CALDERÓN–ZYGMUND OPERATORS ON $H^p(\mathbb{R}^n)$

YASUO KOMORI

Received November 20, 1999; revised February 9, 2000

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

ABSTRACT. We consider $H^p \to H^p$ and $H^p \to h^p$ (local Hardy space) boundedness of Calderón-Zygmund operators and give a counter example at critical index. We show $H^p \to h^p$ boundedness of Calderón's commutator.

1. INTRODUCTION

Consider the operator defined by

$$Tf(x) = p.v. \int_{\mathbb{R}^n} K(x, y) f(y) dy,$$

where K is a Calderón–Zygmund kernel (see Sect.2).

Alvarez and Milman [1],[2] proved that if kernel K(x, y) has some regularity then T is a bounded operator from H^p to L^p , and if $T^*1 = 0$ then T is a bounded operator from H^p to H^p .

In this paper we show that if T^*1 belongs to Lipschitz class then T is bounded operator from H^p to h^p (local Hardy space defined by Goldberg [4]).

2. Definitions and Notations

The following notation is used: For a set $E \subset \mathbb{R}^n$ we denote the Lebesgue measure of E by |E| and χ_E is a characteristic function of E.

We denote a ball of radius r centered at x_0 by $B(x_0, r) = \{x; |x - x_0| < r\}$. We define two maximal functions.

Let $\varphi \in \mathcal{S}$ be a fixed function such that $\int \varphi(x) dx \neq 0$, then we define

 $\begin{aligned} f^{++}(x) &= \sup_{t>0} |\int f(y)\varphi_t(x-y)dy|, \quad f^+(x) = \sup_{1>t>0} |\int f(y)\varphi_t(x-y)dy|, \\ \text{where } \varphi_t(x) &= t^{-n}\varphi(x/t). \end{aligned}$

Definition 2.1. (Fefferman–Stein's Hardy space [3])

$$H^{p}(\mathbb{R}^{n}) = \{ f \in \mathcal{S}'; \|f\|_{H^{p}} = \|f^{++}\|_{L^{p}} < \infty \}$$

Definition 2.2. (local Hardy space [4])

$$h^p(R^n) = \{ f \in \mathcal{S}'; \|f\|_{h^p} = \|f^+\|_{L^p} < \infty \}.$$

Remark . $||f||_{h^p} \le ||f||_{H^p}$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B20.

Key words and phrases. Calderón-Zygmund operator, Hardy space, local Hardy space.

Definition 2.3. (Lipschitz space)

$$\operatorname{Lip}_{\epsilon}(R^{n}) = \{f; \|f\|_{\operatorname{Lip}_{\epsilon}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\epsilon}} < \infty\} \quad \text{for} \quad 0 < \epsilon < 1$$

 $Remark \ . \ (H^p)^* = \operatorname{Lip}_{n(1/p-1)} \text{ where } n/(n+1)$

Definition 2.4. Let T be a bounded linear operator from S to S'. T is called a standard operator if T satisfies the following conditions.

- (i) T extends to a continuous operator on L^2 .
- (ii) There exists a function K(x, y) defined on $\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n; x \neq y\}$ which satisfies $|K(x, y)| \leq \frac{C}{|x y|^n}$.

(iii)
$$(Tf,g) = \int \int K(x,y)f(y)g(x)dydx$$
 for $f,g \in S$ with disjoint supports.

Definition 2.5. A standard operator T is called a δ -Calderón–Zygmund operator if K(x, y) satisfies

$$|K(x,y) - K(x,z)| + |K(y,x) - K(z,x)| \le C \frac{|y-z|^{\delta}}{|x-z|^{n+\delta}}$$

if 2|y-z| < |x-z|, for some $0 < \delta \le 1$.

Examples. Let T be a classical singular integral operator defined by

$$Tf(x) = p.v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy,$$

where Ω satisfies the following conditions.

- (iv) $\Omega(rx) = \Omega(x)$ for $r > 0, x \neq 0$.
- (v) $\int_{S^{n-1}} \Omega(x) d\sigma = 0$ where $d\sigma$ is the induced Euclidean measure on S^{n-1} .
- (vi) $\Omega \in \operatorname{Lip}_{\delta}$.

Then T is a δ -Calderón–Zygmund operator.

The Hilbert transform and the Riesz transforms are 1-Calderón–Zygmund operators ($\delta = 1$).

