CALDERÓN-ZYGMUND OPERATORS ON $H^{p}\left(R^{n}\right)$

YASUO KOMORI

Received November 20, 1999; revised February 9, 2000

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

Abstract

We consider $H^{p} \rightarrow H^{p}$ and $H^{p} \rightarrow h^{p}$ (local Hardy space) boundedness of Calderón-Zygmund operators and give a counter example at critical index. We show $H^{p} \rightarrow h^{p}$ boundedness of Calderón's commutator.

1. Introduction

Consider the operator defined by

$$
T f(x)=p \cdot v \cdot \int_{R^{n}} K(x, y) f(y) d y
$$

where K is a Calderón-Zygmund kernel (see Sect.2).
Alvarez and Milman [1],[2] proved that if kernel $K(x, y)$ has some regularity then T is a bounded operator from H^{p} to L^{p}, and if $T^{*} 1=0$ then T is a bounded operator from H^{p} to H^{p}.

In this paper we show that if $T^{*} 1$ belongs to Lipschitz class then T is bounded operator from H^{p} to h^{p} (local Hardy space defined by Goldberg [4]).

2. Definitions and Notations

The following notation is used: For a set $E \subset R^{n}$ we denote the Lebesgue measure of E by $|E|$ and χ_{E} is a characteristic function of E.

We denote a ball of radius r centered at x_{0} by $B\left(x_{0}, r\right)=\left\{x ;\left|x-x_{0}\right|<r\right\}$.
We define two maximal functions.
Let $\varphi \in \mathcal{S}$ be a fixed function such that $\int \varphi(x) d x \neq 0$, then we define
$f^{++}(x)=\sup _{t>0}\left|\int f(y) \varphi_{t}(x-y) d y\right|, \quad f^{+}(x)=\sup _{1>t>0}\left|\int f(y) \varphi_{t}(x-y) d y\right|$, where $\varphi_{t}(x)=t^{-n} \varphi(x / t)$.

Definition 2.1. (Fefferman-Stein's Hardy space [3])

$$
H^{p}\left(R^{n}\right)=\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{H^{p}}=\left\|f^{++}\right\|_{L^{p}}<\infty\right\}
$$

Definition 2.2. (local Hardy space [4])

$$
h^{p}\left(R^{n}\right)=\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{h^{p}}=\left\|f^{+}\right\|_{L^{p}}<\infty\right\}
$$

Remark. $\|f\|_{h^{p}} \leq\|f\|_{H^{p}}$.

[^0]Definition 2.3. (Lipschitz space)

$$
\operatorname{Lip}_{\epsilon}\left(R^{n}\right)=\left\{f ;\|f\|_{\operatorname{Lip}_{\epsilon}}=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\epsilon}}<\infty\right\} \quad \text { for } \quad 0<\epsilon<1
$$

Remark. $\left(H^{p}\right)^{*}=\operatorname{Lip}_{n(1 / p-1)}$ where $n /(n+1)<p<1 \quad$ (duality, see [3]).
Definition 2.4. Let T be a bounded linear operator from \mathcal{S} to \mathcal{S}^{\prime}. T is called a standard operator if T satisfies the following conditions.
(i) $\quad T$ extends to a continuous operator on L^{2}.
(ii) There exists a function $K(x, y)$ defined on $\left\{(x, y) \in R^{n} \times R^{n} ; x \neq y\right\}$ which satisfies $|K(x, y)| \leq \frac{C}{|x-y|^{n}}$.

$$
\begin{equation*}
(T f, g)=\iint K(x, y) f(y) g(x) d y d x \text { for } f, g \in \mathcal{S} \text { with disjoint supports. } \tag{iii}
\end{equation*}
$$

