SOME RESULTS ON HYPERK-ALGEBRAS

M. M. ZAHEDI*, R. A. BORZOEI, YOUNG BAE JUN AND A. HASANKHANI**

Received October 15, 1999

ABSTRACT. In hyperK-algebras, the notion of a bounded hyperK-algebra and a homomorphism is introduced, and some properties related with a (weak) hyperK-ideal are investigated. The zero condition in a hyperK-algebra is considered, and then it is showed that every hyperK-algebra with the zero condition can be extended to a bounded hyperK-algebra.

1. Introduction The hyper algebraic structure theory was introduced in 1934 [7] by Marty at the 8th congress of Scandinavian Mathematicians. Since then many researchers have worked on this area. Imai and Iséki [3] introduced the notion of a BCK-algebra. Recently Jun et al. [6] applied the hyperstructures to BCK-algebras and introduced the concept of a hyperBCK-algebra which is a generalization of a BCK-algebra. Then Borzoei et al. [1] defined the notion of a hyperK-algebra. For background and notations we follow Borzoei et al. [1]. In this paper we introduced the notion of a bounded hyperK-algebra and a homomorphism of hyperK-algebras, and then we investigate some related results. We also consider the zero condition in hyperK-algebras. We show that every hyperK-algebra with the zero condition can be extended to a bounded hyperK-algebra.

2. Preliminaries

Definition 2.1 ([1], Definition 3.1). By a hyperK-algebra we mean a non-empty set H endowed with a hyperoperation "\circ" and a constant 0 satisfying the following conditions:

(HK1) \(x \circ z \circ (y \circ z) < x \circ y, \)
(HK2) \((x \circ y) \circ z = (x \circ z) \circ y, \)
(HK3) \(x < x, \)
(HK4) \(x < y \) and \(y < x \) imply \(x = y, \)
(HK5) \(0 < x, \)

for all \(x, y, z \in H \), where \(x < y \) is defined by \(0 \in x \circ y \) and for every \(A, B \subseteq H \), \(A < B \) is defined by \(\exists a \in A \) and \(\exists b \in B \) such that \(a < b. \)

Example 2.2 ([1], Example 3.2). (i) Define the hyper operation "\circ" on \(H = [0, +\infty) \) as follows:

\[
x \circ y := \begin{cases}
[0, x] & \text{if } x \leq y \\
(0, y) & \text{if } x > y \neq 0 \\
\{x\} & \text{if } y = 0
\end{cases}
\]

for all \(x, y \in H \). Then \((H, \circ, 0) \) is a hyperK-algebra.

* Research supported by the National Research Council of Iran (NRCI) as a National Research Project under the grant number 1720.
** Supported by a grant from the Sistan and Baluchestan University.
1991 Mathematics Subject Classification. 06F35, 03G25, 20N20.
Key words and phrases. (Bounded) hyperK-algebra, (weak) hyperK-ideal, homomorphism, zero condition.
(ii) Let \(H = \{0, a, b\} \). Consider the following table:

\[
\begin{array}{c|ccc}
\circ & 0 & a & b \\
\hline
0 & \{0\} & \{0\} & \{0\} \\
a & \{a\} & \{0, a\} & \{0, a\} \\
b & \{b\} & \{a, b\} & \{0, a, b\}
\end{array}
\]

Then \((H, \circ, 0) \) is a hyper \(K \)-algebra.

(iii) Let \(H = \{0, 1, 2\} \). Consider the following table:

\[
\begin{array}{c|ccc}
\circ & 0 & 1 & 2 \\
\hline
0 & \{0\} & \{0, 1, 2\} & \{0, 1, 2\} \\
1 & \{1\} & \{0, 1, 2\} & \{0, 1, 2\} \\
2 & \{2\} & \{2\} & \{0, 1, 2\}
\end{array}
\]

Then \((H, \circ, 0) \) is a hyper \(K \)-algebra.

