the finite intersection property. By hypothesis, Q is compact, and so there exist a common point $A \in \Phi_I(F)$ for each $F \in \Delta$. Now let U be an arbitrary neighborhood of zero in X and U^* a set of all equivalence classes contained in $A * U$, i.e., $U^* = \{ I_x \in X/I \mid I_x \subseteq A * U \}$. By Lemma 3.16, $A * U$ is open in X and hence $\Phi_I(A * U)$ is open in X/I since Φ_I is an open mapping. Clearly $U^* \subseteq \Phi_I(A * U)$. On the other hand, by hypothesis, $\{ I_x \mid x \in X \}$ is a base for topology T and so $A * U = \bigcup_{i \in \Lambda} I_{i_0}$, for some index $i_0 \in \Lambda$. Thus for any $I_i = \Phi_I(a) \in \Phi_I(A * U)$, we have $a \in A * U = \bigcup_{i \in \Lambda} I_i$, and hence $a \in I_{i_0}$ for some $i_0 \in \Lambda$.

Therefore $I_{i_0} \subseteq A * U$ and so $I_{i_0} \subseteq U^*$, which shows that $\Phi_I(A * U) = U^*$. Hence U^* is open in X/I. Since $A \subseteq A * U$, we get $A \in U^*$ and consequently U^* meets every set of the system Δ^*. We claim that $A * U$ meets every set of Δ. Let $F \in \Delta$. Then $\Phi_I(F) \in \Delta^*$ and so $U^* \cap \Phi_I(F) \neq \emptyset$. Thus we can find $a \in F$ such that $I_{i_0} \in \Phi_I(F)$ and $I_{i_0} \in U^*$. Note that $I_{i_0} \subseteq U^*$ implies $I_{i_0} \subseteq A * U$ and hence $a \in A * U$. Therefore $(A * U) \cap F \neq \emptyset$. It follows that $A * U$ meets every set of Δ. Put $FU^{-1}_1 := \{ x \in X \mid x * u \in F \text{ for some } u \in \bar{F} \}$. Since $(A * U) \cap F \neq \emptyset$, we have $FU^{-1}_1 \cap A \neq \emptyset$ for each $F \in \Delta$. Indeed let $a \in A * U \cap F$, then there is $x \in A$ and $a = x * u \in A * U$ and $a = x * u \in F$. Hence $x \in FU^{-1}_1 \cap A$. Now let $\Delta' = \{ FU^{-1}_1 \cap A \mid F \in \Delta, U \text{ is neighborhood of the zero in } X \}$. From the above fact we have that the system Δ' also has the finite intersection property. In fact, if $F_1U^{-1}_1 \cap A$ and $F_2U^{-1}_1 \cap A$ are in Δ', then taking $F = F_1 \cap F_2$ and $U = U_1 \cap U_2$ we have $FU^{-1}_1 \cap A \in \Delta'$ since $F \in \Delta$ by the maximal property of Δ. Note that

$$\emptyset \neq FU^{-1}_1 \cap A \subseteq (F_1U^{-1}_1 \cap A) \cap (F_2U^{-1}_1 \cap A).$$

Therefore Δ' has the finite intersection property. Since I_x is compact for each $x \in X$ by hypothesis, $A \subseteq I_x$ for some $x_0 \in X$ is compact in X and so there exists $a \in \overline{FU^{-1}_1 \cap A}$ for each $FU^{-1}_1 \cap A \in \Delta'$. For any neighborhood V of zero in X, we have that $a * V$ and $(a * V) \cap U$ are open by Lemma 3.16. Hence $FU^{-1}_1 \cap A$ and $a * V$ have nonempty intersection and consequently $FU^{-1}_1 \cap A$ and $a * V$ have nonempty intersection. It follows that F meets the open set $(a * V) \cap U$. By Lemma 3.3, we have that for any neighborhood W_a of a, there exist neighborhoods V_a and U_0 of a and 0, respectively, such that $V_a * U_0 \subseteq W_a$. Put $\overline{V_0} = \{ x \in X \mid a * x \in V_a \}$, then $\overline{V_0}$ is an open set by Lemma 3.16 and thus $\overline{V_0}$ is a neighborhood of zero. Since $a * V_0 \subseteq \overline{V_0}$, we have $\overline{V_0} \subseteq V_a * U_0 \subseteq W_a$. By the above argument we have $((a * V_0) \cap F) \neq \emptyset$, and hence $W_a \cap F \neq \emptyset$. It follows that $a \in \overline{F}$ and so a is common to all the sets of the system Δ, which shows that P is compact.