Definition 2.5. A standard operator T is called a δ-Calderón-Zygmund operator if $K(x, y)$ satisfies

$$
|K(x, y)-K(x, z)|+|K(y, x)-K(z, x)| \leq C \frac{|y-z|^{\delta}}{|x-z|^{n+\delta}}
$$

if $2|y-z|<|x-z|$, for some $0<\delta \leq 1$.
Examples . Let T be a classical singular integral operator defined by

$$
T f(x)=p \cdot v \cdot \int_{R^{n}} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

where Ω satisfies the following conditions.
(iv) $\quad \Omega(r x)=\Omega(x)$ for $r>0, x \neq 0$.
(v) $\quad \int_{S^{n-1}} \Omega(x) d \sigma=0$ where $d \sigma$ is the induced Euclidean measure on S^{n-1}.
(vi) $\Omega \in \operatorname{Lip}_{\delta}$.

Then T is a δ-Calderón-Zygmund operator.
The Hilbert transform and the Riesz transforms are 1-Calderón-Zygmund operators ($\delta=$ 1).

Definition 2.6. A standard operator T is called a weak- δ-Calderón-Zygmund operator if $K(x, y)$ satisfies

$$
\begin{array}{ll}
\sup _{r>0} \sup _{|y-z|<r} \int_{2^{j} r \leq|x-z|<2^{j+1} r}(|K(x, y)-K(x, z)|+|K(y, x)-K(z, x)|) d x & \\
\leq C 2^{-j \delta}
\end{array}
$$

for some $0<\delta \leq 1, j=1,2,3, \ldots$.
Remark. If a standard operator T is δ-Calderón-Zygmund operator then it is weak- δ -Calderón-Zygmund operator.
Examples . Let $I_{j}=\left(2^{j}, 2^{j+1}\right]$ where $j \in \mathbb{Z}$. For $x>0$, we define $K(x)=2^{-j}$ if $x \in I_{j}$. And for $x<0$, let $K(x)=-K(-x)$.
We define $T f(x)=p \cdot v \cdot \int_{R^{1}} K(x-y) f(y) d y$. Then T is a weak-1-Calderón-Zygmund operator $(\delta=1)$.

The truncated Riesz transforms $\left(R_{j}\right)_{a}^{b} f(x)=\int_{a<|y|<b} y_{j} /|y|^{n} \cdot f(x-y) d y(0<a<b)$ are weak-1-Calderón-Zygmund operators.

3. Theorems

Alvarez and Milman [1], [2] obtained next results.
Theorem A. If T is a weak- δ-Calderón-Zygmund operator then T is a bounded operator from H^{p} to L^{p} where $\frac{n}{n+\delta}<p \leq 1$.
Theorem B. If T is a δ-Calderón-Zygmund operator such that $T^{*} 1=0$ then T is a bounded operator from H^{p} to H^{p} where $\frac{n}{n+\delta}<p \leq 1$.
Remark.T^{*} is an adjoint operator of $T . T$ and T^{*} are simultaneously δ - or weak- δ -Calderón-Zygmund operators. For the definition of $T^{*} 1$, see [6], p.412.

We have the following:
Theorem 1. If T is a weak- δ-Calderón-Zygmund operator such that $T^{*} 1=0$ then T is a bounded operator from H^{p} to H^{p} where $\frac{n}{n+\delta}<p \leq 1$.
Theorem 2. If T is a weak- δ-Calderón-Zygmund operator such that $T^{*} 1 \in \operatorname{Lip}_{\epsilon}$ then T is a bounded operator from H^{p} to h^{p} where $\frac{n}{n+\delta}<p \leq 1$ and $\frac{n}{n+\epsilon} \leq p$.
Remark. The conditions $\frac{n}{n+\delta}<p$ and $\frac{n}{n+\epsilon} \leq p$ are the best possible (see Sect.6).

