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CONVERGENCE RATE OF CONDITIONAL EXPECTATIONS

XIKUI WANG

Received December 7, 1999; revised March 10, 2000

Abstract. As opposed to the traditional probabilistic approach, the convergence

rate of conditional expectations is examined from the analytic point of view. This

new approach provides simple and clear proofs for a two-sided uniform inequality for

conditional expectations and related results. A necessary and suÆcient condition for

the convergence rate of conditional expectations is derived. Moreover, the existing

lower bound for the convergence rate based on the probabilistic approach is sharpened

by the new analytic approach.

1. Introduction. Let (
;�; P ) be a complete probability space and S(�) be the set

of all sub-�-algebras of �. A metric d
� on S(�) is introduced in [1], [6], and [7] from

probabilistic point of view to study the convergence rate of conditional expectations. The

convergence rate is studied in [1] when �n; n = 1; 2; � � �, increases or decreases to �1 and

d
�(�n;�1)! 0, and is generalized in [7] to the case where �n; n = 1; 2; � � �, is not nested.
We investigate the convergence rate from the analytic point of view using a metric d on

S(�) introduced in [8] and [9]. This new approach allows for direct and simple proofs of

the results. A two-sided uniform inequality for the convergence of conditional expectations

is derived whose lower bound sharpens that in [7]. Moreover, the conditional expectation

E(f j�n) converges to E(f j�1) uniformly in f 2 L
1 if and only if d(�n;�1) ! 0. This

does not require that �n; n = 1; 2; � � �, be nested.
The new metric is introduced in section 2 and is compared with the metric based on the

probabilistic approach. Main results are derived in section 3. We conclude with an example

which shows that �n; n = 1; 2; � � �, increases or decreases to �1 does not necessarily imply

d(�n;�1)! 0.

2. The Metrics. Let �1 be a sub-�-algebra of �. The space L1(�1) = L
1(
;�1; P ) is

a closed subspace of L1(
;�; P ) in the natural way, and is a subspace of L2(
;�; P ) since

(
;�; P ) is a probability space. Moreover, L11 (�1) = ff 2 L
1(�1) : kfk1 � 1g is a unit

ball in L
1(�1) and is closed in L

2(
;�; P ).

De�ne a metric d on S(�), which is basically the Hausdor� metric on unit balls in the

L
2-norm, as follows:

d(�1;�2) = maxf sup
f2L1

1
(�1)

inf
g2L1

1
(�2)

kf � gk2; sup
g2L1

1
(�2)

inf
f2L1

1
(�1)

kf � gk2g:

[9] shows that (S(�); d) is a complete metric space.

This metric d is modeled on a metric introduced in [2] on the set of all von Nuemann

subalgebras of a Type II1 factor, which has been useful in the study of index in Type II1
factors, see [3] and [5].
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For any �1 and �2 in S(�), the metric d� used in [7] is de�ned as

d
�(�1;�2) = maxf sup

A2�1

inf
B2�2

P (A�B); sup
B2�2

inf
A2�1

P (A�B)g:

The metric d� in [1] has + instead of max, but is essentially the same. The relationship

between the two metrics d and d
� is studied in [8].

3. Main Results. Let e(f j�1) be the orthogonal projection of L
2(
;�; P ) onto L2(
;�1;

P ), and E(f j�1) be the restriction of e(f j�1) to L
1(
;�; P ). Both of them are conditional

expectations given �1, but results are stated with respect to E(f j�1): L
1(
;�; P ) !

L
1(
;�1; P ) only.

Lemma 3.1. For any �1 and �2 in S(�),

sup
f2L1

1
(�2)

kE(f j�1)� fk2 � 2d(�1;�2):

Proof. For any � > 0 and any f 2 L
1

1 (�2), there exists a g 2 L
1

1 (�1) such that

kf � gk2 < d(�1;�2) + �=2:

So,

kE(f j�1)� gk2 = kE(f � gj�1)k2 � kf � gk2 < d(�1;�2) + �=2:

Hence,

kE(f j�1)� fk2 � kE(f j�1)� gk2 + kf � gk2 < 2d(�1;�2) + �:

Therefore,

sup
f2L1

1
(�2)

kE(f j�1)� fk2 � 2d(�1;�2): 2

If �1 � �2, then E(f j�1) = E(E(f j�1)j�2) = E(E(f j�2)j�1): So,

Corollary 3.2. For any �1 and �2 in S(�) such that �1 � �2,

sup
f2L1

1
(�)

kE(f j�1)�E(f j�2)k2 � 2d(�1;�2):

This corollary gives the uniform inequality for nested sub-�-algebras. In general,

Theorem 3.3. For any �1 and �2 in S(�), we have

d(�1;�2) � sup
f2L1

1
(�)

kE(f j�1)�E(f j�2)k2 � 2[d(�1;�2)]
1=2

:

Proof. For any f 2 L
1

1 (�1), E(f j�1) = f and E(f j�2) is the (L
2-norm) closest element of

L
1

1 (�2) to f . So,

sup
f2L1

1
(�1)

inf
g2L1

1
(�2)

kf � gk2 = sup
f2L1

1
(�1)

kf �E(f j�2)k2

� sup
f2L1

1
(�)

kE(f j�1)�E(f j�2)k2:
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Similarly,

sup
g2L

1

1
(�2)

inf
f2L1

1
(�1)

kf � gk2 � sup
g2L

1

1
(�)

kE(gj�1)�E(gj�2)k2:

Hence,

d(�1;�2) � sup
f2L

1

1
(�)

kE(f j�1)�E(f j�2)k2:

On the other hand, for any f 2 L
1

1 (�), from Lemma 3.1, the H�older's inequality, and

the fact that kf �E(f j�i)k2 � 1; i = 1; 2; we have

kE(f j�1)�E(f j�2)k
2
2 =

Z



E(f j�1)[f �E(f j�2)]dP +

Z



E(f j�2)[f �E(f j�1)]dP

=

Z



[E(f j�1)�E(E(f j�1)j�2)][f �E(f j�2)]dP

+

Z



[E(f j�2)�E(E(f j�2)j�1)][f �E(f j�1)]dP

� kE(f j�1)�E(E(f j�1)j�2)k2kf �E(f j�2)k2

+ kE(f j�2)�E(E(f j�2)j�1)k2kf �E(f j�1)k2

� 4d(�1;�2):

Therefore,

sup
f2L1

1
(�)

kE(f j�1)�E(f j�2)k2 � 2[d(�1;�2)]
1=2

: 2

Corollary 3.4. Let �n; n = 1; 2; � � � ;1, be an arbitrary sequence in S(�). Then,

lim
n!1

kE(f j�n)�E(f j�1)k2 = 0

uniformly in f 2 L
1

1 (�) if and only if

lim
n!1

d(�n;�1) = 0:

Theorem 3.5. If lim
n!1

d(�n;�1) = 0, then for any A 2 �1 and f 2 L
1(�), we have

lim
n!1

j

Z
A

E(f j�n)dP �

Z
A

E(f j�1)dP j = 0:

Proof. Let An = fE(�Aj�n) > 1=2g 2 �n. Since
1
2
= k 1

2
� �Ak1, by Lemma 2.1 in [4],

j

Z
A

E(f j�n)dP �

Z
A

E(f j�1)dP j � j

Z
A

E(f j�n)dP �

Z
An

E(f j�n)dP j

+ j

Z
An

E(f j�n)dP �

Z
A

E(f j�1)dP j

� kfk1P (An�A)

= kfk1[k
1

2
� �Ak1 � k

1

2
�E(�Aj�n)k1]

� kfk1k�A �E(�Aj�n)k1

� kfk1k�A �E(�Aj�n)k2

� 2kfk1d(�n;�1): 2
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4. An Example. It is shown in [7] that d�(�1;�2) � sup
f2L

1

1
(�) kE(f j�1)�E(f j�2)k2:

We show in our example that �n; n = 1; 2; � � � ; increases to �1 does not necessarily imply

that d(�n;�1) ! 0: Moreover, d�(�1;�2) < d(�1;�2): Therefore, the above lower bound

in [7] is sharpened by our Theorem 3.3.

Let 
 = [0; 1) and P be the Lebesgue measure on 
. De�ne �n; n = 1; 2; � � � ; to be the

�-algebra generated by f[k�1
2n

;
k

2n
); k = 1; 2; � � � ; 2ng: Then �nincreases to �1, the �-algebra

of Borel sets of 
. Since L11 (�n+1) � L
1

1 (�1), then d(�n;�n+1) � d(�n;�1) for every

n.

Now, [k�1
2n

;
2k�1
2n+1

) and [ 2k�1
2n+1

;
k

2n
) are in �n+1, and [k�1

2n
;
k

2n
) is in �n: De�ne

g =

�
1 on [2

n

k=1[
k�1
2n

;
2k�1
2n+1

):

�1 on [2
n

k=1[
2k�1
2n+1

;
k

2n
):

Then

g 2 L
2(�n+1)

and

inf
f2L

1

1
(�n)

kf � gk2 = kg �E(gj�n)k2 = kgk2 = 1:

Therefore,

sup
g2L1

1
(�n+1)

inf
f2L1

1
(�n)

kf � gk2 � 1;

so

d(�n;�n+1) � 1:

This implies that d(�n;�1) is at least 1 and hence does not go to 0. It is easy to see

that

d
�(�n;�n+1) = 1=2 < d(�n;�n+1):
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