(ii) It follows from (i) that if X/I is compact, so is X. Now let X/I be locally compact and $a \in X$. Then $I_a \subseteq X/I$ and thus there is a neighborhood U of I_a such that it’s closure \overline{U} is compact. Put $P = \Phi_T^{-1}(U)$. Then P is a neighborhood of x. Noticing that $P \subseteq \Phi_T^{-1}(\overline{U})$,
we have $\mathcal{P} \subseteq \Phi_l^{-1}(\mathcal{U})$ since $\Phi_l^{-1}(\mathcal{U})$ is closed. Since $\Phi_l^{-1}(\mathcal{U})$ is compact by (i) and since \mathcal{P} is a closed subset of $\Phi_l^{-1}(\mathcal{U})$, therefore \mathcal{P} is compact. Hence X is locally compact. \qed

Corollary 3.20. Let X be a p-semisimple TBCI-algebra, I a compact topological c-ideal and the system $\beta := \{ L_x \mid x \in X \}$ a base for the topology \mathcal{T}. If $Q \subseteq X/I$ is compact, then $P = \Phi_l^{-1}(Q)$ is compact in X. In particular, if X/I is compact (locally compact), then X is compact (locally compact).

Proof. By Theorem 3.17, X is transitive open and then for each $a \in X$, f_a is continuous and open. Since X is a p-semisimple, we can see that f_a is bijective. Indeed, if $f_a(x) = f_a(y)$, then $a \ast x = a \ast y$ and so $x = a \ast (a \ast x) = a \ast (a \ast y) = y$, which implies f_a is injective. Moreover for each $x \in X$, $f_a(a \ast x) = a \ast (a \ast x) = x$ and so f_a is surjective. Therefore f_a is a homeomorphism. Now we claim that $I_a = f_a(I)$, for each $a \in X$. Let $x \in f_a(I)$. Then $x = f_a(y)$ for some $y \in I$. Since I is c-ideal, $x \ast a = (a \ast y) \ast a = 0 \ast y \in I$. Note that $a \ast x = a \ast (a \ast y) = y \in I$. Then we have $x \in I_a$. Conversely if $x \in I_a$, then $x \ast a \in I$ and $a \ast x \in I$. Thus there exists $y \in I$ such that $y = a \ast x$. Hence $x = a \ast (a \ast x) = a \ast y = f_a(y) \in f_a(I)$. Therefore $I_a = f_a(I)$ and hence I_a is compact. This shows that X satisfies the hypothesis of Theorem 3.19 and so Corollary 3.20 holds. \qed

4. Topological homomorphisms in topological BCI-algebras

Definition 4.1. Let X and Y be two TBCI-algebras. A mapping $g : X \to Y$ is called a topological homomorphism if

(i) g is a homomorphism from X to Y as BCI-algebras,

(ii) g is a continuous mapping in the topological spaces.

A topological homomorphism g from X to Y is said to be open if g is an open mapping of the topological spaces.

Definition 4.2. Let X and Y be two TBCI-algebras. A mapping $f : X \to Y$ is called a topological isomorphism if

(i) f is an isomorphism of the BCI-algebras,

(ii) f is a homeomorphism of the topological spaces.

If $X = Y$, the topological isomorphism of X into Y is called a topological automorphism. Two TBCI-algebras are said to be topological isomorphic if there exists a topological isomorphism of X into Y.

Proposition 4.3. Let X and Y be transitive open TBCI-algebras and g be a homomorphism of a BCI-algebra X into BCI-algebra Y.

(i) If for each neighborhood U^* of 0^* in Y, there exists a neighborhood U of 0 in X such that $g(U) \subseteq U^*$, then g is continuous.

(ii) If for each neighborhood V of 0 in X, there exists a neighborhood V^* of 0 in Y such that $g(V) \supseteq V^*$, then g is open.

Proof. (i) Let $a \in X$ and $g(a) = a^* \in Y$. Assume that W^* is an arbitrary neighborhood of a^*. Then $U^* = \{ y^* \in Y \mid a^* \ast y^* \in W^* \}$ is an open set by Lemma 3.16 and $0^* \in U^*$, i.e., U^* is a neighborhood of 0^*. Hence by hypothesis, there exists a neighborhood U of 0 in X such that $g(U) \subseteq U^*$. Thus the open set $a \ast U$ contains a and $g(a \ast U) = g(a) \ast g(U) = a^* \ast g(U) \subseteq a^* \ast U^* \subseteq W^*$. Therefore g is continuous.