4. Lemmas

We shall show some properties about Hardy space. Let $\frac{n}{n+1}<p<1$.
Definition 4.1. A function $a(x)$ is a $\left(H^{p}, \infty\right)$-atom centered at x_{0} if there exists a ball $B\left(x_{0}, r\right)$ such that the following conditions are satisfied
(1) $\operatorname{supp} a \subset B\left(x_{0}, r\right)$,
(2) $\|a\|_{L^{\infty}} \leq r^{-n / p}$,
(3) $\int a(x) d x=0$.

Definition 4.2. A function $a(x)$ is a $\left(H^{p}, 1\right)$-atom centered at x_{0} if there exists a ball $B\left(x_{0}, r\right)$ such that the following conditions are satisfied (1), (3) and
(2') $\|a\|_{L^{1}} \leq r^{n(1-1 / p)}$.
Lemma 1 ([5], p.34). If a function $a(x)$ is a ($\left.H^{p}, \infty\right)$-atom or $\left(H^{p}, 1\right)$-atom then we have $\|a\|_{H^{p}} \leq C_{p, n}$ where $C_{p, n}$ is a constant depending only p and n.
Remark. Note that $p<1$.
Definition 4.3. A function $a(x)$ is a $\left(h^{p}, 1\right)$-atom centered at x_{0} if there exists a ball $B\left(x_{0}, r\right)$ of radius $r \geq 1$ such that the following conditions are satisfied (1) and (2').
Lemma 2 ([4]). If a function $a(x)$ is a $\left(h^{p}, 1\right)$-atom then we have $\|a\|_{h^{p}} \leq C_{p, n}$.
Lemma 3. We assume a function a(x) satisfies next conditions. There exists $0<r<1$ and $x_{0} \in R^{n}$ such that (1), (2) and
(3') $\left|\int a(x) d x\right| \leq 1$.
Then we have $\|a\|_{h^{p}} \leq C_{p, n}$.
Proof. We write

$$
a(x)=\left(a(x)-a_{B}\right) \chi_{B}(x)+a_{B} \chi_{B}(x)=a_{1}(x)+a_{2}(x),
$$

where $B=B\left(x_{0}, r\right)$ and $a_{B}=\frac{1}{|B|} \int_{B} a(y) d y$.
$a_{1}(x) / 2$ is a $\left(H^{p}, \infty\right)$-atom, so by Lemma 1 we have $\left\|a_{1}\right\|_{H^{p}} \leq C_{p, n}$.
$\operatorname{supp} a_{2} \subset B\left(x_{0}, 1\right)$ and $\int\left|a_{2}(x)\right| d x \leq\left|a_{B}\right||B|=\left|\int_{B} a(y) d y\right| \leq 1$. So $a_{2}(x)$ is a $\left(h^{p}, 1\right)$ atom. By Lemma 2 we have $\left\|a_{2}\right\|_{h^{p}} \leq C_{p, n}$.

Definition 4.4. Suppose $\alpha>n(1 / p-1)$. A function $M(x)$ is a ($\left.h^{p}, 1, \alpha\right)$-molecule centered at x_{0} if there exists $r>0$ such that the following conditions are satisfied

$$
\begin{aligned}
& \left(\mathrm{M}_{1}\right) \quad \int_{\left|x-x_{0}\right|<2 r}|M(x)| d x \leq r^{n(1-1 / p)} \\
& \left(\mathrm{M}_{2}\right) \quad \int_{\left|x-x_{0}\right| \geq 2 r}|M(x)|\left|x-x_{0}\right|^{\alpha} d x \leq r^{\alpha+n(1-1 / p)} \\
& \left(\mathrm{M}_{3}\right) \quad\left|\int M(x) d x\right| \leq 1
\end{aligned}
$$

