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Abstract. In this paper �rst we give some de�nitions and examples on hyperK-

algebras. Then we give some theorems and obtain some results which are needed to

state and prove the main theorems of this manuscript (Theorems 3.16 and 3.21). In

these theorems we give some classi�cations of hyperK-algebras of order 3 which satisfy

the normal condition or simple condition. Finally we give two open problems.

1. Introduction The hyper algebraic structure theory was introduced by F. Marty in

1934 [8]. Since then many researchers have worked on this area. Imai and Iseki in 1966

[4] introduced the notion of a BCK-algebra. Recently [1,7,10] Borzoei, Jun and Zahedi et

al applied the hyper structures to BCK-algebras and introduced the concept of hyperK-

algebra which is a generalization of BCK-algebra. Now we follow [1,2,10] and give some

classi�cations of hyperK-algebras of order 3 which satisfy the normal condition or the simple

condition.

2. Preliminaries

De�nition 2.1.[1]. Let H be a nonempty set and "Æ" be a hyper operation on H , that

is Æ is a function from H �H to P �(H) = P (H)�f;g. Then H is called a hyperK-algebra

if it contains a constant "0" and satis�es the following axioms:

(HK1) (x Æ z) Æ (y Æ z) < x Æ y

(HK2) (x Æ y) Æ z = (x Æ z) Æ y

(HK3) x < x

(HK4) x < y; y < x =) x = y

(HK5) 0 < x,

for all x; y; z 2 H , where x < y is de�ned by 0 2 x Æ y and for every A;B � H , A < B is

de�ned by 9a 2 A, 9b 2 B such that a < b.

Note that if A;B � H , then by A ÆB we mean the subset
[

a2A;b2B

a Æ b of H .

Example 2.2. (i) De�ne the hyper operation " Æ " on H = [0;+1) as follows:

xoy =

8<
:

[0; x] if x � y

(0; y] if x > y 6= 0

fxg if y = 0

for all x; y 2 H . Then (H; Æ; 0) is a hyperK-algebra.

(ii) Let H = f0; 1; 2g. Then the following table shows a hyperK-algebra structure on

H .
Æ 0 1 2

0 f0; 1g f0; 1g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1; 2g
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(iii) Let H = f0; 1; 2g. Then the following table shows a hyperK-algebra structure on

H .
Æ 0 1 2

0 f0g f0g f0; 2g

1 f1g f0; 1g f1; 2g

2 f2g f0; 2g f0; 2g

Theorem 2.3[1]. Let (H; Æ; 0) be a hyperK-algebra. Then for all x; y; z 2 H and for

all nonempty subsets A, B and C of H the following hold:

(i) (A ÆB) Æ C = (A Æ C) ÆB,

(ii) x Æ y < z , x Æ z < y,

(iii) A ÆB < C , A Æ C < B,

(iv) (x Æ z) Æ (x Æ y) < y Æ z,

(v) (A Æ C) Æ (B Æ C) < A ÆB,

(vi) A � B implies A < B,

(vii) x Æ y < x,

(viii) A ÆB < A,

(ix) x 2 x Æ 0,

(x) A � A Æ 0

De�nition 2.4[1]. Let I be a nonempty subset of a hyperK-algebra (H; Æ). Then I is

called a weak hyperK-ideal of H if

(WHKI1) 0 2 I

(WHKI2) x Æ y � I and y 2 I imply that x 2 I , for all x; y 2 H .

De�nition 2.5[1]. Let I be a nonempty subset of a hyperK-algebra (H; Æ). Then I is

said to be a hyperK-ideal of H if

(HKI1) 0 2 I ,

(HKI2) x Æ y < I and y 2 I imply that x 2 I , for all x; y 2 H .

De�nition 2.6[2]. Let H be a hyperK-algebra. An element a 2 H is called to be a

left(resp. right) scalar if ja Æ xj = 1(resp. jx Æ aj = 1) for all x 2 H . If a 2 H is both left

and right scalar,we say that a is an scalar element.

