$a\&\mathcal{I}-IDEALS$ ON IS-ALGEBRAS

EUN HWAN ROH, SEON YU KIM AND WOOK HWAN SHIM

ABSTRACT. In this paper, we introduce the concept of an $a\&\mathcal{I}$ -ideal in an **IS**-algebra and investigate their properties.

1. INTRODUCTION

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [3] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Y. B. Jun et al. [5] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Y. B. Jun et al. [7] renamed the BCI-semigroup (resp, BCI-monoid and BCI-group) as the **IS**-algebra (resp. **IM**-algebra and **IG**-algebra) and studied further properties of these algebras (see [7] and [6]). In this paper, we introduce the concept of an $a\&\mathcal{I}$ -ideal in an **IS**-algebra and investigate their properties.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

(III) x * x = 0,

(IV) x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra X satisfying 0 * x = 0 for all $x \in X$ is called a *BCK-algebra*. In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCI-algebra X has the following properties for any $x, y, z \in X$:

- (1) x * 0 = x,
- (2) (x * y) * z = (x * z) * y,
- (3) $(x * z) * (y * z) \le x * y$.

A nonempty subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies (i) $0 \in I$.

(ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

For a BCI-algebra X, the set $X_+ := \{x \in X | 0 \le x\}$ is called the *BCK-part* of X. If $X_+ = \{0\}$, then we say that X is a *p-semisimple* BCI-algebra. Note that a BCI-algebra X is p-semisimple if and only if 0 * (0 * x) = x for all $x \in X$.

Key words and phrases. IS-algebras, $a\&\mathcal{I}$ -ideal, $p\&\mathcal{I}$ -ideal. 2000 Mathematics Subject Classification: 06F35, 03G25.

In [5], Y. B. Jun et al. introduced a new class of algebras related to BCI-algebras and semigroups, called a *BCI-semigroup*, and Jun et al. [7] renamed it as an **IS**-algebra for the convenience of study.

Definition 2.1 (Jun et al. [7]). An **IS**-algebra is a non-empty set X with two binary operations "*" and "." and constant 0 satisfying the axioms

- (V) I(X) := (X, *, 0) is a BCI-algebra,
- (VI) $S(X) := (X, \cdot)$ is a semigroup,
- (VII) the operation "·" is distributive (on both sides) over the operation "*", that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

Especially, if I(X) := (X, *, 0) is a p-semisimple BCI-algebra in Definition 2.1, we say that X is a **PS**-algebra. We shall write the multiplication $x \cdot y$ by xy, for convenience.

Example 2.2. Let $X = \{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables

*	0	a	b	c		0	a	b	c
0	0	0	c	b	0	0	0	0	0
a	a	0	c	b	a	0	0	0	0
b	b	b	0	c	b	0	0	b	c
c	c	c	b	0	c	0	0	c	b

Then, by routine calculations, we can see that X is an **IS**-algebra.

Remark. Every p-semisimple BCI-algebra gives an abelian group by defining x + y := x * (0 * y), and hence a **PS**-algebra leads to the ring structure. On the while, every ring gives a BCI-algebra by defining x * y := x - y and so we can construct an **IS**-algebra. This means that the category of **PS**-algebras is equivalent to the category of rings. In Example 2.2, we can see that $(a + b) + c = 0 \neq a = a + (b + c)$ if we define x + y := x * (0 * y). Hence the **IS**-algebra is a generalization of the ring.

Lemma 2.3 (Jun et al. [5, Proposition 1]). Let X be an IS-algebra. Then for any $x, y, z \in X$, we have

(a) 0x = x0 = 0,

(b) $x \leq y$ implies that $xz \leq yz$ and $zx \leq zy$.

Definition 2.4 (Ahn et al. [1]). A non-empty subset A of a semigroup $S(X) := (X, \cdot)$ is said to be *left* (resp. *right*) *stable* if $xa \in A$ (resp. $ax \in A$) whenever $x \in S(X)$ and $a \in A$. Both left and right stable is *two-sided stable* or simply *stable*.

Definition 2.5 (Jun et al. [7]). A non-empty subset A of an **IS**-algebra X is called a *left* (resp. *right*) \mathcal{I} -*ideal* of X if

- (iii) A is a left (resp. right) stable subset of S(X),
- (ii) for any $x, y \in I(X)$, $x * y \in A$ and $y \in A$ imply that $x \in A$.