Remark. For the definition of H^{p}-molecule, see [2] and [5].
Lemma 4. If a function $M(x)$ is a $\left(h^{p}, 1, \alpha\right)$-molecule then we have $\|M\|_{h^{p}} \leq C_{p, \alpha, n}$.
Proof. Let $E_{0}=\left\{x ;\left|x-x_{0}\right|<2 r\right\}$ and $E_{i}=\left\{x ; 2^{i} r \leq\left|x-x_{0}\right|<2^{i+1} r\right\}, i=1,2,3, \ldots$, and let $\chi_{i}(x)=\chi_{E_{i}}(x), \quad \tilde{\chi}_{i}(x)=\frac{1}{\left|E_{i}\right|} \chi_{E_{i}}(x), m_{i}=\frac{1}{\left|E_{i}\right|} \int_{E_{i}} M(y) d y, \tilde{m}_{i}=\int_{E_{i}} M(y) d y$ and $M_{i}(x)=\left(M(x)-m_{i}\right) \chi_{i}(x)$.

We write

$$
M(x)=\sum_{i=0}^{\infty} M_{i}(x)+\sum_{i=0}^{\infty} m_{i} \chi_{i}(x)=\sum_{i=0}^{\infty} M_{i}(x)+\sum_{i=0}^{\infty} \tilde{m}_{i} \tilde{\chi}_{i}(x)
$$

Let $N_{j}=\sum_{k=j}^{\infty} \tilde{m}_{k}$ and we write

$$
\begin{aligned}
M(x) & =\sum_{i=0}^{\infty} M_{i}(x)+\sum_{i=1}^{\infty} N_{i}\left(\tilde{\chi}_{i}(x)-\tilde{\chi}_{i-1}(x)\right)+N_{0} \tilde{\chi}_{0}(x) \\
& =I+I I+I I I .
\end{aligned}
$$

We shall show $\|I\|_{H^{p}} \leq C_{p, \alpha, n},\|I I\|_{H^{p}} \leq C_{p, \alpha, n}$ and $\|I I I\|_{h^{p}} \leq C_{p, n}$.
First we estimate I.
It is clear that supp $M_{i} \subset B\left(x_{0}, 2^{i+1} r\right), \int M_{i}(x) d x=0$.
Furthermore $\int\left|M_{0}(x)\right| d x \leq 2 r^{n(1-1 / p)}$ by the condition $\left(\mathrm{M}_{1}\right)$. So by Lemma 1 we have $\left\|M_{0}\right\|_{H^{p}} \leq C_{p, n}$.

Using the condition $\left(\mathrm{M}_{2}\right)$, we have

$$
\begin{aligned}
\int\left|M_{i}(x)\right| d x & \leq 2\left(2^{i} r\right)^{-\alpha} \int_{E_{i}}|M(x)|\left|x-x_{0}\right|^{\alpha} d x \\
& \leq 2\left(2^{i} r\right)^{-\alpha} r^{\alpha+n(1-1 / p)} \leq 2 \cdot 2^{-\alpha i} r^{n(1-1 / p)}
\end{aligned}
$$

By Lemma 1 we have

$$
\|M\|_{H^{p}} \leq C_{p, n} 2^{-\alpha i} r^{n(1-1 / p)}\left(2^{i+1} r\right)^{n(1 / p-1)}=C_{p, n} 2^{(-\alpha+n(1 / p-1)) i}
$$

Since $\alpha>n(1 / p-1)$, we obtain $\sum_{i=1}^{\infty}\left\|M_{i}\right\|_{H^{p}}^{p} \leq C_{p, \alpha, n}$ and $\|I\|_{H^{p}} \leq C_{p, \alpha, n}$.
Next we estimate $I I$.
Let $A_{i}(x)=N_{i}\left(\tilde{\chi}_{i}(x)-\tilde{\chi}_{i-1}(x)\right)$.
It is clear that supp $A_{i} \subset B\left(x_{0}, 2^{i+1} r\right), \int A_{i}(x) d x=0$.
Using the condition $\left(\mathrm{M}_{2}\right)$, we have

