SYMMETRIC BI-DERIVATION ON PRIME GAMMA RINGS

Mehmet Ali Öztürk, Mehmet Sapanci, Muharrem Soytürk and Kyung Ho Kim

Received November 17, 1999; revised April 18, 2000

Abstract. Maksan in [3] and [4], and Vukman in [8] worked the trace of symmetric bi-derivation. In [9], Yenigül and Arıcan extended a part of the working on [8] to the ideal of ring. In this paper, we extended all of the working on [8] to the ideal of prime Γ-ring.

1. Introduction

The notion of a gamma ring was introduced by Nobusawa in [5] as a generalized notion of a ring and it was defined in [1] as follows: Let M and Γ be additive abelian groups. M is called a Γ-ring if the following conditions are satisfied. For any $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, there hold

1. $a \alpha b \in M$
2. $(a + b)\alpha c = a \alpha c + b \alpha c$,
 \[a(\alpha + \beta)b = a\alpha b + a\beta b, \]
 \[a\alpha (b + c) = a\alpha b + a\alpha c, \]
3. $(a\alpha b)\beta c = a\alpha (b\beta c)$.

Every ring is a Γ-ring and many notions on the ring theory are generalized to the Γ-ring. Let M be a Γ-ring. A Γ-subring of M is an additive subgroup N such that $\Gamma N \subset N$ and the subset $Z = \{a \in M \mid a\alpha m = m a\alpha, \text{ for any } m \in M, a \in \Gamma\}$ is called the center of M. A right (resp. left) ideal of M is an additive abelian group I such that $\Gamma M \subset I$ (resp. $M \Gamma \subset I$). If I is both a right and left ideal, then we say that I is an ideal. M is called a prime Γ-ring if $a\Gamma M \Gamma b = 0$ imply $a = 0$ or $b = 0$, $(a, b \in M)$. Semi-prime ring is defined similarly. Throughout, M will be a Γ-ring. A map $D(\cdot, \cdot) : M \times M \to M$ is called symmetric bi-additive if it is additive in both arguments and $D(x, y) = D(y, x)$ for any $x, y \in M$. Then the map $d : M \to M$ defined by $d(x) = D(x, x)$ is called the trace of D. A symmetric bi-additive map is called symmetric bi-derivation if

\[D(\alpha xy, z) = D(x, z)\alpha y + x\alpha D(y, z) \]

for all $x, y, z \in M$ and $\alpha \in \Gamma$.

Definition 1. Let M be a Γ-ring. For a subset I of M, $\text{Ann}_I = \{a \in M \mid a\Gamma I = 0\}$ is called the left annihilator of I. A right annihilator $\text{Ann}_r I$ can be defined similarly.

To make the paper self-containing we give the sketch proofs of the following Lemmas:

1991 Mathematics Subject Classification. 03E72, 16Y30, 16A76.

Key words and phrases. Symmetric bi-derivation, Gamma ring, Prime gamma ring.
LEMMA 1. [4, Lemma 3.4.5]. Let M be a semi-prime Γ-ring and I a non-zero ideal of M. Then $\text{Ann} I = \text{Ann}_\Gamma I$.

Proof. $\text{Ann}_\Gamma I = \{ a \in M \mid \Gamma a = 0 \}$ is a right ideal of M, that is, $(\text{Ann}_\Gamma I) \Gamma M \subseteq \text{Ann}_\Gamma I$. Similarly for Ann_I we can write $M \Gamma (\text{Ann}_I) \subseteq \text{Ann}_I$. Since M is a semi-prime Γ-ring, $(\text{Ann}_\Gamma I) \Gamma I = \{ 0 \}$, so $\text{Ann}_\Gamma I \subseteq \text{Ann}_I$. In the same manner $\Gamma (\text{Ann}_I) \Gamma (\text{Ann}_I) = \{ 0 \}$ gives us that $\Gamma (\text{Ann}_I) = \{ 0 \}$ as M is a semi-prime Γ-ring. That is, $\text{Ann}_I \subseteq \text{Ann}_\Gamma I$. So $\text{Ann}_I = \text{Ann}_\Gamma I$.

Let M be a semi-prime Γ-ring and I non-zero ideal of M. Then we will denote $\text{Ann} I = \text{Ann}_\Gamma I = \text{Ann}_I$.

LEMMA 2. [4, Lemma 3.4.6]. Let M be a semi-prime Γ-ring, I a non-zero ideal of M. Then

(i) $\text{Ann} I$ is an ideal of M,

(ii) $(\text{Ann} I) \cap I = \{ 0 \}$.