(ii) Let $a \in X$ and $g(a) = a^*$. Assume that W is an arbitrary neighborhood of a. Then $V = \{ x \in X \mid a \ast x \in W \}$ is an open set containing 0 by Lemma 3.16. By hypothesis there exists a neighborhood V^* of 0 in Y such that $g(V) \supseteq V^*$. Note that $a^* \ast V^*$ is an open set
containing \(a^* \) and \(a^* \circ V^* \subseteq g(a) \circ g(V) = g(a \circ V) \subseteq g(W) \). It follows that \(g(W) \) is open and so \(g \) is an open mapping. \(\square \)

Theorem 4.4. Let \(X \) be a TBCI-algebra and \(I \) a topological \(e \)-ideal of \(X \). Then the natural projection \(\Phi_I \) is an open topological homomorphism of \(X \) onto \(X/I \) and \(\{I_0\} \) is an open set in \(X/I \).

Proof. Obviously \(\Phi_I \) is a homomorphism of BCI-algebras, and it is open and continuous by Proposition 3.12. Hence \(\Phi_I \) is an open topological homomorphism of \(X \) onto \(X/I \). Since \(I \) is a topological \(e \)-ideal, we have \(\Phi_I(I) = \{I_0\} \) and so \(\{I_0\} \) is open in \(X/I \). \(\square \)

The following theorem provides the converse of Theorem 4.4.

Theorem 4.5. Let \(X \) and \(Y \) be two TBCI-algebras. Assume \(g \) is an open topological homomorphism of \(X \) onto \(Y \) having \(\ker g = \{0\} \) and the zero element \(\{0\} \) of \(Y \) is an open set in \(Y \). Then we have

(i) \(I \) is a topological ideal of a TBCI-algebra \(X \).

(ii) if we define \(f : X/I \rightarrow Y \) by \(f(I_x) = g(x) \), then \(f \) is a topological isomorphism, i.e., \(X/I \) is topologically isomorphic to \(Y \).

Proof. (i) It is easy to see that \(I \) is a BCI-ideal of \(X \). Moreover since \(g \) is continuous and \(\{0\} \) is open in \(Y \), we have that \(I = \ker g = g^{-1}(\{0\}) \) is open in \(X \). Therefore \(I \) is a topological ideal of \(X \).

(ii) Note that \(f(I_x \circ I_y) = f(I_{x+y}) = g(x \circ y) = g(x) \circ g(y) = f(I_x) \circ f(I_y) \) for all \(I_x, I_y \in X/I \). Thus \(f \) is a homomorphism of the BCI-algebra \(X/I \) onto \(Y \). Next for each \(y \in Y \), since \(g \) is onto, there is \(x \in X \) such that \(g(x) = y \). Hence \(f(I_x) = g(x) = y \), which implies that \(f \) is onto. Finally if \(f(I_x) = f(I_y) \), then \(g(x) = g(y) \). It follows that \(g(x \circ y) = g(x) \circ g(y) = 0' \) and \(g(y \circ x) = g(y) \circ g(x) = 0' \) and hence \(x \circ y \in \ker g = I \) and \(y \circ x \in \ker g = I \). Hence \(I_x = I_y \). This shows that \(f \) is injective. Combining the above arguments we have that \(f \) is an isomorphism of the BCI-algebra \(X/I \) onto the BCI-algebra \(Y \). Finally we show that \(f \) is a homeomorphism of the topological space \(X/I \) into the topological space \(Y \). We shall verify that both \(f \) and \(f^{-1} \) are continuous. Let \(A = I_x \in X/I \) and \(f(A) = a' \). Assume that \(U^* \) is an arbitrary neighborhood of \(a' \). Then \(g(a) = f(I_o) = f(A) = a' \). Since \(g \) is continuous, there exists a neighborhood \(V \) of \(a \) such that \(g(V) \subseteq U^* \). Denote by \(V^* \) the neighborhood of \(A \) in \(X/I \) consisting of all \(I_x \) with \(x \in V \). Then \(f(V^*) = \{f(I_x) \mid I_x \in V^*\} = \{g(x) \mid x \in V\} = g(V) \subseteq U^* \), and hence \(f \) is continuous. Next let \(a' \in Y \) and \(f^{-1}(a') = A \). Denote by \(U^* \) an arbitrary neighborhood of \(A \) in the space \(X/I \). Then \(U := \Phi_I^{-1}(U^*) \) is an open set in \(X \). Let \(a \) be an element in \(U \) such that \(A = I_x \). Then \(g(a) = f(I_o) = f(A) = a' \). Since \(g \) is open, there exists a neighborhood \(V^* \) of \(a' \) such that \(V^* \subseteq g(U) \). Now we claim that \(f^{-1}(V^*) \subseteq U^* \). Indeed, for each \(f^{-1}(x) \in f^{-1}(V^*) \), we have \(x \in V^* \) and so \(x = g(u) \) for some \(u \in U \). Thus \(f^{-1}(x) = f^{-1}(g(u)) = f^{-1}(f(I_o)) = I_o \in U^* \) which shows that \(f^{-1}(V^*) \subseteq U^* \). Therefore \(f^{-1} \) is continuous, ending the proof. \(\square \)

From Theorem 4.5 we have the following corollary.