Definition 2.6. A standard operator T is called a weak- δ -Calderón–Zygmund operator if K(x, y) satisfies

$$\sup_{r>0} \sup_{|y-z| < r} \int_{2^{j} r \le |x-z| < 2^{j+1}r} \left(|K(x,y) - K(x,z)| + |K(y,x) - K(z,x)| \right) dx \le C 2^{-j\delta}$$

for some $0 < \delta \le 1, j = 1, 2, 3, \dots$

Remark . If a standard operator T is $\delta\mbox{-Calderón-Zygmund}$ operator then it is weak- $\delta\mbox{-Calderón-Zygmund}$ operator.

Examples. Let $I_j = (2^j, 2^{j+1}]$ where $j \in \mathbb{Z}$. For x > 0, we define $K(x) = 2^{-j}$ if $x \in I_j$. And for x < 0, let K(x) = -K(-x).

We define $Tf(x) = p.v. \int_{R^1} K(x-y)f(y)dy$. Then T is a weak-1-Calderón–Zygmund operator ($\delta = 1$).

The truncated Riesz transforms $(R_j)_a^b f(x) = \int_{a < |y| < b} y_j / |y|^n \cdot f(x-y) dy \ (0 < a < b)$ are weak-1-Calderón–Zygmund operators.

3. Theorems

Alvarez and Milman [1], [2] obtained next results.

Theorem A. If T is a weak- δ -Calderón-Zygmund operator then T is a bounded operator from H^p to L^p where $\frac{n}{n+\delta} .$

Theorem B. If T is a δ -Calderón-Zygmund operator such that $T^*1 = 0$ then T is a bounded operator from H^p to H^p where $\frac{n}{n+\delta} .$

Remark. T^* is an adjoint operator of T. T and T^* are simultaneously δ - or weak- δ -Calderón-Zygmund operators. For the definition of T^*1 , see [6], p.412.

We have the following:

Theorem 1. If T is a weak- δ -Calderón-Zygmund operator such that $T^*1 = 0$ then T is a bounded operator from H^p to H^p where $\frac{n}{n+\delta} .$

Theorem 2. If T is a weak- δ -Calderón-Zygmund operator such that $T^*1 \in Lip_{\epsilon}$ then T is a bounded operator from H^p to h^p where $\frac{n}{n+\delta} and <math>\frac{n}{n+\epsilon} \leq p$.

Remark . The conditions $\frac{n}{n+\delta} < p$ and $\frac{n}{n+\epsilon} \leq p$ are the best possible (see Sect.6).

4. Lemmas

We shall show some properties about Hardy space. Let $\frac{n}{n+1} .$

Definition 4.1. A function a(x) is a (H^p, ∞) -atom centered at x_0 if there exists a ball $B(x_0, r)$ such that the following conditions are satisfied

- (1) supp $a \subset B(x_0, r)$,
- (2) $||a||_{L^{\infty}} \leq r^{-n/p}$,
- (3) $\int a(x)dx = 0$.

Definition 4.2. A function a(x) is a $(H^p, 1)$ -atom centered at x_0 if there exists a ball $B(x_0, r)$ such that the following conditions are satisfied (1), (3) and

(2') $||a||_{L^1} \leq r^{n(1-1/p)}$

Lemma 1 ([5], p.34). If a function a(x) is a (H^p, ∞) -atom or $(H^p, 1)$ -atom then we have $||a||_{H^p} \leq C_{p,n}$ where $C_{p,n}$ is a constant depending only p and n.

Remark . Note that p < 1.

Definition 4.3. A function a(x) is a $(h^p, 1)$ -atom centered at x_0 if there exists a ball $B(x_0, r)$ of radius $r \ge 1$ such that the following conditions are satisfied (1) and (2').

Lemma 2 ([4]). If a function a(x) is a $(h^p, 1)$ -atom then we have $||a||_{h^p} \leq C_{p,n}$.

Lemma 3. We assume a function a(x) satisfies next conditions. There exists 0 < r < 1and $x_0 \in \mathbb{R}^n$ such that (1), (2) and

(3') $|\int a(x)dx| \le 1$.

Then we have $||a||_{h^p} \leq C_{p,n}$.

Proof. We write

$$a(x) = (a(x) - a_B)\chi_B(x) + a_B\chi_B(x) = a_1(x) + a_2(x),$$

where $B = B(x_0, r)$ and $a_B = \frac{1}{|B|} \int_B a(y) dy$.