Proof. (i) Let $a \in \text{Ann} I$. So by Lemma 1 $a \Gamma I = 0 = I \Gamma a$. If $a, b \in \text{Ann} I$, then $x a (a - b) = x a a - x a b = 0$ and $(a - b) x a = a x a - b x a = 0$ for all $x \in I$ and $\alpha \in \Gamma$. So we have $a - b \in \text{Ann} I$. For all $a \in \text{Ann} I$, $x \in I, m \in M$ and $\alpha, \beta \in \Gamma$, $(a m) \beta x = a (m \beta x) = 0$ and $x \beta (a m) = (x \beta a) m = 0$ so we get $(\text{Ann} I) \Gamma M \subseteq \text{Ann} I$. Similarly we get $M \Gamma (\text{Ann} I) \subseteq \text{Ann} I$.

(ii) Since $(\text{Ann} I) \cap I$ is an ideal of M and $(\text{Ann} I) \cap I \cap I = \{ 0 \}$, we have $(\text{Ann} I) \cap I \cap (\text{Ann} I) \cap I = \{ 0 \}$ and since M is a semi-prime Γ-ring we get $(\text{Ann} I) \cap I = \{ 0 \}$.

2. Results

LEMMA 3. Let M be a 2-torsion free semi-prime Γ-ring, I a non-zero ideal of M and $a, b \in M$. Then the following are equivalent,

(i) $axb = 0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$

(ii) $baxa = 0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$

(iii) $axb + bxax = 0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$.

If one of the conditions is fulfilled and $\text{Ann}_\Gamma I = 0$ then $acb = 0 = bac$ for all $\alpha \in \Gamma$, moreover if M is a prime Γ-ring then $a = 0$ or $b = 0$.

Proof. (i) \Rightarrow (ii). Suppose that $axb = 0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$. Then $baxa = 0$ for all $x, y \in I$ and $\alpha, \beta, \gamma, \beta' \in \Gamma$. By writing $y' \gamma' m$ for y, we get $baxb \gamma' \gamma' \beta' baxa = 0$ where $m \in M$ and $\gamma' \in \Gamma$, hence

$$baxb \gamma' \gamma' \beta' baxa \gamma' y = 0$$

Now since M is a semi-prime Γ-ring we have $baxb \gamma' \gamma' \beta' baxa \gamma' y = 0$ for all $x, y \in I$ and $\alpha, \beta, \gamma \in \Gamma$. That is $baxa \in \text{Ann}_\Gamma I$. Therefore $baxa \in (\text{Ann}_\Gamma I) \cap I = \{ 0 \}$ by Lemma 1 and Lemma 2.

(ii) \Rightarrow (i). This can be done similarly.

(iii) \Rightarrow (i). Suppose that $axb + bxax = 0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$. In the above equation, writing $x' b \alpha' m \beta' \alpha x \beta$ for x, then

$$axb x' b \alpha' m \beta' \alpha x \beta b = - baxb x' b \alpha' m \beta' \alpha x \beta b$$

$$= - (baxb x' b \alpha' m \beta' \alpha x \beta b)$$

$$= a x' b \alpha' m \beta' (bax \beta)$$

$$= - (baxb x' b \alpha' m \beta' \alpha x \beta b)$$
then we have \(2\alpha(x\beta\alpha'dm'b\alpha x)\beta b = 0\). Since \(M\) is 2-torsion free, we get
\[
(a\alpha x\beta b)m'b\alpha(x\alpha x\beta b) = 0
\]
for all \(x \in I, \alpha, \beta, \alpha', \beta' \in \Gamma\) and \(m \in M\). Next, since \(M\) is semi-prime \(\Gamma\)-ring, then \(a\alpha x\beta b = 0\) for all \(x \in I, \alpha, \beta \in \Gamma\).

If \(a\Gamma I\Gamma b = 0\), then we also have \((b\Gamma a)\Gamma I\Gamma(b\Gamma a) = 0\) and \((a\Gamma b)\Gamma I\Gamma(a\Gamma b) = 0\). Hence \(b\alpha a\beta x = 0\) and \(a\alpha b\beta x = 0\) for all \(x \in I, \alpha, \beta \in \Gamma\), since \(M\) is a semi-prime \(\Gamma\)-ring and \(I\) is a non-zero ideal of \(M\). This says that \(a\alpha b, b\alpha a \in \text{Ann} I\). Since \(\text{Ann} I = (0)\), we have \(a\Gamma b = 0 = b\Gamma a\). Finally if \(a\Gamma I\Gamma b = 0\), then \(a = 0\) or \(b = 0\) as \(M\) is a prime \(\Gamma\)-ring by [3, Lemma 2(iii)].