Corollary 4.6. Let \(X \) and \(Y \) be two TBCI-algebras with \(\{0\} \) being open set in \(Y \). If \(g \) is an open topological homomorphism of \(X \) onto \(Y \) having \(\ker g = \{0\} \), then \(g \) is a topological isomorphism and thus \(X \) and \(Y \) are topological isomorphic.

Theorem 4.7. Let \(X \) and \(Y \) be two TBCI-algebras and \(f \) an open topological homomorphism of \(X \) onto \(Y \). Denote by \(N^f \) the kernel of \(f \). Then \(f \) gives rise to a one-to-one correspondence between the closed \(e \)-ideals of \(Y \) and the closed \(e \)-ideals of \(X \) which contain \(N^f \) as follows:
(i) If N^* is a closed c-ideal of Y, then the closed c-ideal N of X corresponding to it is just the inverse image $N = f^{-1}(N^*)$;
(ii) If N is a closed c-ideal of X containing N', then the closed c-ideal N^* of Y corresponding to it is just the image $N^* = f(N)$.
(iii) The two correspondences thus defined are mutually inverse to one another. Moreover topological ideals correspond to one another. Finally if N and N^* are two topological ideals corresponding to one another in this fashion, then the quotient TBCI-algebras X/N and Y/N^* are topological isomorphic.

Proof. We consider first the correspondence of N to N^*. Let N^* be a closed c-ideal of Y. Then $N = f^{-1}(N^*)$ is also closed and contains N' since f is continuous. Moreover for each $y, x \in Y$, we have $f(y) = f(x) \cdot f(y) \in N^*$. Since N^* is an ideal of Y, it follows that $f(x) \in N^*$ and hence $x \in f^{-1}(N^*) = N$. This shows that N is an ideal of BCI-algebra X. Finally let $x \in N$, then $f(x) \in N^*$ and thus $f(0 \cdot x) = f(0) \cdot f(x) = 0'$ since N^* is a c-ideal, where $0'$ is the zero element in Y. Therefore $0 \cdot x \in f^{-1}(N^*) = N$ and N is a closed c-ideal of X. Now we show that the topological ideals correspond to one another and the quotient TBCI-algebras are topological isomorphic. If N^* is a topological ideal of Y and if Φ_{N^*} denotes the natural projection of Y onto Y/N^*, then $h := \Phi_{N^*} \circ f$ is an open topological homomorphism of X onto Y/N^*, with kernel N, and $\{N^*\} = \Phi_{N^*}(N)$ is an open set in Y/N^*. By Theorem 4.5, $N = \ker h$ is a topological ideal of X and X/N is topological isomorphic to Y/N^*.

Conversely let N be a closed c-ideal of X containing N' and consider the correspondence of N^* to N where $N^* = f(N)$ and $N' \subseteq N$. We first show that the inverse image of N^* under the mapping f coincides with N. Indeed if $f(a) \in N^*$, then there exists $b \in N$ such that $f(a) = f(b)$. Thus $f(a \bullet b) = f(a) \bullet f(b) = 0'$, i.e., $a \bullet b \in N'$ so that $a \in N$ since N is a BCI-ideal and $b \in N$. Hence $f^{-1}(N^*) \subseteq N$ and so $f^{-1}(N^*) = N$. This from fact it follows that $f(X \setminus N) = Y \setminus N^*$. Since f is open and $X \setminus N$ is an open set, $Y \setminus N^*$ is also open and hence the set N^* is closed in Y. Finally we show that N^* is a c-ideal of Y. Let $y', x' \in N^*$, then there exist $x, y \in X$ such that $f(x) = x'$ and $f(y) = y'$. It follows that $f(0 \cdot x) = 0 \cdot f(x) = 0 \cdot x' = x'$ and hence $0 \cdot x = f(0) \cdot f(x) = f(0 \cdot x) \in f(N) = N^*$. It follows that N^* is a c-ideal of BCI-algebra Y. Moreover for each $x' \in N^*$, there exists $x \in N$ such that $f(x) = x'$ and hence $0 \cdot x' = f(0) \cdot f(x) = f(0 \cdot x) \in f(N) = N^*$. Therefore N^* is a closed c-ideal of Y, ending the proof. □

References

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea
E-mail: ybjun@nongae.gsmu.ac.kr
Department of Mathematics, Northwest University, Xian 710069, P. R. China