$$
\begin{aligned}
\left\|A_{i}\right\|_{L^{\infty}} & \leq C_{n}\left(2^{i} r\right)^{-n} \int_{\left|x-x_{0}\right| \geq 2^{i} r}|M(x)| d x \\
& \leq C_{n}\left(2^{i} r\right)^{-n}\left(2^{i} r\right)^{-\alpha} \int_{\left|x-x_{0}\right| \geq 2^{i} r}|M(x)|\left|x-x_{0}\right|^{\alpha} d x \\
& \leq C_{n} 2^{i(-n-\alpha)} r^{-n-\alpha} r^{\alpha+n(1-1 / p)}=C_{n} 2^{i(-n-\alpha)} r^{-n / p}
\end{aligned}
$$

By Lemma 1 we have

$$
\left\|A_{i}\right\|_{H^{p}} \leq C_{p, n} 2^{i(-n-\alpha)} r^{-n / p}\left(2^{i+1} r\right)^{n / p} \leq C_{p, n} 2^{i(-\alpha+n(1 / p-1))}
$$

Since $\alpha>n(1 / p-1)$, we obtain $\sum_{i=1}^{\infty}\left\|A_{i}\right\|_{H^{p}}^{p} \leq C_{p, \alpha, n}$ and $\|I I\|_{H^{p}} \leq C_{p, \alpha, n}$.
Finally we estimate $I I I$.
It is clear that supp $N_{0} \tilde{\chi}_{0} \subset B\left(x_{0}, 2 r\right)$.
Using the conditions $\left(\mathrm{M}_{1}\right)$ and $\left(\mathrm{M}_{2}\right)$, we have

$$
\begin{aligned}
& \left\|N_{0} \tilde{\chi}_{0}\right\|_{L^{1}} \leq \int|M(x)| d x \\
& \leq \int_{\left|x-x_{0}\right|<2 r}|M(x)| d x+(2 r)^{-\alpha} \int_{\left|x-x_{0}\right| \geq 2 r}|M(x)|\left|x-x_{0}\right|^{\alpha} d x \\
& \leq r^{n(1-1 / p)}+(2 r)^{-\alpha} r^{\alpha+n(1-1 / p)} \leq 2 r^{n(1-1 / p)}
\end{aligned}
$$

Similarly we have

$$
\left\|N_{0} \tilde{\chi}_{0}\right\|_{L^{\infty}} \leq C_{n} r^{-n} \int|M(x)| d x \leq C_{n} r^{-n / p}
$$

If $r \geq 1$, by Lemma 2 we have $\left\|N_{0} \tilde{\chi}_{0}\right\|_{h^{p}} \leq C_{p, n}$. If $r<1$, using the condition $\left(\mathrm{M}_{3}\right)$, we have

$$
\left|\int N_{0} \tilde{\chi}_{0}(x) d x\right|=\left|\int M(x) d x\right| \leq 1
$$

By Lemma 3 we have $\left\|N_{0} \tilde{\chi}_{0}\right\|_{h^{p}} \leq C_{p, n}$.
So we obtain $\|I I I\|_{h^{p}} \leq C_{p, n}$.

5. Proof of Theorems

The proofs of two theorems are similar, so we prove only Theorem 2.
By the atomic decomposition, it suffices to show that there exists $C_{p, \epsilon, \delta, n}>0$ such that $\|T a\|_{h^{p}} \leq C_{p, \epsilon, \delta, n}$, for every $\left(H^{p}, \infty\right)$-atom a.

By using the interpolation theorem between L^{2} and H^{p} or h^{p}, we may assume $p<1$.
We have to check that if an atom $a(x)$ is supported in $B\left(x_{0}, r\right)$ then $T a(x)$ satisfies the conditions of Definition 4.4.