Lemma 4. Let \(M\) be a 2, 3-torsion free semi-prime \(\Gamma\)-ring, \(I\) a non-zero ideal of \(M\). Let \(D_1(\ldots)\) and \(D_2(\ldots)\) be a symmetric bi-derivations of \(M\) with \(d_1\) and \(d_2\) respectively. Then,

(i) If \(d_1(I\Gamma I\Gamma d_2(I) = 0\) then \(d_1(M)\Gamma I\Gamma d_2(M) = 0\).

(ii) If \(\text{Ann} I = 0\) and \(d_1(M)\Gamma I\Gamma d_2(M) = 0\) then \(d_1(M)\Gamma M\Gamma d_2(M) = 0\).

Proof. (i) Suppose for all \(x, y, z \in I\) and \(\alpha, \beta \in \Gamma\)
\[
d_1(x)\alpha\beta d_2(x) = 0
\]
Linearizing (1) we get
\[
0 = d_1(x + y)\alpha\beta d_2(x + y)
\]
\[
= d_1(x)\alpha\beta d_2(x) + d_1(x)\alpha\beta d_2(y) + 2d_1(x)\alpha\beta d_2(x, y)
\]
\[
+ d_1(y)\alpha\beta d_2(x) + d_1(y)\alpha\beta d_2(y) + 2d_1(y)\alpha\beta d_2(x, y)
\]
\[
+ 2d_1(x, y)\alpha\beta d_2(x) + 2d_1(x, y)\alpha\beta d_2(y)
\]
\[
+ 4d_1(x, y)\alpha\beta d_2(x, y)
\]
and using (1) we have
\[
d_1(x)\alpha\beta d_2(y) + 2d_1(x)\alpha\beta D_2(x, y) + d_1(y)\alpha\beta d_2(x)
\]
\[
+ 2d_1(y)\alpha\beta D_2(x, y) + 2D_1(x, y)\alpha\beta d_2(x)
\]
\[
+ 2D_1(x, y)\alpha\beta d_2(y) + 4D_1(x, y)\alpha\beta D_2(x, y)
\]
\[
= 0
\]
Replacing \(x\) by \((-x)\) in (2) we write for all \(x, y, z \in I\) and \(\alpha, \beta \in \Gamma\)
\[
d_1(x)\alpha\beta d_2(y) - 2d_1(x)\alpha\beta D_2(x, y) + d_1(y)\alpha\beta d_2(x)
\]
\[
- 2d_1(y)\alpha\beta D_2(x, y) - 2D_1(x, y)\alpha\beta d_2(x)
\]
\[
- 2D_1(x, y)\alpha\beta d_2(y) + 4D_1(x, y)\alpha\beta D_2(x, y)
\]
\[
= 0
\]
Since \(M\) is 2-torsion free, from (2) and (3) we get for all \(x, y, z \in I\) and \(\alpha, \beta \in \Gamma\)
\[
d_1(y)\alpha\beta d_2(x) + d_1(x)\alpha\beta d_2(y) + 4D_1(x, y)\alpha\beta D_2(x, y) = 0
\]
Writing \(x + w\) for \(x\) in (4) we can write for all \(x, y, z \in I\) and \(\alpha, \beta \in \Gamma\)
\[
D_1(x, w)\alpha\beta d_2(x) + d_1(y)\alpha\beta D_2(x, w) + 2D_1(x, y)\alpha\beta D_2(y, w)
\]
\[
+ 2D_1(y, w)\alpha\beta D_2(x, y) = 0
\]
Writing y for w in (5) and since M is 3-torsion free, we obtain that for all $x, y, z \in I, \alpha, \beta \in \Gamma$
\[D_1(x, y) \alpha z \beta d_2(y) + d_1(y) \alpha z \beta D_2(x, y) = 0 \] (6)
Replacing z by $\beta \delta(k(y) \alpha \gamma \delta D_1(x, y) \alpha z$ we get for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \alpha', \beta' \in \Gamma$
\[D_1(x, y) \alpha \beta \delta d_2(y) \alpha \gamma \gamma \delta D_1(x, y) \alpha z \beta d_2(y) \]
\[= -d_1(y) \alpha \beta \delta d_2(y) \alpha \gamma \gamma \delta D_1(x, y) \alpha z \beta d_2(x, y) \]

