$a \& \mathcal{I}-I D E A L S$ ON IS-ALGEBRAS

Eun Hwan Roh, Seon Yu Kim and Wook Hwan Shim

Abstract. In this paper, we introduce the concept of an $a \& \mathcal{I}$-ideal in an IS-algebra and investigate their properties.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [3] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Y. B. Jun et al. [5] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Y. B. Jun et al. [7] renamed the BCI-semigroup (resp, BCImonoid and BCI-group) as the IS-algebra (resp. IM-algebra and IG-algebra) and studied further properties of these algebras (see [7] and [6]). In this paper, we introduce the concept of an $a \& \mathcal{I}$-ideal in an IS-algebra and investigate their properties.

2. Preliminaries

We review some definitions and properties that will be useful in our results.
By a BCI-algebra we mean an algebra ($X, *, 0$) of type (2,0) satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0$ and $y * x=0$ imply $x=y$.

A BCI-algebra X satisfying $0 * x=0$ for all $x \in X$ is called a BCK-algebra. In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$.

A BCI-algebra X has the following properties for any $x, y, z \in X$:
(1) $x * 0=x$,
(2) $(x * y) * z=(x * z) * y$,
(3) $(x * z) *(y * z) \leq x * y$.

A nonempty subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.
For a BCI-algebra X, the set $X_{+}:=\{x \in X \mid 0 \leq x\}$ is called the BCK-part of X. If $X_{+}=\{0\}$, then we say that X is a p-semisimple BCI-algebra. Note that a BCI-algebra X is p -semisimple if and only if $0 *(0 * x)=x$ for all $x \in X$.

In [5], Y. B. Jun et al. introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup, and Jun et al. [7] renamed it as an IS-algebra for the convenience of study.

Definition 2.1 (Jun et al. [7]). An IS-algebra is a non-empty set X with two binary operations "*" and "." and constant 0 satisfying the axioms
(V) $I(X):=(X, *, 0)$ is a BCI-algebra,
(VI) $S(X):=(X, \cdot)$ is a semigroup,
(VII) the operation "." is distributive (on both sides) over the operation "*", that is, $x \cdot(y * z)=(x \cdot y) *(x \cdot z)$ and $(x * y) \cdot z=(x \cdot z) *(y \cdot z)$ for all $x, y, z \in X$.

Especially, if $I(X):=(X, *, 0)$ is a p-semisimple BCI-algebra in Definition 2.1, we say that X is a PS-algebra. We shall write the multiplication $x \cdot y$ by $x y$, for convenience.

Example 2.2. Let $X=\{0, a, b, c\}$. Define $*$-operation and multiplication "." by the following tables

$*$	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	b	c
c	0	0	c	b

Then, by routine calculations, we can see that X is an IS-algebra.
Remark. Every p-semisimple BCI-algebra gives an abelian group by defining $x+y:=$ $x *(0 * y)$, and hence a PS-algebra leads to the ring structure. On the while, every ring gives a BCI-algebra by defining $x * y:=x-y$ and so we can construct an IS-algebra. This means that the category of PS-algebras is equivalent to the category of rings. In Example 2.2 , we can see that $(a+b)+c=0 \neq a=a+(b+c)$ if we define $x+y:=x *(0 * y)$. Hence the IS-algebra is a generalization of the ring.

Lemma 2.3 (Jun et al. [5, Proposition 1]). Let X be an IS-algebra. Then for any $x, y, z \in X$, we have
(a) $0 x=x 0=0$,
(b) $x \leq y$ implies that $x z \leq y z$ and $z x \leq z y$.

Definition 2.4 (Ahn et al. [1]). A non-empty subset A of a semigroup $S(X):=(X, \cdot)$ is said to be left (resp. right) stable if $x a \in A$ (resp. $a x \in A$) whenever $x \in S(X)$ and $a \in A$. Both left and right stable is two-sided stable or simply stable.

Definition 2.5 (Jun et al. [7]). A non-empty subset A of an IS-algebra X is called a left (resp. right) \mathcal{I}-ideal of X if
(iii) A is a left (resp. right) stable subset of $S(X)$,
(ii) for any $x, y \in I(X), x * y \in A$ and $y \in A$ imply that $x \in A$.