 $a_1(x)/2$ is a (H^p, ∞) -atom, so by Lemma 1 we have $||a_1||_{H^p} \leq C_{p,n}$.

supp $a_2 \subset B(x_0, 1)$ and $\int |a_2(x)| dx \leq |a_B| |B| = |\int_B a(y) dy| \leq 1$. So $a_2(x)$ is a $(h^p, 1)$ -atom. By Lemma 2 we have $||a_2||_{h^p} \leq C_{p,n}$.

Definition 4.4. Suppose $\alpha > n(1/p-1)$. A function M(x) is a $(h^p, 1, \alpha)$ -molecule centered at x_0 if there exists r > 0 such that the following conditions are satisfied

$$\begin{aligned} &(\mathbf{M}_{1}) \quad \int_{|x-x_{0}|<2r} |M(x)| dx \leq r^{n(1-1/p)}, \\ &(\mathbf{M}_{2}) \quad \int_{|x-x_{0}|\geq 2r} |M(x)| |x-x_{0}|^{\alpha} dx \leq r^{\alpha+n(1-1/p)}, \\ &(\mathbf{M}_{3}) \quad \left| \int M(x) dx \right| \leq 1. \end{aligned}$$

Remark. For the definition of H^p -molecule, see [2] and [5].

Lemma 4. If a function M(x) is a $(h^p, 1, \alpha)$ -molecule then we have $||M||_{h^p} \leq C_{p,\alpha,n}$.

Proof. Let $E_0 = \{x; |x - x_0| < 2r\}$ and $E_i = \{x; 2^i r \le |x - x_0| < 2^{i+1}r\}, i = 1, 2, 3, ...,$ and let $\chi_i(x) = \chi_{E_i}(x), \ \tilde{\chi}_i(x) = \frac{1}{|E_i|}\chi_{E_i}(x), \ m_i = \frac{1}{|E_i|}\int_{E_i} M(y)dy, \ \tilde{m}_i = \int_{E_i} M(y)dy$ and $M_i(x) = (M(x) - m_i)\chi_i(x).$

We write

$$M(x) = \sum_{i=0}^{\infty} M_i(x) + \sum_{i=0}^{\infty} m_i \chi_i(x) = \sum_{i=0}^{\infty} M_i(x) + \sum_{i=0}^{\infty} \tilde{m}_i \tilde{\chi}_i(x).$$

Let $N_j = \sum_{k=j}^{\infty} \tilde{m}_k$ and we write

$$M(x) = \sum_{i=0}^{\infty} M_i(x) + \sum_{i=1}^{\infty} N_i(\tilde{\chi}_i(x) - \tilde{\chi}_{i-1}(x)) + N_0 \tilde{\chi}_0(x)$$

= I + II + III.

We shall show $||I||_{H^p} \leq C_{p,\alpha,n}, ||II||_{H^p} \leq C_{p,\alpha,n}$ and $||III||_{h^p} \leq C_{p,n}$. First we estimate I.

It is clear that supp $M_i \subset B(x_0, 2^{i+1}r), \int M_i(x) dx = 0.$

Furthermore $\int |M_0(x)| dx \leq 2r^{n(1-1/p)}$ by the condition (M₁). So by Lemma 1 we have $||M_0||_{H^p} \leq C_{p,n}$.

Using the condition (M_2) , we have

$$\int |M_i(x)| dx \le 2(2^i r)^{-\alpha} \int_{E_i} |M(x)| |x - x_0|^{\alpha} dx$$
$$\le 2(2^i r)^{-\alpha} r^{\alpha + n(1-1/p)} \le 2 \cdot 2^{-\alpha i} r^{n(1-1/p)}$$

By Lemma 1 we have

$$\|M\|_{H^p} \le C_{p,n} 2^{-\alpha i} r^{n(1-1/p)} (2^{i+1}r)^{n(1/p-1)} = C_{p,n} 2^{(-\alpha+n(1/p-1))i}.$$

Since $\alpha > n(1/p-1)$, we obtain $\sum_{i=1}^{\infty} \|M_i\|_{H^p}^p \leq C_{p,\alpha,n}$ and $\|I\|_{H^p} \leq C_{p,\alpha,n}$. Next we estimate II. Let $A_i(x) = N_i(\tilde{\chi}_i(x) - \tilde{\chi}_{i-1}(x))$.