De�nition 2.7[2]. Let H be a hyperK-algebra and I be a nonempty subset of H such

that 0 2 I . Then I is said to be a positive implicative hyperK-ideal of

(i) type 1, if for all x; y; z 2 H , (x Æ y) Æ z � I and y Æ z � I implies that x Æ z � I

(ii) type 2, if for all x; y; z 2 H , (x Æ y) Æ z < I and y Æ z � I implies that x Æ z � I .

(iii) type 3, if for all x; y; z 2 H , (x Æ y) Æ z < I and y Æ z < I implies that x Æ z � I .

(iv) type 4, if for all x; y; z 2 H , (x Æ y) Æ z < I and y Æ z < I implies that x Æ z < I .

De�nition 2.8[2]. The hyperK-algebraH is called to be a positive implicative hyperK-

algebra, if it satis�es the following condition,

(x Æ z) Æ (y Æ z) = (x Æ y) Æ z

for all x; y; z 2 H .

Theorem 2.9[2]. Let H be a positive implicative hyperK-algebra. Then any weak

hyperK-ideal of H is a positive implicative hyperK-ideal of type 1.

Theorem 2.10[2]. Let 0 2 H be a right scalar element. If I is a positive implicative

hyperK-ideal of type 2 (type 3), then I is a hyperK-ideal of H .

De�nition 2.11[2]. Let I be a nonempty subset of H . We say that I satis�es the

additive condition, if x < y and y 2 I implies that x 2 I , for all x; y 2 H .

Theorem 2.12[2]. Let I be positive implicative hyperK-ideal of type 4 such that

satis�es the additive condition. Then I is a hyperK-ideal of H .
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De�nition 2.13[10]. Let (H1; Æ1; 01) and (H2; Æ2; 02) be two hyperK-algebras and

f : H1 �! H2 be a function. Then f is said to be a homomorphism i�

(i) f(01) = 02
(ii) f(x Æ1 y) = f(x) Æ2 f(y); 8x; y 2 H1.

If f is 1-1 (or onto) we say that f is a monomorphism (or epimorphism). And if f is

both 1-1 and onto, we say that f is an isomorphism.

3. Main results

Note: Throughout this paper we let always H be a hyperK-algebra of order 3 and

usually we use the set f0; 1; 2g for showing the elements of H .

De�nition 3.1. We say that H satis�es the normal condition if one of the conditions

1 < 2 or 2 < 1 holds. If no one of these conditions hold, then we say that H satis�es the

simple condition.

Note: Clearly the conditions 1 < 2 and 2 < 1 can not hold simultaneously, because

1 < 2 and 2 < 1 imply that 1 = 2 which is impossible. Clearly H always satis�es the normal

condition or simple condition.

Example 3.2.(i) The hyperK-algebras which have been de�ned in Example 2.2(ii) and

(iii) satisfy the normal condition.

(ii) Let (H; Æ1) and (H; Æ2) are de�ned as follows:

Æ1 0 1 2

0 f0g f0g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0g

Æ2 0 1 2

0 f0g f0; 1; 2g f0; 1; 2g

1 f1g f0; 1g f1; 2g

2 f2g f1; 2g f0; 1g

Then (H; Æ1) and (H; Æ2) are hyperK-algebras and they satisfy the simple condition.

De�nition 3.3. A nonempty subset I of H is called proper, if I 6= f0g and I 6= H .

Theorem 3.4. Let H satis�es the normal condition. Then there is at most one proper

hyperK-ideal of H .

Proof. The only possible cases are I1 = f0; 1g and I2 = f0; 2g. We show that at least

one of I1 or I2 is not a hyperK-ideal of H . Since H satis�es the normal condition,then

1 < 2 or 2 < 1. If 1 < 2, then I2 is not a hyperK-ideal of H . Since, otherwise 1 Æ 2 < I2
and 2 2 I2 implies that 1 2 I2 which is not true. Also if 2 < 1, then by a similar way we

show that I1 is not a hyperK-ideal of H .

Example 3.5.(i) Consider Example 2.2(ii). Then H satis�es the normal condition and

I1 = f0; 1g is a hyperK-ideal of H . Where I2 = f0; 2g is not a hyperK-ideal of H .