Both a left and a right \mathcal{I} -ideal is called a *two-sided* \mathcal{I} -*ideal* or simply an \mathcal{I} -*ideal*. Note that $\{0\}$ and X are \mathcal{I} -ideals. If A is a left (resp. right) \mathcal{I} -ideal of an **IS**-algebra X, then $0 \in A$. Thus A is an ideal of I(X).

Definition 2.6. An **IS**-algebra X is called associative **IS**-algebra if (x * y) * z = x * (y * z) for all $x, y, z \in X$.

3. Main Results

Definition 3.1. A non-empty subset A of an **IS**-algebra X is called a left(resp. right) $a\&\mathcal{I}$ -ideal of X, if

- (iii) A is a left (resp. right) stable subset of S(X),
- (iv) for any $x, y, z \in I(X)$, $(x * z) * (0 * y) \in A$ and $z \in A$ implies $y * x \in A$.

Both a left and a right $a\&\mathcal{I}$ -ideal is called a *two-sided* $a\&\mathcal{I}$ -*ideal* or simply an $a\&\mathcal{I}$ -*ideal*. Clearly X is $a\&\mathcal{I}$ -ideal.

Example 3.2. Let $X = \{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables:

*	0	a	b	c			0	a	b	c
0	0	0	b	b	0)	0	0	0	0
a	a	0	c	b	a	ı	0	a	0	a
b	b	b	0	0	b	6	0	0	b	b
c	c	b	a	0	С	2	0	a	b	c

Then X is an **IS**-algebra([7]). We can easily check that $\{0, a\}$ is an $a\&\mathcal{I}$ -ideal of X.

Theorem 3.3. If A is an $a\&\mathcal{I}$ -ideal of **IS**-algebra X and $x \in A$, then $0 * x \in A$.

Proof. Let $x \in A$. Then $(x * 0) * (0 * 0) = x \in A$. By Definition 3.1 (iv), we get $0 * x \in A$. The proof is finished. \Box

Theorem 3.4. Any $a\&\mathcal{I}$ -ideal is an \mathcal{I} -ideal, but the converse is not true.

Proof. Assume that A is an $a\&\mathcal{I}$ -ideal of X and $x * z \in A$ and $z \in A$. Then $(x * z) * (0 * 0) = x * z \in A$ and by (iV), we get $0 * x \in A$. So $0 * (0 * x) \in A$ by Theorem 3.3. Putting x = z = 0 in (iV), it follows that if $0 * (0 * y) \in A$, then $y \in A$. Now we obtain $x \in A$. Thus we prove that $x * z \in A$ and $z \in A$ implies $x \in A$, and so A is an \mathcal{I} -ideal of X.

To show the last part of theorem, we see Example 3.2. It is easy to verify that $A = \{0, b\}$ is an \mathcal{I} -ideal of X. But it is not an $a\&\mathcal{I}$ -ideal of X as : $(b * b) * (0 * a) = 0 * 0 = 0 \in \{0, b\}$ and $b \in A$, but $a * b = c \notin A$. The proof is complete. \Box

Theorem 3.5. Let A be an \mathcal{I} -ideal of X. Then the following are equivalent :

- (a) A is an $a\&\mathcal{I}$ -ideal of X,
- (b) $(x * z) * (0 * y) \in A$ implies $y * (x * z) \in A$, for any $x, y, z \in I(X)$,
- (c) $x * (0 * y) \in A$ implies $y * x \in A$, for any $x, y \in I(X)$.

Proof. (a) \Rightarrow (b) Supposed that $(x * z) * (0 * y) \in A$. For brevity we write s = (x * z) * (0 * y), then $((x * z) * s) * (0 * y) = ((x * z) * (0 * y)) * s = 0 \in A$. By (iV), we have $y * (x * z) \in A$. (b) \Rightarrow (c) Letting z = 0 in (b), we get (c).

(c) \Rightarrow (a) Let $(x * z) * (0 * y) \in A$ and $z \in A$. Since $(x * (0 * y)) * ((x * z) * (0 * y)) \leq x * (x * z) \leq z \in A$, we have $x * (0 * y) \in A$ as A is an \mathcal{I} -ideal. By (c), we have $y * x \in A$. Hence A is an $a\&\mathcal{I}$ -ideal of X. \Box

Lemma 3.6. Let A be an \mathcal{I} -ideal of an **IS**-algebra X. Then A is a $p\&\mathcal{I}$ -ideal of X if and only if it satisfies $0 * (0 * x) \in A$ implies $x \in A$ for all $x \in A$.