Since T is bounded on L^{2}, we have
(4) $\int_{\left|x-x_{0}\right| \leq 2 r}|T a(x)| d x \leq C_{n} r^{n / 2}\|T a\|_{L^{2}}$

$$
\leq C_{n} r^{n / 2}\|a\|_{L^{2}} \leq C_{n} r^{n / 2}\|a\|_{L^{\infty}} r^{n / 2}=C_{n} r^{n(1-1 / p)}
$$

By the condition of Definition 2.6 and the cancellation property of atom we have

$$
\begin{aligned}
& \int_{\left|x-x_{0}\right| \geq 2 r}|T a(x)|\left|x-x_{0}\right|^{\alpha} d x=\sum_{j=1}^{\infty} \int_{2^{j} r \leq\left|x-x_{0}\right|<2^{j+1} r}|T a(x)|\left|x-x_{0}\right|^{\alpha} d x \\
& \leq \sum_{j=1}^{\infty}\left(2^{j+1} r\right)^{\alpha} \int_{2^{j} r \leq\left|x-x_{0}\right|<2^{j+1} r}\left|\int_{\left|y-x_{0}\right|<r}\left[K(x, y)-K\left(x, x_{0}\right)\right] a(y) d y\right| d x \\
& \leq \sum_{j=1}^{\infty}\left(2^{j+1} r\right)^{\alpha} r^{-n / p} \int_{\left|y-x_{0}\right|<r} \int_{2^{j} r \leq\left|x-x_{0}\right|<2^{j+1} r}\left|K(x, y)-K\left(x, x_{0}\right)\right| d x d y \\
& \leq \sum_{j=1}^{\infty} C_{n} 2^{\alpha}\left(2^{j} r\right)^{\alpha} r^{-n / p} r^{n} 2^{-j \delta}=\sum_{j=1}^{\infty} C_{n} 2^{\alpha} 2^{j(\alpha-\delta)} r^{\alpha+n(1-1 / p)} .
\end{aligned}
$$

Since $p>\frac{n}{n+\delta}$ we can choose α such that $n(1 / p-1)<\alpha<\delta$.
So we have

$$
\begin{equation*}
\int_{\left|x-x_{0}\right| \geq 2 r}|T a(x)|\left|x-x_{0}\right|^{\alpha} d x \leq C_{\delta, n} r^{\alpha+n(1-1 / p)} \tag{5}
\end{equation*}
$$

If $r \geq 1$, by (1) and (2), we have

$$
\begin{equation*}
\left|\int T a(x) d x\right| \leq\|T a\|_{L^{1}} \leq C_{\delta, n} r^{n(1-1 / p)} \leq C_{\delta, n} \tag{6}
\end{equation*}
$$

If $r<1$, by the duality of H^{p} and $\operatorname{Lip}_{\epsilon}$, we have

$$
\begin{aligned}
\left|\int T a(x) d x\right| & =|(T a, 1)|=\left|\left(a, T^{*} 1\right)\right| \leq C_{n}\|a\|_{H^{\frac{n}{n+\epsilon}}}\left\|T^{*} 1\right\|_{\operatorname{Lip}_{\epsilon}} \\
& \leq C_{n}\left\|T^{*} 1\right\|_{\operatorname{Lip}_{\epsilon}} r^{n+\epsilon-n / p}
\end{aligned}
$$

Since $p \geq \frac{n}{n+\epsilon}$ we have

$$
\begin{equation*}
\left|\int T a(x) d x\right| \leq C_{n}\left\|T^{*} 1\right\|_{\operatorname{Lip}_{\epsilon}} \tag{7}
\end{equation*}
$$

By (4)-(7) we obtain the desired result.

6. Example and Counterexamples

Definition 6.1. Calderón's commutator is defined as

$$
T_{b} f(x)=p \cdot v \cdot \int_{R^{1}} \frac{b(x)-b(y)}{(x-y)^{2}} f(y) d y
$$

Theorem 3. If $b^{\prime} \in L^{\infty} \cap \operatorname{Lip} p_{\epsilon}$, then T_{b} is a bounded operator from H^{p} to h^{p} where $\frac{1}{1+\epsilon} \leq p \leq 1$.