(ii) Consider Example 2.2(iii). Then H satis�es the normal condition . And both of

I1 = f0; 1g, I2 = f0; 2g are not hyperK-ideals of H .

(iii) Consider Example 3.2(ii). Then (H; Æ1) satis�es the simple condition. Thus H

does not satisfy the normal condition . Moreover both of I1 = f0; 1g and I2 = f0; 2g are

hyperK-ideals of H . Therefore the normal condition in Theorem 3.4 is necessary.

Theorem 3.6. Let H satis�es the normal condition. Then there is at least one proper

positive implicative hyperK-ideal of type 4.

Proof. Since H satis�es the normal condition, then 1 < 2 or 2 < 1. If 1 < 2, then for all

x; z 2 H; xÆz < I = f0; 2g, since 0 2 0Æx; 0 2 xÆx for all x 2 H , 1 2 1Æ0; 2 2 2Æ0; 0 2 1Æ2

and 1 or 2 2 2 Æ 1. Therefore I = f0; 2g is a positive implicative hyperK-ideal of type 4.

Moreover if 2 < 1, similarly we conclude that f0; 1g is a positive implicative hyperK-ideal

of type 4.

Example 3.7. (i) Consider Example 2.2(ii). Then I1 = f0; 1g is a proper positive

implicative hyperK-ideal of type 4, but I2 = f0; 2g is not.



78 M.M. ZAHEDI, R.A. BORZOEI, H. REZAEI

(ii) Consider Example 2.2(iii). Then both of I1 = f0; 1g and I2 = f0; 2g are proper

positive implicative hyperK-ideal of type 4.

(iii) Consider Example 3.2(ii). Then (H; Æ2) satis�es the simple condition and has not

proper positive implicative hyperK-ideal of type 4. Therefore the normal condition in

Theorem 3.6 is necessary.

Theorem 3.8. Let H satis�es the normal condition and I be a proper subset of H .

Then I is a hyperK-ideal of H if and only if I is a positive implicative hyperK-ideal of type

4 and satis�es the additive condition.

Proof. ()) We know that the only possible cases for having proper hyperK-ideals are

I1 = f0; 1g and I2 = f0; 2g . Let I1 = f0; 1g be a hyperK-ideal of H . We claim that

2Æ1 6< I1 and 2Æ0 6< I1. Let 2Æ1 < I1 or 2Æ0 < I1. Since 1; 0 2 I1 and I1 is a hyperK-ideal

of H then 2 2 I which is not true. Therefore we have 2 Æ 1 = f2g and 2 Æ 0 = f2g. Now

we show that I1 is a positive implicative hyperK-ideal of type 4. On the contrapositive, we

show that if xÆ z 6< I1 then for all y 2 H , (xÆy)Æ z 6< I1 or y Æ z 6< I1. Since 2Æ1 = f2g and

H satis�es the normal condition, then 2 6< 1 and so 1 < 2. Hence 0 2 1 Æ 2 and therefore

1 Æ 2 < I1. Since 0 2 0 Æ x and 0 2 x Æ x for all x 2 H and 1 2 1 Æ 0, thus the only cases

which x Æ z 6< I1 are 2 Æ 1 = f2g and 2 Æ 0 = f2g. In the �rst case we let x = 2 and z = 1.

We show that y Æ 1 6< I1 or (2 Æ y) Æ 1 6< I1, for all y 2 H .

If y = 0, then

(2 Æ y) Æ 1 = (2 Æ 0) Æ 1 = f2g Æ 1 = f2g 6< I1

If y = 1, then

(2 Æ y) Æ 1 = (2 Æ 1) Æ 1 = f2g Æ 1 = f2g 6< I1

If y = 2, then

y Æ 1 = 2 Æ 1 = f2g 6< I1

The proof of the second case is similar. Therefore we prove that I1 = f0; 1g is a positive

implicative hyperK-ideal of type 4. Moreover since 2 6< 1 and 2 6< 0 we can conclude that I1
satis�es the additive condition. By a similar way we can show that I2 = f0; 2g is a positive

implicative hyperK-ideal of type 4 and satis�es the additive condition.