It is clear that supp $A_i \subset B(x_0, 2^{i+1}r), \int A_i(x)dx = 0$. Using the condition (M₂), we have

$$||A_i||_{L^{\infty}} \leq C_n (2^i r)^{-n} \int_{|x-x_0| \geq 2^i r} |M(x)| dx$$

$$\leq C_n (2^i r)^{-n} (2^i r)^{-\alpha} \int_{|x-x_0| \geq 2^i r} |M(x)| |x-x_0|^{\alpha} dx$$

$$\leq C_n 2^{i(-n-\alpha)} r^{-n-\alpha} r^{\alpha+n(1-1/p)} = C_n 2^{i(-n-\alpha)} r^{-n/p}.$$

By Lemma 1 we have

$$||A_i||_{H^p} \le C_{p,n} 2^{i(-n-\alpha)} r^{-n/p} (2^{i+1}r)^{n/p} \le C_{p,n} 2^{i(-\alpha+n(1/p-1))}$$

Since $\alpha > n(1/p-1)$, we obtain $\sum_{i=1}^{\infty} ||A_i||_{H^p}^p \leq C_{p,\alpha,n}$ and $||II||_{H^p} \leq C_{p,\alpha,n}$. Finally we estimate *III*.

It is clear that supp $N_0 \tilde{\chi}_0 \subset B(x_0, 2r)$. Using the conditions (M_1) and (M_2) , we have

$$\begin{split} \|N_0 \tilde{\chi}_0\|_{L^1} &\leq \int |M(x)| dx \\ &\leq \int_{|x-x_0| < 2r} |M(x)| dx + (2r)^{-\alpha} \int_{|x-x_0| \ge 2r} |M(x)| |x-x_0|^{\alpha} dx \\ &\leq r^{n(1-1/p)} + (2r)^{-\alpha} r^{\alpha+n(1-1/p)} \le 2r^{n(1-1/p)}. \end{split}$$

Similarly we have

$$\|N_0\tilde{\chi}_0\|_{L^{\infty}} \le C_n r^{-n} \int |M(x)| dx \le C_n r^{-n/p}$$

If $r \geq 1$, by Lemma 2 we have $||N_0 \tilde{\chi}_0||_{h^p} \leq C_{p,n}$. If r < 1, using the condition (M₃), we have

$$\left|\int N_0\tilde{\chi}_0(x)dx\right| = \left|\int M(x)dx\right| \le 1.$$

By Lemma 3 we have $||N_0 \tilde{\chi}_0||_{h^p} \leq C_{p,n}$. So we obtain $||III||_{h^p} \leq C_{p,n}$.

5. Proof of Theorems

The proofs of two theorems are similar, so we prove only Theorem 2.

By the atomic decomposition, it suffices to show that there exists $C_{p,\epsilon,\delta,n} > 0$ such that $||Ta||_{h^p} \leq C_{p,\epsilon,\delta,n}$, for every (H^p, ∞) -atom a.

By using the interpolation theorem between L^2 and H^p or h^p , we may assume p < 1.

We have to check that if an atom a(x) is supported in $B(x_0, r)$ then Ta(x) satisfies the conditions of Definition 4.4.

Since T is bounded on L^2 , we have

(4)
$$\int_{|x-x_0| \le 2r} |Ta(x)| dx \le C_n r^{n/2} ||Ta||_{L^2} \le C_n r^{n/2} ||a||_{L^2} \le C_n r^{n/2} ||a||_{L^\infty} r^{n/2} = C_n r^{n(1-1/p)}.$$

By the condition of Definition 2.6 and the cancellation property of atom we have

$$\begin{split} & \int_{|x-x_0| \ge 2r} |Ta(x)| |x-x_0|^{\alpha} dx = \sum_{j=1}^{\infty} \int_{2^j r \le |x-x_0| < 2^{j+1}r} |Ta(x)| |x-x_0|^{\alpha} dx \\ & \le \sum_{j=1}^{\infty} (2^{j+1}r)^{\alpha} \int_{2^j r \le |x-x_0| < 2^{j+1}r} \left| \int_{|y-x_0| < r} [K(x,y) - K(x,x_0)] a(y) dy \right| dx \\ & \le \sum_{j=1}^{\infty} (2^{j+1}r)^{\alpha} r^{-n/p} \int_{|y-x_0| < r} \int_{2^j r \le |x-x_0| < 2^{j+1}r} |K(x,y) - K(x,x_0)| dx dy \\ & \le \sum_{j=1}^{\infty} C_n 2^{\alpha} (2^j r)^{\alpha} r^{-n/p} r^n 2^{-j\delta} = \sum_{j=1}^{\infty} C_n 2^{\alpha} 2^{j(\alpha-\delta)} r^{\alpha+n(1-1/p)}. \end{split}$$