and from (1) we get for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \alpha', \beta' \in \Gamma$
\[d_1(x, y) \alpha \beta \delta d_2(y) \alpha \gamma \gamma \delta D_1(x, y) \alpha z \beta d_2(y) = 0 \]
and Since M is a semi-prime Γ-ring we get for all $x, y, z \in M, \alpha, \beta \in \Gamma$
\[D_1(x, y) \alpha \beta \delta d_2(y) = 0 \] (7)
Now writing $m \gamma z$ for z in (7) where $m \in M, \gamma \in \Gamma$, we get for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$
\[D_1(x, y) \alpha m \beta \gamma z \beta d_2(y) = 0 \] (8)
Next, replacing x by $x \gamma m$ in (7) and from (8), we have for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$
\[x \gamma D_1(m, y) \alpha z \beta d_2(y) = 0 \] (9)
Now, we say that (9) implies
\[D_1(m, y) \alpha z \beta d_2(y) \in Ann_I \]
and also $D_1(m, y) \alpha z \beta d_2(y) \in I$ and so $D_1(m, y) \alpha z \beta d_2(y) \in (Ann_I) \cap I = 0$ by Lemma 1
and Lemma 2. Thus, for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(y) = 0 \] (10)
Now replacing y by $x + y$ in (10) and using (10) we get, for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(x + y) + 2D_1(m, y) \alpha z \beta D_2(x, y) + D_1(m, x) \alpha z \beta d_2(y) \]
\[= 2D_1(m, x) \alpha z \beta D_2(x, y) = 0 \] (11)
Writing $-x$ for x in (11), we get for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(x) - 2D_1(m, y) \alpha z \beta D_2(x, y) - D_1(m, x) \alpha z \beta d_2(y) \]
\[+ 2D_1(m, x) \alpha z \beta D_2(x, y) = 0 \] (12)
Since M is 2-torsion free, then from (11) and (12) we write for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(x) + 2D_1(m, x) \alpha z \beta D_2(x, y) = 0 \] (13)
Writing $\beta \delta d_2(x) \alpha \gamma \gamma \delta D_1(m, y) \alpha z$ for z in (13) and using (10) we get, for all $x, y, z \in I,$
and $m, m' \in M$ and $\alpha, \beta, \alpha', \beta' \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(x) \alpha \gamma \gamma \delta D_1(m, y) \alpha z \beta d_2(x) = 0 \] (14)
Since M is semi-prime Γ-ring, (14) implies for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$
\[D_1(m, y) \alpha z \beta d_2(x) = 0 \] (15)
Replacing z by $m \gamma z$ in (15) we get for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$
\[D_1(m, y) \alpha m \beta \gamma z \beta d_2(x) = 0 \] (16)
Next, replacing y by $y \gamma m$ in (15) and from (16), we get for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$
\[y \gamma D_1(m) \alpha z \beta d_2(x) = 0 \] (17)
From (17), we can write that $d_1(m) \alpha z \beta d_2(x) \in Ann_I$ and
\[d_1(m) \alpha z \beta d_2(x) \in I \]. So we get $d_1(m) \alpha z \beta d_2(x) \in (Ann_I) \cap I = (0)$ by Lemma 1 and
Lemma 2. Thus, for all $x, y, z \in I, \alpha, \beta \in \Gamma$
\[d_1(m)\alpha \beta d_2(x) = 0 \]
(18)

Writing \(x + y \) for \(x \) in (18), from (18) and using the fact that \(M \) is 2-torsion free we get, for all \(x, y, z \in I, m \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \gamma d_2(x, y) = 0 \]
(19)

Replacing \(z \) by \(x \gamma n \) in (19) we get for all \(x, y, z \in I, m, n, \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \gamma n d_2(x, y) = 0 \]
(20)

Replacing \(x \) by \(n \gamma x \) in (19) from (20) we get, for all \(x, y, z \in I, m, n, \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \gamma n d_2(x, y) = 0 \]
(21)

Since \(d_1(m)\alpha \beta d_2(n, y) \in \text{Ann}_I \) from (21) and \(d_1(m)\alpha \beta D_2(n, y) \in I \), we get
\[d_1(m)\alpha \beta D_2(n, y) \in (\text{Ann}_I) \cap I = (0) \]
(22)

by Lemma 1 and Lemma 2. Thus, for all \(x, y, z \in I, m, n \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \beta D_2(n, y) = 0 \]
(23)

Writing \(\gamma n \) for \(z \) in (22), we get for all \(y, z \in I, m, n \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \gamma n d_2(n, y) = 0 \]
(24)

and replacing \(y \) by \(n \gamma y \) in (22) and using (23), we get for all \(y, z \in I, m, n \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \gamma n d_2(n, y) = 0 \]
(25)

Now since \(d_1(m)\alpha \beta d_2(n) \in \text{Ann}_I \) and \(d_1(m)\alpha \beta d_2(n) \in I \), from (24) we get
\[d_1(m)\alpha \beta d_2(n) \in (\text{Ann}_I) \cap I = (0) \]
(26)

by Lemma 1 and Lemma 2. Hence, for all \(z \in I, m, n \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \beta d_2(n) = 0 \]
(27)