(() Let I be a proper positive implicative hyperK-ideal of type 4 and satis�es the

additive condition. Then by Theorem 2.12, I is a hyperK-ideal of H .

Example 3.9. Consider Example 2.2(iii). Then I = f0g is a hyperK-ideal of H , which

is not a positive implicative hyperK-ideal ,while it is additive. Since (1 Æ 2) Æ 2 = f0; 1; 2g <

f0g and 2 Æ 2 = f0; 1; 2g < f0g but 1 Æ 2 = f1; 2g 6< f0g. Thus in Theorem 3.8, I must be

proper and we can not omit this condition.

Theorem 3.10. Let H satis�es the normal condition. If I1 = f0; 1g (I2 = f0; 2g ) is a

hyperK-ideal of H , then I2 = f0; 2g (I1 = f0; 1g ) is a positive implicative hyperK-ideal

of type 4.

Proof. Let I1 = f0; 1g (I2 = f0; 2g ) is a hyperK-ideal of H . Then we have 2Æ1 = f2g 6<

I1(1 Æ 2 = f1g 6< I2). Thus 2 6< 1(1 6< 2), and since H satis�es the normal condition , we

get that 1 < 2(2 < 1). Hence by the proof of Theorem 3.6, I2(I1) is a positive implicative

hyperK-ideal of type 4.

Theorem 3.11. Let H satis�es the normal condition, I1 = f0; 1g and I2 = f0; 2g .

Then I1 or I2 is a hyperK ideal of H if and only if I1 and I2 both are positive implicative

hyperK-ideals of type 4.

Proof. ()) Let I1(I2) be a hyperK-ideal of H . Then by Theorems 3.8 and 3.10, I1(I2)

and I2(I1) both are positive implicative hyperK-ideals of type 4.

(() Let I1 and I2 both are positive implicative hyperK-ideals of type 4. SinceH satis�es

the normal condition , then 1 6< 2 or 2 6< 1. If 1 6< 2, then we can get that I2 satis�es the
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additive condition and so by Theorem 3.8, I2 is a hyperK-ideal of H . If 2 6< 1, then I1
satis�es the normal condition and so by Theorem 3.8, I1 is a hyperK-ideal of H .

Example 3.12. Let H = f0; 1; 2g. Then the following table shows a hyperK-algebra

structure on H .
Æ 0 1 2

0 f0g f0; 1; 2g f0; 1; 2g

1 f1g f0; 1g f0; 1; 2g

2 f2g f1g f0; 1; 2g

We can show that I2 = f0; 2g is a positive implicative hyperK-ideal of type 4 but

I1 = f0; 1g is not. Moreover H has not any proper hyperK-ideal.

Theorem 3.13. Let H satis�es the normal condition and H has a proper positive

implicative hyperK-ideal I of type 3. Then

(i) 1 Æ 0 = f1g; 2 Æ 0 = f2g

(ii) x Æ y 6= f0; 1; 2g, for all x; y 2 H .

(iii) If I = f0; 1g(I = f0; 2g), then 2 Æ 1 = f2g(1 Æ 2 = f1g) and x Æ y 6= f0; 2g(x Æ y 6=

f0; 1g), for all x; y 2 H .

Proof.(i) Let 1 Æ 0 6= f1g. Since 1 2 1 Æ 0 and 0 62 1 Æ 0, thus 1 Æ 0 = f1; 2g. Hence

f1; 2g = 1 Æ 0 � (1 Æ 0) Æ 0, by Theorem 2.3(x). Thus (1 Æ 0) Æ 0 < I and 0 Æ 0 < I , but

1 Æ 0 = f1; 2g 6� I which is a contradiction. Therefore, we conclude that 1 Æ 0 = f1g. By a

similar way, we can show that 2 Æ 0 = f2g.

(ii) If there exists x; y 2 H such that xÆy = f0; 1; 2g, then by Theorem 2.3(ix), f0; 1; 2g =

x Æ y � (x Æ 0) Æ y < I and 0 Æ y < I . Thus f0; 1; 2g = x Æ y � I , which is a contradiction.