Since $p > \frac{n}{n+\delta}$ we can choose α such that $n(1/p-1) < \alpha < \delta$. So we have

(5)
$$\int_{|x-x_0|\geq 2r} |Ta(x)| |x-x_0|^{\alpha} dx \leq C_{\delta,n} r^{\alpha+n(1-1/p)}.$$

If $r \ge 1$, by (1) and (2), we have

(6)
$$\left|\int Ta(x)dx\right| \le ||Ta||_{L^1} \le C_{\delta,n}r^{n(1-1/p)} \le C_{\delta,n}.$$

If r < 1, by the duality of H^p and $\operatorname{Lip}_{\epsilon}$, we have

$$\left| \int Ta(x)dx \right| = |(Ta,1)| = |(a,T^*1)| \le C_n ||a||_{H^{\frac{n}{n+\epsilon}}} ||T^*1||_{\operatorname{Lip}_{\epsilon}}$$
$$\le C_n ||T^*1||_{\operatorname{Lip}_{\epsilon}} r^{n+\epsilon-n/p}.$$

Since $p \ge \frac{n}{n+\epsilon}$ we have

(7)
$$\left| \int Ta(x)dx \right| \le C_n \|T^*1\|_{\operatorname{Lip}_{\epsilon}}.$$

By (4)-(7) we obtain the desired result.

6. EXAMPLE AND COUNTEREXAMPLES

Definition 6.1. Calderón's commutator is defined as

$$T_b f(x) = p.v. \int_{R^1} \frac{b(x) - b(y)}{(x-y)^2} f(y) dy.$$

Theorem 3. If $b' \in L^{\infty} \cap Lip_{\epsilon}$, then T_b is a bounded operator from H^p to h^p where $\frac{1}{1+\epsilon} \leq p \leq 1$.

Proof. If $b' \in L^{\infty}$ then T_b is bounded on L^2 (see [6], p.408) and a 1-Calderón–Zygmund operator ($\delta = 1$).

We can write $T_b^*1(x) = -H(b')(x)$ where H is the Hilbert transform. Since H is bounded on $\operatorname{Lip}_{\epsilon}$ (see [6], p.214), we have $T_b^*1(x) \in \operatorname{Lip}_{\epsilon}$.

By Theorem 2 we obtain the desired result.

Theorem 4. The conclusion of Theorem A is not true in general for $p \leq \frac{n}{n+\delta}$.

Proof. Let

$$\phi(x) = \begin{cases} x^{\delta}, & 0 \le x \le 1/2\\ (1-x)^{\delta}, & 1/2 < x \le 1\\ 0, & \text{otherwise.} \end{cases}$$

And let $I_j^k = [2^j+2k,2^j+2k+1]$ where $j=1,2,3,\ldots$, and k is an integer such that $0\leq k\leq 2^{j-1}-1.$

For $x \ge 0$, we define K(x) as

$$K(x) = \begin{cases} 2^{-j(1+\delta)}\phi(x-2^j-2k), & \text{if } x \in I_j^k \text{ for some } j, k \\ 0, & \text{otherwise.} \end{cases}$$

And for $x \leq 0$, let K(x) = -K(-x). We define $Tf(x) = \int_{R^1} K(x-y)f(y)dy$.

It is clear that T is a δ -Calderón–Zygmund operator.

We shall show that Ta does not belong to $L^p(\mathbb{R}^1)$ for some $a(x) \in H^p$ where $p \leq \frac{1}{1+\delta}$. Let

$$a(x) = \begin{cases} 1, & 0 \le x < 1/2 \\ -1, & 1/2 \le x < 1 \\ 0, & \text{otherwise.} \end{cases}$$