Theorem 2.3 ([1], Theorem 3.7). Let \((H_1, \circ_1, 0) \) and \((H_2, \circ_2, 0) \) be two hyper \(K \)-algebra such that \(H_1 \cap H_2 = \{0\} \) and \(H = H_1 \cup H_2 \). Then \((H, \circ, 0) \) is a hyper \(K \)-algebra, where the hyper operation \(\circ \) on \(H \) is defined by:

\[
x \circ y = \begin{cases}
 x \circ_1 y & \text{if } x, y \in H_1 \\
 x \circ_2 y & \text{if } x, y \in H_2 \\
 \{x\} & \text{otherwise,}
\end{cases}
\]

for all \(x, y \in H \), and we denote it by \(H_1 \oplus H_2 \).

Theorem 2.4 ([1], Theorem 3.9). Let \((H_1, \circ_1, 0_1) \) and \((H_2, \circ_2, 0_2) \) be hyper \(K \)-algebras and \(H = H_1 \times H_2 \). We define a hyperoperation \(\circ \) on \(H \) as follows:

\[
(a_1, b_1) \circ (a_2, b_2) = (a_1 \circ_1 a_2, b_1 \circ_2 b_2)
\]

for all \((a_1, b_1), (a_2, b_2) \in H \), where for \(A \subseteq H_1 \) and \(B \subseteq H_2 \) by \((A, B) \) we mean

\[
(A, B) = \{(a, b) : a \in A, b \in B\}, \quad 0 = (0_1, 0_2)
\]

and

\[
(a_1, b_1) < (a_2, b_2) \iff a_1 < a_2 \quad \text{and} \quad b_1 < b_2.
\]

Then \((H, \circ, 0) \) is a hyper \(K \)-algebra, and it is called the hyper \(K \)-product of \(H_1 \) and \(H_2 \).

Definition 2.5 ([1], Definition 4.1). Let \(I \) be a non-empty subset of a hyper \(K \)-algebra \((H, \circ, 0) \). Then \(I \) is called a weak hyper \(K \)-ideal of \(H \) if

(Id1) \(0 \in I \),

(Id2) \(x \circ y \subseteq I \) and \(y \in I \) imply that \(x \in I \) for all \(x, y \in H \).

Definition 2.6 ([1], Definition 4.4). Let \(I \) be a non-empty subset of a hyper \(K \)-algebra \((H, \circ, 0) \). Then \(I \) is said to be a hyper \(K \)-ideal of \(H \) if

(Id1) \(0 \in I \),

(Id2) \(x \circ y \subseteq I \) and \(y \in I \) imply that \(x \in I \), for all \(x, y \in H \).

Note that every hyper \(K \)-ideal is a weak hyper \(K \)-ideal (see [1, Proposition 4.6]).

Definition 2.7 ([1], Definition 4.11). Let \((H, \circ, 0) \) be a hyper \(K \)-algebra and let \(S \) be a subset of \(H \) containing \(0 \). If \(S \) is a hyper \(K \)-algebra with respect to the hyperoperation \(\circ \) on \(H \), we say that \(S \) is a hyper \(K \)-subalgebra of \(H \).

Theorem 2.8 ([1], Theorem 4.12). Let \(S \) be a non-empty subset of a hyper \(K \)-algebra
\((H, \circ, 0)\). Then \(S\) is a hyper\(K\)-subalgebra of \(H\) if and only if \(x \circ y \subseteq S\) for all \(x, y \in S\).

3. Bounded hyper\(K\)-algebras

Definition 3.1. Let \((H, \circ, 0)\) be a hyper\(K\)-algebra. If there exists an element \(e \in H\) such that \(x < e\) for all \(x \in H\), then \(H\) is called a bounded hyper\(K\)-algebra and \(e\) is said to be the unit of \(H\).

Note that (HK4) implies that the unit of \(H\) is unique.

Example 3.2. (i) Let \((X, * , 0)\) be a bounded BCK-algebra. Define the hyper operation “\(\circ\)” on \(X\) as follows:

\[
x \circ y = \{x \ast y\}, \quad \forall x, y \in X.
\]

Then \((X, \circ, 0)\) is a bounded hyper\(K\)-algebra.

(ii) The hyper\(K\)-algebra \((H, \circ, 0)\) in Example 2.2(i) is not bounded, because if \(a \in H\) is unit, then \((a + 1) \circ a = (0, a)\). Thus \(0 \notin (a + 1) \circ a\), i.e., \(a + 1 \neq a\).