Theorem 3.7. Any $a\&\mathcal{I}$ -ideal is a $p\&\mathcal{I}$ -ideal, but the converse is not true.

Proof. Let A is an $a\&\mathcal{I}$ -ideal of X. Then A is an \mathcal{I} -ideal by Theorem 3.4. Setting x = z = 0 in Theorem 3.5 (b), we get $0 * (0 * y) \in A$ implies $y \in A$. From Lemma 3.6, A is a $p\&\mathcal{I}$ -ideal.

To show the last part, we see the following Example 3.8.

Example 3.8. Let $X = \{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables:

*	0	a	b	c		•	0	a	b	c
0	0	0	c	b	-	0	0	0	0	0
a	a	0	c	b		a	0	0	0	0
b	b	b	0	c		b	0	0	b	c
c	c	c	b	0		c	0	0	c	b

Then X is an **IS**-algebra([9]). By routine calculations give that $A = \{0, a\}$ is a $p\&\mathcal{I}$ -ideal of X. But it is not an $a\&\mathcal{I}$ -ideal as : $(c * a) * (0 * b) = c * c = 0 \in A$ and $a \in A$, but $b * c = c \notin A$.

The following theorem provides a sufficient condition that the \mathcal{I} -ideal is $a\&\mathcal{I}$ -ideal.

Theorem 3.9. Let X be an associative **IS**-algebra and A be an \mathcal{I} -ideal. Then A is an $a\&\mathcal{I}$ -ideal

Proof. Let $x * (0 * y) \in A$. By Theorem 3.5(c), if we show $y * x \in A$, then A is an $a\&\mathcal{I}$ -ideal of X. Since (y * x) * (x * (0 * y)) = (y * x) * ((x * 0) * y) = (y * x) * (x * y) = (y * (x * y)) * x = ((y * x) * y) * x = ((y * y) * x) * x = (0 * x) * x = 0 * (x * x) = 0 * 0 = 0 and A is an \mathcal{I} -ideal of X, we get $y * x \in A$. Hence A is an $a\&\mathcal{I}$ -ideal of X. \Box

Theorem 3.10. Let A and B be \mathcal{I} -ideals of X with $A \subset B$. If A is an a& \mathcal{I} -ideal of X, then so is B.

Proof. Supposed that A is an $a\&\mathcal{I}$ -ideal and $x * (0 * y) \in B$. Put $s = x * (0 * y) \in B$, then $(x * s) * (0 * y) = (x * (0 * y)) * s = 0 \in A$. Since A is an $a\&\mathcal{I}$ -ideal, $y * (x * s) \in A \subseteq B$. Now $((y * x) * s) * (y * (x * s)) = ((y * x) * (y * (x * s))) * s \leq (x * (x * s)) * s = (x * s) * (x * s) = 0 \in A \subseteq B$. Since B is an ideal of X and $y * (x * s) \in B$, we get $(y * x) * s \in B$. Therefore $y * x \in B$. Hence B is an $a\&\mathcal{I}$ -ideal of X. □

Corollary 3.11. If zero \mathcal{I} -ideal of X is an $a\&\mathcal{I}$ -ideal, then every ideal of X is an $a\&\mathcal{I}$ -ideal.

References

- S. S. Ahn and H. S. Kim, A note on *I*-ideals in BCI-semigroups, Comm. Korean Math. Soc. 11(4) (1996), 895-902.
- M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36(1) (1991), 39-45.
- [3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- [4] K. Iséki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8 (1980), 125-130.
- [5] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15(1) (1993), 59-64.
- [6] Y. B. Jun, E. H. Roh and X. L. Xin, *I-ideals generated by a set in IS-algebras*, Bull. Korean Math. Soc. 35(4) (1998), 615-624.
- [7] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24(4) (1998), 309-321.
- [8] T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(4) (1985), 511-517.
- [9] E. H. Roh, S. M. Hong and Y. B. Jun, p&*I*-ideals in IS-algebras, Far East J.Math. sci. 1(1) (1999), 127-136.
- [10] Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japon. 36(5) (1991), 815-817.

Eun Hwan ROH and Seon Yu KIM Department of Mathematics Education Chinju National University of Education Chinju 660-756, Korea e-mail : ehroh@cue.ac.kr

Wook Hwan SHIM Department of Mathematics Gyeongsang National University Chinju 660-701, Korea