Proof. If $b^{\prime} \in L^{\infty}$ then T_{b} is bounded on L^{2} (see [6], p.408) and a 1-Calderón-Zygmund operator $(\delta=1)$.

We can write $T_{b}^{*} 1(x)=-H\left(b^{\prime}\right)(x)$ where H is the Hilbert transform. Since H is bounded on $\operatorname{Lip}_{\epsilon}$ (see [6], p.214), we have $T_{b}^{*} 1(x) \in \operatorname{Lip}_{\epsilon}$.

By Theorem 2 we obtain the desired result.
Theorem 4. The conclusion of Theorem A is not true in general for $p \leq \frac{n}{n+\delta}$.

Proof. Let

$$
\phi(x)= \begin{cases}x^{\delta}, & 0 \leq x \leq 1 / 2 \\ (1-x)^{\delta}, & 1 / 2<x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

And let $I_{j}^{k}=\left[2^{j}+2 k, 2^{j}+2 k+1\right]$ where $j=1,2,3, \ldots$, and k is an integer such that $0 \leq k \leq 2^{j-1}-1$.

For $x \geq 0$, we define $K(x)$ as

$$
K(x)= \begin{cases}2^{-j(1+\delta)} \phi\left(x-2^{j}-2 k\right), & \text { if } x \in I_{j}^{k} \text { for some } j, k \\ 0, & \text { otherwise }\end{cases}
$$

And for $x \leq 0$, let $K(x)=-K(-x)$.
We define $\bar{T} f(x)=\int_{R^{1}} K(x-y) f(y) d y$.
It is clear that T is a δ-Calderón-Zygmund operator.
We shall show that $T a$ does not belong to $L^{p}\left(R^{1}\right)$ for some $a(x) \in H^{p}$ where $p \leq \frac{1}{1+\delta}$. Let

$$
a(x)=\left\{\begin{aligned}
1, & 0 \leq x<1 / 2 \\
-1, & 1 / 2 \leq x<1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

And let $I_{j}^{k *}=\left[2^{j}+2 k, 2^{j}+2 k+1 / 2\right]$.
For $x \in I_{j}^{k *}$ we have

$$
\begin{aligned}
T a(x) & =2^{-j(1+\delta)} \int_{2^{j}+2 k}^{x}\left(y-2^{j}-2 k\right)^{\delta} d y \\
& =2^{-j(1+\delta)}\left(x-2^{j}-2 k\right)^{\delta+1} /(\delta+1)
\end{aligned}
$$

So we have

$$
\begin{aligned}
\int_{I_{j}^{k *}}|T a(x)|^{p} d x & =C_{p, \delta} 2^{-j(1+\delta) p} \int_{I_{j}^{k *}}\left(x-2^{j}-2 k\right)^{(\delta+1) p} d x \\
& =C_{p, \delta} 2^{-j(1+\delta) p} \int_{0}^{1 / 2} x^{(\delta+1) p} d x \\
& =C_{p, \delta} 2^{-j(1+\delta) p}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{|x| \geq 2}|T a(x)|^{p} d x & \geq \sum_{j=1}^{\infty} \sum_{k} \int_{I_{j}^{k *}}|T a(x)|^{p} d x \\
& =C_{p, \delta} \sum_{j=1}^{\infty} 2^{-j(1+\delta) p} 2^{j-1} \\
& =C_{p, \delta} \sum_{j=1}^{\infty} 2^{j(1-(1+\delta) p)}
\end{aligned}
$$

This series diverges if $p \leq \frac{1}{1+\delta}$.
Remark. Similarly we can give counterexamples for $n \geq 2$.
Theorem 5. The conclusion of Theorem 2 is not true in general for $p<\frac{1}{1+\epsilon}$.