\(\text{(ii)} \) Suppose that for all \(z \in I, m, n \in M \) and \(\alpha, \beta, \gamma \in \Gamma
\]
\[d_1(m)\alpha \beta d_2(n) = 0 \]
(28)

Replacing \(z \) by \(m' \beta d_2(n) \gamma z \beta' n' \gamma' d_1(m)\alpha m' \) we get, for all \(z \in I, m, n, m', n' \in M \) and \(\alpha, \beta, \gamma, \beta', \gamma' \in \Gamma
\]
\[d_1(m)\alpha m' d_2(n) \gamma z \beta \beta' n' \gamma' d_1(m)\alpha m' \beta d_2(y) = 0 \]
(29)

Since \(M \) is a semi-prime \(\Gamma \)-ring, we get for all \(\alpha, \beta, \gamma \in \Gamma \) and \(m, n, m' \in M
\]
\[d_1(m)\alpha m' d_2(n) \gamma z \beta \beta' n' \gamma' d_1(m)\alpha m' d_2(y) = 0 \]
(30)

Finally, since \(d_1(m)\alpha m' d_2(n) \in \text{Ann}_I(I) = (0) \), then we get for all \(m, n, m' \in M
\]
\[d_1(m)\alpha m' d_2(n) = 0 \]
(31)

LEMMA 5. Let \(M \) be a 2-torsion free \(\Gamma \)-ring and I a nonzer one-sided ideal of \(M \). Let \(D(\cdot, \cdot) \) be a symmetric bi-derivation with the trace \(d \). Consider the following conditions:

\(\text{(i)} \) \(d(x) = 0 \), for all \(x \in I \)

\(\text{(ii)} \) \(D(x, y) = 0 \), for all \(x, y \in I \)

\(\text{(iii)} \) \(D(m, y) = 0 \), for all \(y \in I \) and \(m \in M \)

\(\text{(iv)} \) \(D(m, n) = 0 \), for all \(m, n \in M \).

Then (i) and (ii) are equivalent. Moreover if \(M \) is a prime \(\Gamma \)-ring or \(\text{Ann}_I(I) = 0 \) (resp. \(\text{Ann}_I(I) = 0 \)), then the above conditions are equivalent.

PROOF. Let \(I \) be a right ideal of \(M, m, n \in M, x, y \in I \) and \(\alpha, \beta, \gamma \in \Gamma \) be arbitrary elements. Since
\[d(x + y) = d(x) + d(y) + 2D(x, y) \]
and \(M \) is 2-torsion free, (i) and (ii) are equivalent. Replacing \(x \) by \(\alpha m \) in \(D(x, y) = 0 \), we have
\[0 = D(\alpha m, y) = D(x, y)\alpha m + x\alpha D(m, y) \]
If \(M \) is a prime \(\Gamma \)-ring, then by [3, Lemma 2 (ii)] and above condition show that (ii) and (iii) are equivalent. If \(\text{Ann}_I(I) = (0) \), then the above condition shows that (ii) and (iii) are equivalent. Moreover replacing \(y \) by \(\gamma n \) in \(D(m, y) \), (iii) and (iv) are equivalent. Similarly we can prove these results for a left ideal \(I \).
LEMMA 6. Let M be a 2-torsion free Γ-ring and I be a Γ-sub-ring of M. Let $D_1(\ldots)$ and $D_2(\ldots)$ be the symmetric bi-derivations of M with d_1 and d_2 respectively. If $D_1(d_2(x), x) = 0$ for all $x \in I$ then
\[d_1(x)\alpha x\beta d_2(x) + d_2(x)\alpha x\beta d_1(x) = 0 \quad (27) \]
for all $x, y \in I$ and $\alpha, \beta \in \Gamma$.

PROOF. By linearizing $D_1(d_2(x + y), x + y) = 0$ for any $x, y \in I$ and $\alpha, \beta \in \Gamma$ we have
\[D_1(d_2(x), y) + D_1(d_2(y), x) + 2D_1(D_2(x, y), x) + 2D_1(D_2(x, y), y) = 0 \]
Replacing x by $-x$ the above equation,
\[D_1(d_2(x), y) - D_1(d_2(y), x) + 2D_1(D_2(x, y), x) - 2D_1(D_2(x, y), y) = 0 \]
Now adding the last two equations together and using the fact that M is 2-torsion free, we get
\[D_1(d_2(x), y) + 2D_1(D_2(x, y), x) = 0 \quad (28) \]
Now writing $x\alpha y$ for y in (28) we obtain
\[d_1(x)\alpha yD_2(x, y) + d_2(x)\alpha D_1(x, y) = 0 \quad (29) \]
Finally replacing y by $y\beta x$ in (29) we get the result.