(iii) In Example 2.2(ii), \(H\) is bounded and \(b \in H\) is unit.

(iv) The hyper\(K\)-algebra \((H, \circ, 0)\) in Example 2.2(iii) is bounded and 2 \(\in H\) is unit.

Proposition 3.3. Let \(H_1\) and \(H_2\) be two bounded hyper\(K\)-algebras. Then the hyper\(K\)-product \(H_1 \times H_2\) of \(H_1\) and \(H_2\) is also bounded.

Proof. Let \(e_1 \in H_1\) and \(e_2 \in H_2\) be units and \((x, y) \in H_1 \times H_2\). Then \(x < e_1\) and \(y < e_2\) and so \((x, y) < (e_1, e_2)\). Therefore \(H_1 \times H_2\) is bounded and \((e_1, e_2)\) is its unit. □

The following example shows that if \(H_1\) and \(H_2\) are two bounded hyper\(K\)-algebras, then \(H_1 \oplus H_2\) may not be bounded. For the notation \(H_1 \oplus H_2\), we follow Borzoei [1].

Example 3.4. Let \(H_1\) and \(H_2\) be hyper\(K\)-algebras as in Examples 2.2(ii) and 2.2(iii) respectively. Then \(H_1\) and \(H_2\) are bounded, while \(H_1 \oplus H_2\) is not bounded.

Definition 3.5. Let \(H\) be a hyper\(K\)-algebra. If \(0 \circ x = \{0\}\) for all \(x \in H\), then we say that \(H\) satisfies the zero condition.

Example 3.6. Let \(H\) be a hyper\(K\)-algebra as in Example 2.2(i). Then \(H\) satisfies the zero condition.

Theorem 3.7. Let \((H_1, \circ_1, 0)\) be a hyper\(K\)-algebra, which satisfies the zero condition. Then \((H_1, \circ_1, 0)\) can be extended to a bounded hyper\(K\)-algebra.

Proof. Let \(e \notin H_1\) and \(H = H_1 \cup \{e\}\). Define the hyper operation “\(\circ\)” on \(H\) as follows:

\[
x \circ y = \begin{cases}
\{e\} & \text{if } x = e, y \in H_1 \\
\{0\} & \text{if } x = e, y = e \\
\{0, x\} & \text{if } x \in H_1, y = e \\
x \circ_1 y & \text{if } x, y \in H_1,
\end{cases}
\]

for all \(x, y \in H\). We show that \((H, \circ, 0)\) is a bounded hyper\(K\)-algebra and \(e\) is its unit.

(HK1): If \(x, y, z \in H_1\), then by hypothesis (HK1) holds. Thus let at least one of \(x, y\) and \(z\) equal to \(e\). If \(x = e\) and \(y, z \in H_1\), then

\[
(e \circ z) \circ (y \circ z) = \{e\} \circ (y \circ z) = \{e\} < \{e\} = e \circ y.
\]

If \(z = e\) and \(x, y \in H_1\), then

\[
(x \circ e) \circ (y \circ e) = \{0, x\} \circ \{0, y\} = (0 \circ 0) \cup (0 \circ y) \cup (x \circ 0) \cup (x \circ y) < x \circ y.
\]
If $y = e$ and $x, z \in H_1$, then
\[(x \circ z) \circ (e \circ z) = (x \circ z) \circ \{e\} = \{0\} \cup (x \circ z) < \{0, x\} = x \circ e.\]

If $x = z = e$ and $y \in H_1$, then since $0 < e$ we have
\[(e \circ e) \circ (y \circ e) = \{0\} \circ \{0\} = (0 \circ 0) \cup (0 \circ y) < \{e\} = e \circ y.\]

If $y = z = e$ and $x \in H_1$, then
\[(x \circ e) \circ (e \circ e) = \{0, x\} \circ \{0\} = (0 \circ 0) \cup (x \circ 0) < \{0, x\} = x \circ e.\]

If $x = y = z = e$, then
\[(e \circ e) \circ (e \circ e) = \{0\} \circ \{0\} < \{0\} = e \circ e.\]