(iii) Let I = f0; 1g. If 2 Æ 1 is equal to one of the subsets f0g; f1g; f0; 1g; f0; 2g and

f0; 1; 2g of H , then (2Æ1)Æ0 < I and 1Æ0 < I . So f2g = 2Æ0 � I , which is a contradiction.

Therefore we have 2 Æ 1 = f2g. Moreover, let there are x; y 2 H such that x Æ y = f0; 2g.

Then f0; 2g = x Æ y � (x Æ 0) Æ y < I; 0 Æ y < I and f0; 2g = x Æ y 6� I = f0; 1g. Thus for all

x; y 2 H; x Æ y 6= f0; 2g. The proof of the case I = f0; 2g, is similar.

Example 3.14. Let H = f0; 1; 2g. Then the following table shows a hyperK-algebra

structure on H .
Æ 0 1 2

0 f0; 1g f0; 1g f0; 1g

1 f1g f0; 1g f1g

2 f1; 2g f0; 1g f0; 1; 2g

We can show that I2 = f0; 2g is a positive implicative hyperK-ideal of type 2, but H

has not any proper positive implicative hyperK-ideal of type 3. Moreover there is x; y 2 H ,

such that x Æ y = f0; 1; 2g.

Corollary 3.15. There is not a hyperK-algebra of order 3 which satis�es the normal

condition and both of I1 = f0; 1g and I2 = f0; 2g be positive implicative hyperK-ideals of

type 3.

Proof. On the contrary let there is a hyperK-algebra H of order 3 such that both of I1
and I2 be positive implicative hyperK-ideals of type 3. Then by Theorem 3.13(ii), (iii) we

have 2 Æ 1 = f2g and 1 Æ 2 = f1g. So 2 6< 1 and 1 6< 2 which means that H does not satisfy

the normal condition.

Theorem 3.16. There are 17 non-isomorphism hyperK- algebras of order 3 which

satisfy the normal condition and each of them has only one proper positive implicative

hyperK-ideal of type 3.

Proof. Let H = f0; 1; 2g and the following table shows a probable hyperK-algebra

structure of H .
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H 0 1 2

0 a11 a12 a13
1 a21 a22 a23
2 a31 a32 a33

Let I = f0; 1g be a proper positive implicative hyperK-ideal of type 3. By Theorem

3.13,

a21 = 1 Æ 0 = f1g ; a31 = 2 Æ 0 = f2g ; a32 = 2 Æ 1 = f2g

f0; 2g 6= aij 6= f0; 1; 2g ; 8 1 � i; j � 3

Also, by (HK3) and (HK5) we have

0 2 a11 \ a12 \ a13 \ a22 \ a33

Since H satis�es the normal condition and 2Æ1 = f2g, then 2 6< 1 and so 1 < 2. This means

that 0 2 1 Æ 2 = a23. Therefore the only cases for a11; a12; a13; a22; a23 and a33 are f0g and

f0; 1g. That is there are 26 = 64 cases for H . By some manipulation we can conclude that

the following 17 cases are the requested hyperK-algebras. In fact each of the other cases

(i.e. 47 cases) is not a hyperK-algebra, since does not satisfy the condition (HK2).

H1 0 1 2

0 f0g f0g f0g

1 f1g f0g f0g

2 f2g f2g f0g

H2 0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f0g

2 f2g f2g f0g

H3 0 1 2

0 f0g f0g f0g

1 f1g f0g f0; 1g

2 f2g f2g f0g

H4 0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0g

H5 0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f0g

2 f2g f2g f0; 1g

H6 0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H7 0 1 2

0 f0g f0g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0g

H8 0 1 2

0 f0g f0g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H9 0 1 2

0 f0g f0; 1g f0; 1g

1 f1g f0g f0g

2 f2g f2g f0; 1g

H10 0 1 2

0 f0g f0; 1g f0g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H11 0 1 2

0 f0g f0; 1g f0; 1g

1 f1g f0g f0; 1g

2 f2g f2g f0; 1g

H12 0 1 2

0 f0g f0; 1g f0; 1g

1 f1g f0; 1g f0g

2 f2g f2g f0; 1g

H13 0 1 2

0 f0g f0; 1g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H14 0 1 2

0 f0; 1g f0g f0g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H15 0 1 2

0 f0; 1g f0g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g
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H16 0 1 2