LEMMA 7. Let M be a 2,3-torsion free Γ-ring and I a non-zero Γ-sub-ring of M. Let $D_1(\ldots)$ and $D_2(\ldots)$ be symmetric bi-derivations of M with the traces d_1 and d_2 respectively. Let $F(\ldots)$ be a symmetric bi-additive map of M with the trace f. If $d_1(d_2(x)) = f(x)$ for all $x \in I$, then
\[D_1(y, d_2(y))\alpha x\beta d_2(y) + d_2(y)\alpha x\beta D_1(y, d_2(y)) = 0 \quad (30) \]
for all $x, y \in I$ and $\alpha, \beta \in \Gamma$.

PROOF. For any $x, y \in I$, since $d_1(d_2(x + y)) + d_1(d_2(-x + y)) = f(x + y) + f(-x + y)$ and M is a 2-torsion free, we get
\[D_1(d_2(x), d_2(y)) + 2d_1(D_2(x, y)) = 0 \quad (31) \]
By considering $x = y$ in (31), we have $d_1(d_2(x)) = 0$. Moreover replacing x by $x + y$ in (31) we get
\[D_1(D_2(x, y), d_2(y)) = 0 \quad (32) \]
for all $x, y \in I$. Replacing x by $x\alpha y$ in (32) we write for all $x, y \in I$ and $\alpha, \beta \in \Gamma$
\[D_1(x, d_2(y))\alpha d_2(y) + D_2(x, y)\alpha D_1(y, d_2(y)) = 0 \quad (33) \]
Writing $y\beta x$ for y in (33) then we have (30).

Now by Lemma 3, 6, and 3, 5 and 6, we have the following.

THEOREM 1. Let M be a 2-torsion free prime Γ-ring, I a non-zero ideal of M and also assume that d_1, d_2 are the traces of the symmetric bi-derivations $D_1(\ldots)$ and $D_2(\ldots)$ of M respectively.
If $D_1(d_2(x), x) = 0$ for all $x \in I$, then $D_1 = 0$ or $D_2 = 0$.

By Lemma 3, 5, 7 and Theorem 1, we see the following.

THEOREM 2. Let M be a 2,3-torsion free prime Γ-ring, I a non-zero ideal of M. Let $D_1(\ldots)$ and $D_2(\ldots)$ be the symmetric bi-derivation of M, $F(\ldots)$ a symmetric bi-additive map of M and d_1, d_2 and f the traces of $D_1(\ldots)$ and $D_2(\ldots)$ and $F(\ldots)$ respectively such that $d_2(I) \subset I$. If $d_1(d_2(x)) = f(x)$ for all $x \in I$, then $D_1 = 0$ or $D_2 = 0$.

For a semi-prime Γ-ring, we have

THEOREM 3. Let M be a 2-torsion free semi-prime Γ-ring, I a non-zero ideal of M, $D(\ldots)$ the symmetric bi-derivation of M and d the trace of $D(\ldots)$. If $D(d(x), x) = 0$ for all $x \in I$ and Ann_I, I, then $D = 0$

PROOF. Take $D_1 = D_2 = D$ in Lemma 6. By Lemma 4 and since M is a 2-torsion free semi-prime Γ-ring, $d(x) = 0$, $x \in I$ and by Lemma 5, the result is easily seen.
THEOREM 4. Let M be a $2,3$-torsion free semi-prime Γ-ring, I a non-zero ideal of M. Let $D(\cdot \cdot)$ be the symmetric bi-derivation of M, $F(\cdot \cdot \cdot)$ a symmetric bi-additive map of M and d,f the traces of $D(\cdot \cdot \cdot)$, $F(\cdot \cdot \cdot)$ respectively such that $d(I) \subset I$. If $d(d(x)) = f(x)$ for all $x \in I$, then $D = 0$.

PROOF. Replacing x by $x\alpha z$ in (32), we have for all $x,y,z \in I$ and $\alpha \in \Gamma$

$$D(x,d(y))\alpha D(z,y) + D(x,y)\alpha D(z,d(y)) = 0$$ \hfill (34)

By writing $z\beta x$ for z in (34) and from (34), we get for all $x,y,z \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,d(y))\alpha z\beta D(x,y) + D(x,y)\alpha z\beta D(x,d(y)) = 0$$ \hfill (35)

So by Lemma 3, we have for all $x,y,z \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,d(y))\alpha z\beta D(x,y) = 0$$ \hfill (36)

Writing $y+w$ for y in (36), we get, for all $x,y,z \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,d(y))\alpha z\beta D(x,w) + D(x,d(y))\alpha z\beta D(x,y)$$
$$+ 2D(x,d(w))\alpha z\beta D(x,y)$$
$$+ 2D(x,D(y,w))\alpha z\beta D(x,w) = 0$$ \hfill (37)