(HK2): If $x, y, z \in H_1$, then (HK2) holds. Thus we let at least one of x, y, z equal to e.
If $x = e$ and $y, z \in H_1$, then
\[(e \circ y) \circ z = \{e\} \circ z = \{e\} = \{e\} \circ y = (e \circ z) \circ e.\]

If $y = e$ and $x, z \in H_1$, then since H_1 satisfies the zero condition we get that
\[(x \circ e) \circ z = \{0, x\} \circ z = (0 \circ z) \cup (x \circ z) = \{0\} \cup (x \circ z) = (x \circ z) \cup \{0\} = (x \circ z) \circ e.\]

If $x = y = e$ and $z \in H_1$, then since H_1 satisfies the zero condition we have
\[(e \circ e) \circ z = \{0\} \circ z = \{e\} = \{e\} \circ e = (e \circ z) \circ e.\]

(HK3) Since $e \circ e = \{0\}$, thus $0 < e \circ e$ and consequently $e < e$.
(HK4) and (HK5) are proved easily. Hence $(H, \circ, 0)$ is a hyper K-algebra. Moreover, since for any $x \neq e$, we have $x \circ e = \{0, x\}$, thus $x < e$. In other words $(H, \circ, 0)$ is bounded with unit e. □

4. Homomorphisms of hyper K-algebras

Definition 4.1. Let H_1 and H_2 be two hyper K-algebras. A mapping $f : H_1 \rightarrow H_2$ is said to be a **homomorphism** if

(i) $f(0) = 0$

(ii) $f(x \circ y) = f(x) \circ f(y)$, \(\forall x, y \in H_1 \).

If f is 1-1 (or onto) we say that f is a **monomorphism** (or **epimorphism**). And if f is both 1-1 and onto, we say that f is an **isomorphism**.

Example 4.2. Let H be as in Example 2.2(i) and $t \in \mathbb{R}^+$ be constant. Define
\[f : H \rightarrow H, \quad f(x) = tx, \quad \forall x \in H.\]

Then f is an isomorphism of hyper K-algebras. To do this, let $x, y \in H$ and $x \leq y$. Then $tx \leq ty$ and thus $f(x \circ y) = f([0, x]) = [0, tx] = tx \circ ty = f(x) \circ f(y)$. If $x > y \neq 0$, then $tx > ty$ and so
\[f(x \circ y) = f((0, y]) = (0, ty] = tx \circ ty = f(x) \circ f(y).\]

If $y = 0$, then
\[f(x \circ 0) = f([x]) = tx = tx \circ 0 = f(x) \circ f(0).\]

Also $f(0) = 0$, consequently f is a homomorphism. Clearly f is onto and 1-1. Thus f is an isomorphism.

Theorem 4.3. Let $f : H_1 \rightarrow H_2$ be a homomorphism of hyper K-algebras. Then
(i) If S is a hyper-K-subalgebra of H_1, then $f(S)$ is a hyper-K-subalgebra of H_2,
(ii) $f(H_1)$ is a hyper-K-subalgebra of H_2,
(iii) If H_1 satisfies the zero condition, then so is $f(H_1)$,
(iv) If S is a hyper-K-subalgebra of H_2, then $f^{-1}(S)$ is a hyper-K-subalgebra of H_1,
(v) If I is a (weak) hyper-K-ideal of H_2, then $f^{-1}(I)$ is a (weak) hyper-K-ideal of H_1,
(vi) $\ker f := \{x \in H_1 \mid f(x) = 0\}$ is a hyper-K-ideal and hence a weak hyper-K-ideal of H_1,
(vii) If f is onto and I is a hyper-K-ideal of H_1 which contains $\ker f$, then $f(I)$ is a hyper-K-ideal of H_2.

Proof. (i) Let $x, y \in f(S)$. Then there exist $a, b \in S$ such that $f(a) = x$ and $f(b) = y$. It follows from Theorem 2.8 that

$$x \circ y = f(a) \circ f(b) = f(a \circ b) \subseteq f(S)$$

so that $f(S)$ is a hyper-K-subalgebra of H_2.

(ii) It is straightforward by (i).

(iii) If H_1 satisfies the zero condition, then $0 \circ x = \{0\}$ for all $x \in H_1$. Let $y \in f(H_1)$. Then there exists $a \in H_1$ such that $f(a) = y$. It follows that

$$0 \circ y = f(0) \circ f(a) = f(0 \circ a) = f(\{0\}) = \{0\}$$

so that $f(H_1)$ satisfies the zero condition.