Both a left and a right \mathcal{I}-ideal is called a two-sided \mathcal{I}-ideal or simply an \mathcal{I}-ideal. Note that $\{0\}$ and X are \mathcal{I}-ideals. If A is a left (resp. right) \mathcal{I}-ideal of an IS-algebra X, then $0 \in A$. Thus A is an ideal of $I(X)$.

Definition 2.6. An IS-algebra X is called associative IS-algebra if $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$.

3. Main Results

Definition 3.1. A non-empty subset A of an IS-algebra X is called a left(resp. right) $a \& \mathcal{I}$-ideal of X, if
(iii) A is a left (resp. right) stable subset of $S(X)$,
(iv) for any $x, y, z \in I(X),(x * z) *(0 * y) \in A$ and $z \in A$ implies $y * x \in A$.

Both a left and a right $a \& \mathcal{I}$-ideal is called a two-sided $a \& \mathcal{I}$-ideal or simply an $a \& \mathcal{I}$-ideal. Clearly X is $a \& \mathcal{I}$-ideal.

Example 3.2. Let $X=\{0, a, b, c\}$. Define $*$-operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	0	b	b
a	a	0	c	b
b	b	b	0	0
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	b	c

Then X is an IS-algebra([7]). We can easily check that $\{0, \mathrm{a}\}$ is an $a \& \mathcal{I}$-ideal of X.
Theorem 3.3. If A is an a\& \mathcal{I}-ideal of IS-algebra X and $x \in A$, then $0 * x \in A$.
Proof. Let $x \in A$. Then $(x * 0) *(0 * 0)=x \in A$. By Definition 3.1 (iv), we get $0 * x \in A$. The proof is finished.

Theorem 3.4. Any a\& \mathcal{I}-ideal is an \mathcal{I}-ideal, but the converse is not true.
Proof. Assume that A is an $a \& \mathcal{I}$-ideal of X and $x * z \in A$ and $z \in A$. Then $(x * z) *(0 * 0)=$ $x * z \in A$ and by (iV), we get $0 * x \in A$. So $0 *(0 * x) \in A$ by Theorem 3.3. Putting $x=z=0$ in (iV), it follows that if $0 *(0 * y) \in A$, then $y \in A$. Now we obtain $x \in A$. Thus we prove that $x * z \in A$ and $z \in A$ implies $x \in A$, and so A is an \mathcal{I}-ideal of X.

To show the last part of theorem, we see Example 3.2. It is easy to verify that $A=\{0, b\}$ is an \mathcal{I}-ideal of X. But it is not an $a \& \mathcal{I}$-ideal of X as : $(b * b) *(0 * a)=0 * 0=0 \in\{0, b\}$ and $b \in A$, but $a * b=c \notin A$. The proof is complete.
Theorem 3.5. Let A be an \mathcal{I}-ideal of X. Then the following are equivalent :
(a) A is an a\& \mathcal{I}-ideal of X,
(b) $(x * z) *(0 * y) \in A$ implies $y *(x * z) \in A$, for any $x, y, z \in I(X)$,
(c) $x *(0 * y) \in A$ implies $y * x \in A$, for any $x, y \in I(X)$.

Proof. (a) \Rightarrow (b) Supposed that $(x * z) *(0 * y) \in A$. For brevity we write $s=(x * z) *(0 * y)$, then $((x * z) * s) *(0 * y)=((x * z) *(0 * y)) * s=0 \in A$. By (iV), we have $y *(x * z) \in A$.
(b) \Rightarrow (c) Letting $z=0$ in (b), we get (c).
(c) \Rightarrow (a) Let $(x * z) *(0 * y) \in A$ and $z \in A$. Since $(x *(0 * y)) *((x * z) *(0 * y)) \leq$ $x *(x * z) \leq z \in A$, we have $x *(0 * y) \in A$ as A is an \mathcal{I}-ideal. By (c), we have $y * x \in A$. Hence A is an $a \& \mathcal{I}$-ideal of X.