Replacing w by $-w$ in (37), we have for all $x,y,z \in I$ and $\alpha, \beta \in \Gamma$

$$-D(x,d(y))\alpha z\beta D(x,w) + D(x,d(w))\alpha z\beta D(x,y)$$
$$- 2D(x,d(w))\alpha z\beta D(x,y)$$
$$+ 2D(x,D(y,w))\alpha z\beta D(x,w) = 0$$ \hfill (38)

Adding up (37) and (38) and using the fact that M is 2-torsion free, then we have for all $x,y,z \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,d(w))\alpha z\beta D(x,y) = 0$$ \hfill (39)

Replacing z by $z\beta D(x,y)\alpha m\beta D(x,d(y))\alpha z$ in (39) and using (36) and the fact that M is a semi-prime Γ-ring, we get for all $x,y,z,w \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,d(w))\alpha z\beta D(x,y) = 0$$ \hfill (40)

Substituting $w+t$ for w in (40), and from (40) and since M is 2-torsion free, we have for all $x,y,z,w,t \in I$ and $\alpha, \beta \in \Gamma$

$$D(x,D(w,t))\alpha z\beta D(x,y) = 0$$ \hfill (41)

Writing $k\gamma z$ for z in (41) we get for all $x,y,z,w,t \in I$ and $\alpha, \beta, \gamma \in \Gamma$

$$D(x,D(w,t))\alpha k\gamma z\beta D(x,y) = 0$$ \hfill (42)

In the similar manner, writing $w\gamma k$ for w in (41), and from (41) and (42), we have for all $x,y,z,w,t,k \in I$ and $\alpha, \beta, \gamma \in \Gamma$

$$D(x,w)\gamma D(k,t)\alpha z\beta D(x,y) + D(w,\gamma \gamma D(x,k)\alpha z\beta D(x,y) = 0$$ \hfill (43)

Writing $d(p)$ for k in (43) and by (40) we get for all $x,y,z,w,t,k,p \in I$ and $\alpha, \beta, \gamma \in \Gamma$

$$D(x,w)\gamma D(t,d(p))\alpha z\beta D(x,y) = 0$$ \hfill (44)

Writing $p+k$ for p in (44) and by (44) again, since M is 2-torsion free, we get for all $x,y,w,u,k,p \in I$ and $\alpha, \beta, \gamma \in \Gamma$

$$D(x,w)\gamma D(t,D(k,p))\alpha z\beta D(x,y) = 0$$ \hfill (45)

Replacing z by $q\gamma z$ in (45) we get for all $x,y,z,w,t,k,p \in I$ and $\alpha, \beta, \gamma, \gamma' \in \Gamma$

$$D(x,w)\gamma D(t,D(k,p))\alpha q\gamma z\beta D(x,y) = 0$$ \hfill (46)

Writing α' and α for α and γ respectively in (46) we have for all $x,y,z,w,t,k,p,q \in I$ and $\alpha, \beta, \gamma, \gamma' \in \Gamma$

$$D(x,w)\gamma D(t,D(k,p))\alpha q\alpha z\beta D(x,y) = 0$$ \hfill (47)

Replacing t by $\alpha \gamma q$ in (45) again and using (47) we have for all $x,y,z,w,t,k,p,q \in I$ and $\alpha, \beta, \gamma, \alpha' \in \Gamma$
\[D(x,w)\gamma\alpha D(q, D(k, p))\alpha z\beta D(x, y) = 0 \] (48)

Writing \(\alpha t k \) for \(k \) in (45) and from (47) and (48), we get for all \(x, y, z, w, t, k, p, q \in I \) and \(\alpha, \beta, \gamma, \alpha' \in \Gamma \)

\[D(x,w)\gamma D(t,q)\alpha D(k,p)\alpha z\beta D(x, y) + D(x,w)\gamma D(q,p)\alpha' D(t,k)\alpha z\beta D(x, y) = 0 \] (49)

Replacing \(p \) by \(t \) in (49) and since \(M \) is 2-torsion free, we get for all \(x, y, z, w, t, k, p, q \in I \) and \(\alpha, \beta, \gamma, \alpha', \beta', \gamma' \in \Gamma \)

\[D(x,w)\gamma D(t,q)\alpha D(k,t)\alpha z\beta D(x, y) = 0 \] (50)

Replacing \(z \) by \(z' m' D(x, w)\gamma D(t,q) \) in (50) we have, for all \(x, y, z, w, t, k, p, q \in I \) and \(\alpha, \beta, \gamma, \alpha', \beta', \gamma' \in \Gamma \)

\[D(x,w)\gamma D(t,q)\alpha D(k,t)\alpha z' m' D(x, w)\gamma D(t,q) \beta D(x, y) = 0 \] (51)