(iv) Since $0 \in S$, we have $f^{-1}(0) \subseteq f^{-1}(S)$. Since $f(0) = 0$, so $0 \in f^{-1}(0) \subseteq f^{-1}(S)$. Therefore $f^{-1}(S)$ is non-empty. Now let $x, y \in f^{-1}(S)$. Then $f(x), f(y) \in S$. Thus $f(x \circ y) = f(x) \circ f(y) \subseteq S$ and so $x \circ y \subseteq f^{-1}(S)$, which implies that $f^{-1}(S)$ is a hyper-K-subalgebra of H_1.

(v) Let I be a weak hyper-K-ideal of H_2. Clearly $0 \in f^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y \subseteq f^{-1}(I)$ and $y \in f^{-1}(I)$. Then $f(x \circ y) = f(x) \circ f(y) \subseteq I$ and $f(y) \in I$. Since I is a weak hyper-K-ideal, it follows from (Id2) that $f(x) \in I$, i.e., $x \in f^{-1}(I)$. Hence $f^{-1}(S)$ is a weak hyper-K-ideal of H_1. Now let I be a hyper-K-ideal of H_2. Obviously $0 \in f^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y < f^{-1}(I)$ and $y \in f^{-1}(I)$. Then there exist $t \in x \circ y$ and $z \in f^{-1}(I)$ such that $t < z$, i.e., $0 \in t \circ z$. Since $f(z) \in I$ and $0 \in t \circ z \subseteq (x \circ y) \circ z$, it follows that

$$0 = f(0) \in f((x \circ y) \circ z) = f(x \circ y) \circ f(z) \subseteq f(x \circ y) \circ I$$

so that $f(x) \circ f(y) = f(x \circ y) < I$. As $f(y) \in I$ and I is hyper-K-ideal, by using (Id3) we have $f(x) \in I$, i.e., $x \in f^{-1}(I)$. Hence $f^{-1}(I)$ is a hyper-K-ideal of H_1.

(vi) First we show that $\{0\} \subseteq H_2$ is a hyper-K-ideal. To do this, let $x, y \in H_2$ be such that $x \circ y < \{0\}$ and $y \in \{0\}$. Then $y = 0$ and so $x \circ 0 = x \circ y < \{0\}$. Therefore there exists $t \in x \circ 0$ such that $t < 0$. Thus $t = 0$, and consequently $0 \in x \circ 0$, i.e., $x < 0$, which implies that $x = 0$. This shows that $\{0\}$ is a hyper-K-ideal of H_2. Now by (v), $\ker f = f^{-1}(\{0\})$ is a hyper-K-ideal of H_1.

(vii) Since $0 \in I$, we have $0 = f(0) \in f(I)$. Let x and y be arbitrary elements in H_2 such that $x \circ y < f(I)$ and $y \in f(I)$. Since $y \in f(I)$ and f is onto, there are $y_1 \in I$ and $x_1 \in H_1$ such that $y = f(y_1)$ and $x = f(x_1)$. Thus

$$f(x_1 \circ y_1) = f(x_1) \circ f(y_1) = x \circ y < f(I).$$

Therefore there are $a \in x_1 \circ y_1$ and $b \in I$ such that $f(a) < f(b)$. So $0 \in f(a) \circ f(b) = f(a \circ b)$, which implies that $f(c) = 0$ for some $c \in a \circ b$. It follows that $c \in \ker f \subseteq I$ so that $a \circ b < I$. Now since I is a hyper-K-ideal of H_1 and $b \in I$, we get $a \in I$. Thus $x_1 \circ y_1 < I$, which implies that $x_1 \in I$. Thereby $x = f(x_1) \in f(I)$, and so $f(I)$ is a hyper-K-ideal of H_2. □
The following theorem is straightforward, and we omit the proof.

Theorem 4.4. Let $f : H_1 \to H_2$ be an epimorphism of hyper K-algebras. Then there is a one to one correspondence between the set of all K-ideals of H_1 containing $Ker f$ and the set of all K-ideals of H_2.