0 f0; 1g f0; 1g f0g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

H17 0 1 2

0 f0; 1g f0; 1g f0; 1g

1 f1g f0; 1g f0; 1g

2 f2g f2g f0; 1g

Now we show that the above 17 hyperK-algebras are determined uniquely by isomor-

phism. Clearly H1 is not isomorphic to any Hi; 2 � i � 17 Because in H1; xÆy is a singleton

for all x; y 2 H1, while in each Hi; 2 � i � 17, there exist x; y 2 Hi such that x Æ y = f0; 1g.

Now we show that there is not an isomorphism between Hi and Hj for all 2 � i 6= j � 17.

Suppose f : Hi ! Hj be an isomorphism. Since the hyper operation on Hi and Hj are

di�erent, so f is not identity. Therefore we must have:

f(0) = 0 ; f(1) = 2 ; f(2) = 1

Now, since there are x; y 2 Hi such that x Æ y = f0; 1g, thus

f(x) Æ f(y) = f(x Æ y) = f(f0; 1g) = f0; 2g

It means that there are t; z 2 Hj such that t Æ z = f0; 2g, which is impossible. Hence f is

not an isomorphism. In other words each Hi is determined uniquely by isomorphism.

Note that we can �nd 17 hyperK-algebras of order 3 which satisfy the normal condition

and each of them has only one proper positive implicative hyperK-ideal f0; 2g of type 3.

But it is easy to check that each of these hyperK-algebras is isomorphic to one of the above

mentioned hyperK-algebras.

Lemma 3.17. Let H satis�es the simple condition. Then

(i) 1 Æ 2 6= f2g and 2 Æ 1 6= f1g.

(ii) 1 Æ 0 = f1g and 2 Æ 0 = f2g.

Proof.(i) On the contrary let 1Æ2 = f2g. By Theorem 2.3(vii), 1Æ2 < 1 and this implies

that 2 < 1 which is impossible, since H satis�es the simple condition. Thus 1 Æ 2 6= f2g.

Similarly, we can show that 2 Æ 1 6= f1g.

(ii) On the contrary let 1 Æ 0 6= f1g. Since 1 2 1 Æ 0 and 0 62 1 Æ 0, then we must have

1 Æ 0 = f1; 2g. Since 2 2 1 Æ 0, then 1 Æ 0 < 2. By Theorem 2.3(ii), 1 Æ 2 < 0 and so there is

a 2 1Æ2 such that a < 0. From (HK4) and (HK5) we get that a = 0 and so 0 2 1Æ2, that is

, 1 < 2 which is impossible. Therefore 1 Æ 0 = f1g. Similarly, we can show that 2 Æ 0 = f2g.

Theorem 3.18. Let H satisfy the simple condition. Then I1 = f0; 1g(I2 = f0; 2g) is a

positive implicative hyperK-ideal of type 4 if and only if, 2 Æ 1 = f2g(1 Æ 2 = f1g).

Proof.()) Let I1 = f0; 1g be a positive implicative hyperK-ideal of type 4 and on the

contrary let 2Æ1 6= f2g. Since H satis�es the simple condition, then 0 62 2Æ1. Moreover, by

Lemma 3.17, 2Æ1 6= f1g. Thus we have 2Æ1 = f1; 2g. So (2Æ1)Æ0 = f1; 2gÆ0 = f1; 2g < I1
and 1 Æ 0 = f1g < I1. Since I1 is of type 4 we conclude that 2 Æ 0 < I1. But by Lemma 3.17

we have 2 Æ 0 = f2g 6< I1, which is a contradiction. Hence 2 Æ 1 = f2g.

For the case of, I = f0; 2g, the proof is similar.