Lemma 3.6. Let A be an \mathcal{I}-ideal of an IS-algebra X. Then A is a $p \& \mathcal{I}$-ideal of X if and only if it satisfies $0 *(0 * x) \in A$ implies $x \in A$ for all $x \in A$.

Theorem 3.7. Any $a \& \mathcal{I}$-ideal is a $p \& \mathcal{I}$-ideal, but the converse is not true.
Proof. Let A is an $a \& \mathcal{I}$-ideal of X. Then A is an \mathcal{I}-ideal by Theorem 3.4. Setting $x=z=0$ in Theorem 3.5 (b), we get $0 *(0 * y) \in A$ implies $y \in A$. ¿From Lemma 3.6, A is a $p \& \mathcal{I}$-ideal.

To show the last part, we see the following Example 3.8.

Example 3.8. Let $X=\{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	b	c
c	0	0	c	b

Then X is an IS-algebra([9]). By routine calculations give that $A=\{0, a\}$ is a $p \& \mathcal{I}$-ideal of X. But it is not an $a \& \mathcal{I}$-ideal as : $(c * a) *(0 * b)=c * c=0 \in A$ and $a \in A$, but $b * c=c \notin A$.

The following theorem provides a sufficient condition that the \mathcal{I}-ideal is $a \& \mathcal{I}$-ideal.
Theorem 3.9. Let X be an associative IS-algebra and A be an \mathcal{I}-ideal. Then A is an $a \& \mathcal{I}$-ideal

Proof. Let $x *(0 * y) \in A$. By Theorem 3.5(c), if we show $y * x \in A$, then A is an $a \& \mathcal{I}$-ideal of X. Since $(y * x) *(x *(0 * y))=(y * x) *((x * 0) * y)=(y * x) *(x * y)=(y *(x * y)) * x=$ $((y * x) * y) * x=((y * y) * x) * x=(0 * x) * x=0 *(x * x)=0 * 0=0$ and A is an \mathcal{I}-ideal of X, we get $y * x \in A$. Hence A is an $a \& \mathcal{I}$-ideal of X.

Theorem 3.10. Let A and B be \mathcal{I}-ideals of X with $A \subset B$. If A is an a\& \mathcal{I}-ideal of X, then so is B.

Proof. Supposed that A is an $a \& \mathcal{I}$-ideal and $x *(0 * y) \in B$. Put $s=x *(0 * y) \in B$, then $(x * s) *(0 * y)=(x *(0 * y)) * s=0 \in A$. Since A is an $a \& \mathcal{I}$-ideal, $y *(x * s) \in A \subseteq B$. Now $((y * x) * s) *(y *(x * s))=((y * x) *(y *(x * s))) * s \leq(x *(x * s)) * s=(x * s) *(x * s)=0 \in A \subseteq B$ Since B is an ideal of X and $y *(x * s) \in B$, we get $(y * x) * s \in B$. Therefore $y * x \in B$. Hence B is an $a \& \mathcal{I}$-ideal of X.

Corollary 3.11. If zero \mathcal{I}-ideal of X is an $a \& \mathcal{I}$-ideal, then every ideal of X is an a\& \mathcal{I}-ideal.

References

[1] S. S. Ahn and H. S. Kim, A note on \mathcal{I}-ideals in BCI-semigroups, Comm. Korean Math. Soc. 11(4) (1996), 895-902.
[2] M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36(1) (1991), 39-45.
[3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
[4] K. Iséki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8 (1980), 125-130.
[5] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15(1) (1993), 59-64.
[6] Y. B. Jun, E. H. Roh and X. L. Xin, \mathcal{I}-ideals generated by a set in IS-algebras, Bull. Korean Math. Soc. 35(4) (1998), 615-624.
[7] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24(4) (1998), 309-321.
[8] T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(4) (1985), 511-517.
[9] E. H. Roh, S. M. Hong and Y. B. Jun, p\& \mathcal{I}-ideals in IS-algebras, Far East J.Math. sci. 1(1) (1999), 127-136
[10] Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japon. 36(5) (1991), 815-817.

Eun Hwan ROH and Seon Yu KIM
Department of Mathematics Education
Chinju National University of Education
Chinju 660-756, Korea
e-mail : ehroh@cue.ac.kr
Wook Hwan SHIM
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