Lemma 4.5. Let $f : H_1 \to H_2$ be a homomorphism of hyper K-algebras. If $x < y$ in H_1, then $f(x) < f(y)$ in H_2.

Proof. If $x < y$ in H_1, then $0 \in x \circ y$ and so

$$0 = f(0) \in f(x \circ y) = f(x) \circ f(y).$$

Therefore $f(x) < f(y)$.

Theorem 4.6. Let $f : H_1 \to H_2$ be an epimorphism of hyper K-algebras. If H_1 is bounded, then H_2 is also bounded.

Proof. Let e be the unit of H_1 and $y \in H_2$ be an arbitrary element. Then there exists $x \in H_1$ such that $f(x) = y$. Since $x < e$, by Lemma 4.5 we have $y = f(x) < f(e)$. Thus $f(e)$ is the unit of H_2 and H_2 is bounded.

Theorem 4.7. Let $f : H_1 \to H_2$ and $g : H_1 \to H_3$ be two homomorphisms of hyper K-algebras such that f is onto and $Ker f \subseteq Ker g$. Then there exists a homomorphism $h : H_2 \to H_3$ such that $h \circ f = g$.

Proof. Let $y \in H_2$ be arbitrary. Since f is onto, there exists $x \in H_1$ such that $y = f(x)$. Define $h : H_2 \to H_3$ by $h(y) = g(x)$, $\forall y \in H_2$. Now we show that h is well-defined. Let $y_1, y_2 \in H_2$ and $y_1 = y_2$. Since f is onto, there are $x_1, x_2 \in H_1$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Therefore $f(x_1) = f(x_2)$ and thus $0 \in f(x_1) \circ f(x_2) = f(x_1 \circ x_2)$. It follows that there exists $t \in x_1 \circ x_2$ such that $f(t) = 0$. Thus $t \in Ker f \subseteq Ker g$ and so $g(t) = 0$. Since $t \in x_1 \circ x_2$ we conclude that

$$0 = g(t) \in g(x_1 \circ x_2) = g(x_1) \circ g(x_2),$$

which implies that $g(x_1) < g(x_2)$. On the other hand since $0 \in f(x_2) \circ f(x_1) = f(x_2 \circ x_1)$, similarly we can conclude that $0 \in g(x_2) \circ g(x_1)$, i.e., $g(x_2) < g(x_1)$. Thus $g(x_1) = g(x_2)$, which shows that h is well-defined. Clearly $h \circ f = g$. Finally we show that h is a homomorphism. Let $y_1, y_2 \in H_2$ be arbitrary. Since f is onto there are $x_1, x_2 \in H_1$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Then

$$h(y_1 \circ y_2) = h(f(x_1) \circ f(x_2)) = h(f(x_1 \circ x_2)) = (h \circ f)(x_1 \circ x_2) = g(x_1 \circ x_2) = g(x_1) \circ g(x_2) = (h \circ f)(x_1) \circ (h \circ f)(x_2) = h(f(x_1)) \circ h(f(x_2)) = h(y_1) \circ h(y_2).$$

Moreover since $f(0) = 0$ and $g(0) = 0$, we conclude that

$$h(0) = h(f(0)) = (h \circ f)(0) = g(0) = 0.$$

Thus h is a homomorphism, ending the proof.

Theorem 4.8. Let $f : H_1 \to H_2$ be a monomorphism of hyper K-algebras. If H_2 is bounded with unit element e and $e \in Im f$, then H_1 is also bounded and $f^{-1}(e)$ is its unit.

Proof. Let $x \in H_1$. Then $f(x) \in H_2$. Since H_2 is bounded we conclude that $f(x) < e$, and since $e \in Im f$, we get that $e = f(a)$ for some $a \in H_1$. Thus $f(x) < f(a)$. Therefore $0 \in f(x) \circ f(a) = f(x \circ a)$. It follows that there exists $b \in x \circ a$ such that $f(b) = 0$. Hence $b = 0$, because f is 1-1. Thus $0 \in x \circ a$, i.e., $x < a$. Now since $a = f^{-1}(e)$, we conclude that
$x < f^{-1}(e)$, which shows H_1 is bounded with unit $f^{-1}(e)$. □

References