And let $I_j^{k*} = [2^j + 2k, 2^j + 2k + 1/2].$ For $x \in I_j^{k*}$ we have

$$Ta(x) = 2^{-j(1+\delta)} \int_{2^j+2k}^x (y-2^j-2k)^{\delta} dy$$

= $2^{-j(1+\delta)} (x-2^j-2k)^{\delta+1} / (\delta+1).$

So we have

$$\begin{split} \int_{I_{j}^{k*}} |Ta(x)|^{p} dx &= C_{p,\delta} 2^{-j(1+\delta)p} \int_{I_{j}^{k*}} (x-2^{j}-2k)^{(\delta+1)p} dx \\ &= C_{p,\delta} 2^{-j(1+\delta)p} \int_{0}^{1/2} x^{(\delta+1)p} dx \\ &= C_{p,\delta} 2^{-j(1+\delta)p}, \end{split}$$

and

$$\int_{|x|\geq 2} |Ta(x)|^p dx \ge \sum_{j=1}^{\infty} \sum_k \int_{I_j^{k*}} |Ta(x)|^p dx$$
$$= C_{p,\delta} \sum_{j=1}^{\infty} 2^{-j(1+\delta)p} 2^{j-1}$$
$$= C_{p,\delta} \sum_{j=1}^{\infty} 2^{j(1-(1+\delta)p)}.$$

This series diverges if $p \leq \frac{1}{1+\delta}$.

Remark . Similarly we can give counterexamples for $n \ge 2$.

Theorem 5. The conclusion of Theorem 2 is not true in general for $p < \frac{1}{1+\epsilon}$.

YASUO KOMORI

Proof. We consider Calderón's commutator $T_b f(x) = p.v. \int_{R^1} \frac{b(x) - b(y)}{(x-y)^2} f(y) dy$, where

$$b(x) = \begin{cases} \frac{1}{1+\epsilon} x^{1+\epsilon}, & 0 \le x < 1\\ x - \frac{\epsilon}{1+\epsilon}, & 1 \le x\\ 0, & \text{otherwise.} \end{cases}$$

Then T_b is a 1-Calderón–Zygmund operator and $T_b^*1 \in \operatorname{Lip}_{\epsilon}$, but we shall show $\lim_{r \to 0} ||T_b(a_r)||_{h^p} = \infty$ for some (H^p, ∞) –atoms $\{a_r(x)\}$.

Let

$$a_r(x) = \begin{cases} -r^{-1/p}, & -r \le x < -r/2 \\ r^{-1/p}, & -r/2 \le x < 0 \\ 0, & \text{otherwise}, \end{cases}$$

where r > 0.

By the same argument used in the proof of Lemma 4 (see the estimate of III), it suffices to show

$$\lim_{r \to 0} \left| \int_{R^1} T_b(a_r)(x) dx \right| = \infty$$

By calculations we have

$$T_b(a_r)(x) = r^{-1/p} b(x) \left\{ -\int_{-r}^{-r/2} \frac{1}{(x-y)^2} dy + \int_{-r/2}^0 \frac{1}{(x-y)^2} dy \right\}$$
$$= \frac{r^{2-1/p}}{2(1+\epsilon)} \cdot \frac{x^{\epsilon}}{(x+r)(x+r/2)}$$

for 0 < x < 1. Since $T_b(a_r)(x) \ge 0$, we have

$$\begin{split} \int_{R^1} T_b(a_r)(x) dx &\geq \frac{r^{2-1/p}}{2(1+\epsilon)} \int_0^r \frac{x^{\epsilon}}{(x+r)(x+r/2)} \, dx \\ &\geq \frac{r^{2-1/p}}{2(1+\epsilon)} \frac{1}{3r^2} \int_0^r x^{\epsilon} \, dx \\ &= \frac{r^{-1/p+1+\epsilon}}{6(1+\epsilon)^2}. \end{split}$$

If $p < \frac{1}{1+\epsilon}$, we have

$$\lim_{r \to 0} \int_{R^1} T_b(a_r)(x) dx = \infty.$$

Acknowledgement The author would like to thank the referee for his most helpful suggestions.

42

References

- [1] J. Alvarez, H^p and Weak H^p Continuity of Calderón-Zygmund Type Operators, Lecture Notes in Pure and Applied Mathematics 157 (1994), 17-34, Marcel Dekker, Inc.
- [2] J. Alvarez and M. Milman, H^p Continuity Properties of Calderón-Zygmund-Type Operators, J. of Math. Anal. and Appl. 118 (1986), 63-79.
- [3] C. Fefferman and E. Stein, Hardy Spaces of Several Variables, Acta Math. 129 (1972), 137-193.
- [4] D. Goldberg, A Local Version of Real Hardy Spaces, Duke Math. J. 46 (1979), 27-42.
- [5] S.Z. Lu, Four Lectures on Real H^p Spaces, World Scientific (1995).
- [6] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press (1986). School of High Technology and Human Welfare, Tokai University, 317 Nishino Numazu-shi, Shizuoka 410-0395, Japan

E-mail address : komori@wing.ncc.u-tokai.ac.jp