(() Let 2Æ1 = f2g(1Æ2 = f1g). On the contrapositive we show that if there are x; z 2 H

such that x Æ z 6< I1(I2), then for all y 2 H; y Æ z 6< I1(I2) or (x Æ y) Æ z 6< I1(I2). Since

xÆz 6< I1, we conclude xÆz = f2g. So by Lemma 3.17 we must have 2Æ1 = f2g(1Æ2 = f1g)

and 2 Æ 0 = f2g(1 Æ 0 = f1g). Now if we do similar to the proof of Theorem 3.8, we can get

that I1(I2) is a positive implicative hyperK-ideal of type 4.

Theorem 3.19. Let H satis�es the simple condition and I be a proper positive im-

plicative hyperK-ideal of type 3. Then

(i) 1 Æ 2 = f1g and 2 Æ 1 = f2g.
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(ii) x Æ y 6= f0; 1; 2g for all x; y 2 H .

(iii) If I = f0; 1g(I = f0; 2g), then x Æ y 6= f0; 2g(x Æ y 6= f0; 1g) for all x; y 2 H .

Proof. (i) Let 1 Æ 2 6= f1g. By Lemma 3.17(i) and simple condition, we will have

1 Æ 2 = f1; 2g. Thus (1 Æ 2) Æ 2 = f1; 2g Æ 2 = f0; 1; 2g < I and 2 Æ 2 < I , therefore 1 Æ 2 � I .

But 1 Æ 2 = f1; 2g 6� I , which is a contradiction. Hence 1 Æ 2 = f1g. Similarly we can show

that 2 Æ 1 = f2g.

(ii) Let there are x; y;2 H such that x Æ y = f0; 1; 2g. Then (x Æ 0) Æ y = f0; 1; 2g < I

and 0 Æ y < I , thus x Æ y � I . But x Æ y = f0; 1; 2g 6� I , which is a contradiction. Thus

x Æ y 6= f0; 1; 2g for all x; y 2 H .

(iii) Let I = f0; 1g and there are x; y 2 H such that x Æ y = f0; 2g. Then (x Æ 0) Æ y < I

and 0 Æ y < I , so x Æ y � I . But x Æ y = f0; 2g 6� I , which is a contradiction. Therefore

x Æ y 6= f0; 2g for all x; y 2 H .

For the case I = f0; 2g, the proof is similar.

Theorem 3.20. There is only one hyperK- algebra of order 3 which have two proper

positive implicative hyperK-ideals of type 3.

Proof. Let H
0

= f0; 1; 2g and the following table show a probable hyperK-algebra

structure of H
0

.

H
0

0 1 2

0 a11 a12 a13
1 a21 a22 a23
2 a31 a32 a33

Let I1 = f0; 1g and I2 = f0; 2g are proper positive implicative hyperK-ideals of type 3.

By Theorems 3.17 and 3.19,

a21 = 1 Æ 0 = f1g ; a31 = 2 Æ 0 = f2g ; a23 = 1 Æ 2 = f1g ; a32 = 2 Æ 1 = f2g

aij 6= f0; 1; 2g ; aij 6= f0; 1g ; aij 6= f0; 2g ; 8 1 � i; j � 3

Since by (HK3) and (HK5)

0 2 a11 \ a12 \ a13 \ a22 \ a33

Then we conclude that

a11 = a12 = a13 = a22 = a33 = f0g

Therefore the only hyperK-algebra which contains two proper positive implicative hyperK-

ideals of type 3 is as follows:

H
0

1
0 1 2

0 f0g f0g f0g

1 f1g f0g f1g

2 f2g f2g f0g

Theorem 3.21. There is 11 non-isomorphism hyperK- algebras of order 3 with simple

condition, such that they have just one proper positive implicative hyperK-ideal of type 3.

Proof. Let H
0

= f0; 1; 2g and suppose that the following table shows a probable hyperK-

algebra structure of H
0

.