Taking \(\beta \) for \(\alpha' \) and \(x, y \) for \(k, t \) respectively in the previous and using the fact that \(M \) is a semi-prime \(\Gamma \)-ring then we have, for all \(x, y, z, w, q \in I \) and \(\alpha, \beta, \gamma \in \Gamma \)

\[D(x,w)\gamma D(y,q) \beta D(x, y) = 0 \] (52)

From (52), Since \(D(x,w)\gamma D(y,q) \beta D(x, y) \in \text{Ann}_I I = 0 \), we get for all \(x, y, w, t, q \in I \) and \(\beta, \gamma \in \Gamma \)

\[D(x,w)\gamma D(y,q) \beta D(x, y) = 0 \] (53)

Writing \(w oz \) for \(w \) in (53), we get for all \(x, y, z, w, t, q \in I \) and \(\alpha, \beta, \gamma \in \Gamma \)

\[D(x,w)\alpha z\gamma D(y,q) \beta D(x, y) = 0 \] (54)

Replacing \(z, t \) and \(q \) by \(D(x,y)\beta z' \gamma' m, x \) and \(w \) respectively, we get for all \(x, y, z, w \in I, m \in M \) and \(\alpha, \beta, \gamma, \beta', \gamma' \in \Gamma \)

\[D(x,w)\alpha D(x,y)\beta z' \gamma' m D(x, w) \beta D(x, y) = 0 \] (55)

Taking \(\alpha \) for \(\beta \) in (55) and Since \(M \) is a semi-prime \(\Gamma \)-ring, we have for all \(x, y, z, w \in I \) and \(\alpha, \beta \in \Gamma \)

\[D(x,w)\alpha D(x,y)\beta z = 0 \] (56)

From (56), since \(D(x,w)\alpha D(x,y) \in \text{Ann}_I I = 0 \), we get for all \(x, y, w \in I \) and \(\alpha \in \Gamma \)

\[D(x,w)\alpha D(x,y) = 0 \] (57)

Writing \(y/\beta w \) for \(w \) in (57) and using (57) again, we have for all \(x, y, w \in I \) and \(\alpha, \beta \in \Gamma \)

\[D(y,x)\beta y = 0 \] (58)

By writing \(x \) for \(y \) in (58), we get for all \(x, w \in I \) and \(\alpha, \beta \in \Gamma, d(x)\beta y = 0 \). Thus by Lemma 4 and since \(M \) is a semi-prime \(\Gamma \)-ring, we have \(d(m) = 0 \) for all \(m \in M \). So by Lemma 5 we get \(D = 0 \).

THEOREM 5. Let \(M \) be a 2,3-torsion free prime \(\Gamma \)-ring, \(I \) a non-zero ideal of \(M \) and \(d \) the trace of \(D(.,.) \), non-zero symmetric bi-derivation of \(M \). If \(d(I) \subset I \cap Z \), then \(M \) is commutative, where \(Z \) is the center of \(M \).

PROOF. By Lemma 5 \(Z \neq 0 \). Let \(x, y \in I, m \in M \) and \(\alpha \in \Gamma \) be arbitrary elements. We denote \(x y - y x \) by \([x, y]_\alpha \). Since \(0 = [d(x+y), m] = 2[D(x,y), m] \), we get

\[[D(x,y), m]_\alpha = 0 \] (59)

Replacing \(x \) by \(d(y)\beta x, \beta \in \Gamma \) in (59), by using [3, Lemma 1.(ii)] we get

\[D(d(y), \beta) x = 0 \] (60)

Thus by [3, Lemma 1.(vi)] we get for all \(x, y \in I, m \in M \) and \(\alpha, \beta \in \Gamma \)

\[D(d(y), \beta) = 0 \] (61)

Let \(D(d(y), y) = 0 \) for all \(x, y \). Then by using Theorem 1, \(D = 0 \) which contradicts with the hypothesis. If \(I, M \) for all \(\alpha \in \Gamma \), then \(I \subset Z \) and so by [3, Lemma 2(i)], \(M \) is commutative.
REFERENCES

M. Ali ÖZTÜRK and M. SOYTÜRK
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140 Sivas, Turkey

Mehmet SAPANCI
Department of Mathematics
Faculty of Sciences
Ege University
35100 Bornova, Izmir, Turkey
e-mail:Sapanci fen fak.ege.edu.tr

Kyu Ho Kim
Department of Mathematics
Chungju National University
Chungju 380-702, Korea
E-mail: ghkim@gukwon.chungju.ac.k