Proof. We consider Calderón's commutator $T_{b} f(x)=p \cdot v \cdot \int_{R^{1}} \frac{b(x)-b(y)}{(x-y)^{2}} f(y) d y$, where

$$
b(x)= \begin{cases}\frac{1}{1+\epsilon} x^{1+\epsilon}, & 0 \leq x<1 \\ x-\frac{\epsilon}{1+\epsilon}, & 1 \leq x \\ 0, & \text { otherwise }\end{cases}
$$

Then T_{b} is a 1-Calderón-Zygmund operator and $T_{b}^{*} 1 \in \operatorname{Lip}_{\epsilon}$, but we shall show $\lim _{r \rightarrow 0}\left\|T_{b}\left(a_{r}\right)\right\|_{h^{p}}=\infty$ for some $\left(H^{p}, \infty\right)$-atoms $\left\{a_{r}(x)\right\}$.

Let

$$
a_{r}(x)=\left\{\begin{aligned}
-r^{-1 / p}, & -r \leq x<-r / 2 \\
r^{-1 / p}, & -r / 2 \leq x<0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

where $r>0$.
By the same argument used in the proof of Lemma 4 (see the estimate of $I I I$), it suffices to show

$$
\lim _{r \rightarrow 0}\left|\int_{R^{1}} T_{b}\left(a_{r}\right)(x) d x\right|=\infty
$$

By calculations we have

$$
\begin{aligned}
T_{b}\left(a_{r}\right)(x) & =r^{-1 / p} b(x)\left\{-\int_{-r}^{-r / 2} \frac{1}{(x-y)^{2}} d y+\int_{-r / 2}^{0} \frac{1}{(x-y)^{2}} d y\right\} \\
& =\frac{r^{2-1 / p}}{2(1+\epsilon)} \cdot \frac{x^{\epsilon}}{(x+r)(x+r / 2)}
\end{aligned}
$$

for $0<x<1$.
Since $T_{b}\left(a_{r}\right)(x) \geq 0$, we have

$$
\begin{aligned}
\int_{R^{1}} T_{b}\left(a_{r}\right)(x) d x & \geq \frac{r^{2-1 / p}}{2(1+\epsilon)} \int_{0}^{r} \frac{x^{\epsilon}}{(x+r)(x+r / 2)} d x \\
& \geq \frac{r^{2-1 / p}}{2(1+\epsilon)} \frac{1}{3 r^{2}} \int_{0}^{r} x^{\epsilon} d x \\
& =\frac{r^{-1 / p+1+\epsilon}}{6(1+\epsilon)^{2}}
\end{aligned}
$$

If $p<\frac{1}{1+\epsilon}$, we have

$$
\lim _{r \rightarrow 0} \int_{R^{1}} T_{b}\left(a_{r}\right)(x) d x=\infty
$$

Acknowledgement The author would like to thank the referee for his most helpful suggestions.

References

[1] J. Alvarez, H^{p} and Weak H^{p} Continuity of Calderón-Zygmund Type Operators, Lecture Notes in Pure and Applied Mathematics 157 (1994), 17-34, Marcel Dekker, Inc.
[2] J. Alvarez and M. Milman, H^{p} Continuity Properties of Calderón-Zygmund-Type Operators, J. of Math. Anal. and Appl. 118 (1986), 63-79.
[3] C. Fefferman and E. Stein, Hardy Spaces of Several Variables, Acta Math. 129 (1972), 137-193.
[4] D. Goldberg, A Local Version of Real Hardy Spaces, Duke Math. J. 46 (1979), 27-42.
[5] S.Z. Lu, Four Lectures on Real H^{p} Spaces, World Scientific (1995).
[6] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press (1986).
School of High Technology and Human Welfare, Tokai University, 317 Nishino Numazu-shi, Shizuoka 410-0395, Japan
E-mail address : komori@wing.ncc.u-tokai.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 42B20.
 Key words and phrases. Calderón-Zygmund operator, Hardy space, local Hardy space.