H
0

0 1 2

0 a11 a12 a13
1 a21 a22 a23
2 a31 a32 a33
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Let I = f0; 1g be a positive implicative hyperK-ideal of type 3. By Theorems 3.17 and

3.19,

a21 = 1 Æ 0 = f1g ; a31 = 2 Æ 0 = f2g ; a23 = 1 Æ 2 = f1g ; a32 = 2 Æ 1 = f2g

f0; 2g 6= aij 6= f0; 1; 2g ; 8 1 � i; j � 3

By (HK3) and (HK5) we have

0 2 a11 \ a12 \ a13 \ a22 \ a33

Then the only cases for a11; a12; a13; a22 and a33 are f0g and f0; 1g. That is, there is 2
5 = 32

cases for H
0

. By some manipulation we show that 11 cases are hyperK-algebras. These

hyperK-algebras are shown by H
0

2
; H

0

3
; :::; H

0

12
. Each of the other cases (i.e 21 cases) is not

a hyperK-algebra because they do not satisfy the condition (HK2).

H
0

2
0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f1g

2 f2g f2g f0g

H
0

3
0 1 2

0 f0g f0g f0g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

4
0 1 2

0 f0g f0g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0g

H
0

5
0 1 2

0 f0g f0g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

6
0 1 2

0 f0; 1g f0g f0g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

7
0 1 2

0 f0g f0; 1g f0g

1 f1g f0g f1g

2 f2g f2g f0; 1g

H
0

8
0 1 2

0 f0g f0; 1g f0g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

9
0 1 2

0 f0; 1g f0g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

10
0 1 2

0 f0; 1g f0; 1g f0g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

11
0 1 2

0 f0g f0; 1g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

H
0

12
0 1 2

0 f0; 1g f0; 1g f0; 1g

1 f1g f0; 1g f1g

2 f2g f2g f0; 1g

Now similar to the proof of Theorem 3.16 we can see that each of the above hyperK-algebras

is determined by isomorphism.

Theorem 3.22. Let H satis�es the simple condition and I be a proper subset of H .

Then I is a hyperK-ideal of H if and only if I is a positive implicative hyperK-ideal of type

4

Proof.()) Let I be a hyperK-ideal of H and I = f0; 1g(I = f0; 2g). Then we must have

2 Æ 1 = f2g(1 Æ 2 = f1g), because in the other case we receive to a contradiction. So by

Theorem 3.18, I = f0; 1g(I = f0; 2g) is a positive implicative hyperK-ideal of type 4.

(() Let I be a positive implicative hyperK-ideal of type 4. If I = f0; 1g(I = f0; 2g),

then by Theorem 3.18 and Lemma 3.17, 2Æ1 = f2g(1Æ2 = f1g) and 2Æ0 = f2g(1Æ0 = f1g).

But this implies that I = f0; 1g(I = f0; 2g) is a hyperK-ideal of H .
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Corollary 3.23. Let 0 2 H be a right scalar element. If I is a proper positive implicative

hyperK-ideal of type 2, then I is a positive implicative hyperK-ideal of type 4.

Proof. The proof follows from Theorems 2.10, 3.8 and 3.22.

Example 3.24. (i) The converse of Corollary 3.23 is not correct in general. To show

this consider Example 2.2(iii). Then I1 = f0; 1g is a positive implicative hyperK-ideal of

type 4 but it is not of type 2, since (2 Æ 0) Æ 0 = f2g < f0; 1g = I and 0 Æ 0 = f0g � I but

2 Æ 0 = f2g 6� I .

(ii) Let H = f0; 1; 2g. Then the following table shows a hyperK-algebra structure on

H .
Æ 0 1 2

0 f0; 1; 2g f0; 1; 2g f0; 1; 2g

1 f1g f0; 1; 2g f1; 2g

2 f1; 2g f0; 1g f0; 1; 2g

Clearly that I2 = f0; 2g is a positive implicative hyperK-ideal of type 2 but it is not of

type 4, since (1 Æ 2) Æ 0 = f1; 2g < I2 and 2 Æ 0 = f0; 1g < I2 but 1 Æ 0 = f1g 6< I2. Therefore

this example show that the right scalar element in Corollary 3.16 is necessary.

Problem 1. Let H satis�es the simple condition. Are I1 = f0; 1g and I2 = f0; 2g are

positive implicative hyperK-ideal of type 1?.

Problem 2. Give a characterization of hyperK-algebras of order 3 which have at least

one proper positive implicative hyperK-ideals of type 2.
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