ON IDEALS OF AN IDEAL IN A BCI-ALGEBRA

Jiang Hao and Chen Xue Li

Abstract. The concept of ideals of an ideal in a BCI-algebra is introduced and some isomorphic theorems are obtained by using this concept.

§1. Introduction.

The concept of an ideal in a BCI-algebra was first introduced by K. Iséki in [1].

Definition 1[1]. Let \(X = (X; *, 0) \) be a BCI-algebra and \(\emptyset \neq I \subseteq X \), \(I \) is called an ideal of \(X \) if it satisfies the following conditions:

(i) 0 \(\in I \);

(ii) \(x \ast y \in I \) and \(y \in I \) imply \(x \in I \) (here \(x, y \in X \)).

We denote this fact by \(I \triangleleft X \). (\(I \triangleleft X \) means that \(I \triangleleft X \) and \(I \neq X \).)

If \(H \) is a subalgebra of a BCI-algebra \(X \), we denote it by \(H \leq X \), and \(H < X \) means that \(H \leq X \) and \(H \neq X \).

The concept of ideals has played an important role in the study of the theory of BCI-algebras. In a BCI-algebra \(X \), an ideal \(I \) need not be a subalgebra of \(X \). If the ideal \(I \) is also a subalgebra of \(X \), then it has better algebraic properties. Therefore C.S. Hoo and P.V. Ramana introduced the concept of closed ideals in [2].

Definition 2[2]. An ideal \(I \) of a BCI-algebra \(X \) is called a closed ideal if it is also a subalgebra of \(X \).

In this case it is denoted by \(I \trianglelefteq X \). (\(I \trianglelefteq X \) means that \(I \trianglelefteq X \) and \(I \neq X \).)

If \(I \) is a closed ideal of a BCI-algebra \(X \), then \(I \) is a BCI-algebra itself. So we may consider the ideals of \(I \). If \(I \) is an ideal of \(X \), but it is not closed, then \(I \) itself is not a BCI-algebra. Hence it has no ideals in the sense of Definition 1. However, we may also consider the "ideals" in the interior of \(I \). In this paper we introduced the concept of such "ideals" and give some isomorphic theorems by using this concept.

§2. Preliminaries. For the basic theory of BCK-and BCI-algebras the reader is referred to [8],[9] or [10],[11].

Let \(X = (X; *, 0) \) be a BCI-algebra and \(I \) be an ideal of \(X \). For \(x, y \in X \), define \(x \sim y \iff x * y, y * x \in I \), then \(\sim \) is a congruence relation on \(X \). The congruence class

\[a + I = \{ a * x : x \in I \} \]

is a congruent class of \(a \) and \(a + I \) is a congruent class of \(a \). The congruence class \(a + I \) is called an ideal of \(I \) if it satisfies the following conditions:

(i) 0 \(\in I \);

(ii) \(x * y \in I \) and \(y \in I \) imply \(x \in I \) (here \(x, y \in X \)).
containing x is denoted by I_x. In the quotient algebra X/I the multiplication is defined as follows: $I_x * I_y = I_{xy}$. It is well defined since \sim induced by I is a congruence relation on X.

In this paper hereafter, X always denotes a BCI-algebra.

Now we list some well known facts in the theory of BCI-algebras which we use in this paper.

Proposition 1 [11]. Let $X = (X; *, 0)$ and $X' = (X'; *', 0')$ be BCI-algebras and $f : X \rightarrow X'$ be a homomorphism, then $f(0) = 0'$.

Proposition 2 [11]. $I \triangleleft X \Rightarrow I_0 \subseteq I$ and $I_0 \triangleleft' X$.

I_0 is called the closed kernel of I.

Proposition 3 [5]. If $I \triangleleft X$ and $A \triangleleft X$ such that $I_0 \subseteq A \subseteq I$, then I_0 induces the same congruence relation on X just as A does, hence we have $(X/A; *, A_0) = (X/I_0; *, I_0)$. Especially, $(X/I; *, I_0) = (X/I_0; *, I_0)$.

Proposition 4 [6]. Let $f : X \rightarrow X'$ be a BCI-epimorphism. If $I \triangleleft X$, then $f(x) \triangleleft X'$.

Proposition 5 [7]. Let X and X' be BCI-algebras and $f : X \rightarrow X'$ be a homomorphism. Set $\text{Ker}_f = \{x \in X | f(x) = 0'\}$, then $\text{Ker}_f \triangleleft X$. Here $0'$ is the zero element of X'. Ker_f is called the homomorphic kernel of f.

Proposition 6 [11]. If $I \triangleleft X$ and set

$$\varphi : X \rightarrow X/I$$

$$x \mapsto I_x$$

then φ is an BCI-epimorphism and $\text{Ker}_f = I_0$. φ is called the natural homomorphism from X on X/I.

Proposition 7 [11]. Let X and X' be BCI-algebras and $\eta : X \rightarrow X'$ be a homomorphism. Suppose that $\text{Ker}_f \leq A \triangleleft X$, then $\eta^{-1}(\eta(A)) = A$.

Proposition 8 [11]. Let $f : X \rightarrow X'$ be a BCI-epimorphism, then $X/\text{Ker}_f \cong X'$.

Here by "$f : X \rightarrow X'$ be a BCI-epimorphism" we mean that both X and X' are BCI-algebras and f is an epimorphism.

§3. Ideals of an ideal in a BCI-algebra.

Definition 3. Suppose that $I \triangleleft X$ and $\emptyset \neq A \subseteq I$. A is called an ideal of I if it satisfies the following conditions:

(i) $0 \in A$; (ii) for $x, y \in I$, $x * y \in A$ and $y \in A$ imply that $x \in A$.

This fact is also denoted by $A \triangleleft I$. ($A \triangleleft I$ means that $A \triangleleft X$ and $A \neq X$.)

We can also define the concept of a subalgebra of an ideal I, although I itself need not be a subalgebra of X.
Definition 4. Suppose that $I \triangleleft X$ and $\emptyset \neq H \subseteq I$. H is called a subalgebra of I if $x, y \in H \Rightarrow x \ast y \in H$.

We denote this case by $H \leq I$. ($H < I$ means that $H \leq I$ and $H \neq I$.)

Definition 5. Suppose that $I \triangleleft X$ and $\emptyset \neq A \subseteq I$. If A is an ideal of I (in the sense of Definition 3) and A is a subalgebra of I as well, then A is called a closed ideal of I. We denote this fact by $A \triangleleft^c I$. ($A \triangleleft^c I$ means that $A \triangleleft^c I$ and $A \neq I$).

Now we prove the transitive property of ideals.

Theorem 1. $A \triangleleft I \triangleleft X \Rightarrow A \triangleleft X$.

Proof. Clearly

(1) $\emptyset \neq A \subseteq X$

From $A \triangleleft I$ and Definition 3 we have

(2) $0 \in A$

For $x, y \in X$, suppose that

(3) $x \ast y \in A, y \in A$

Clearly,

(4) $A \subseteq I$

since $A \triangleleft I$. By (3) and (4) we have

(5) $x \ast y \in I, y \in I$

From (5) and $I \triangleleft X$ it follows that

(6) $x \in I$

Therefore, now we can consider the problem in I since $x \in I$ and $y \in I$. Owing to the fact that $x \ast y \in A, y \in A$ and $A \triangleleft I$, by Definition 3 we obtain $x \in A$. The above argument shows that for $x, y \in X$,

(7) $x \ast y \in A, y \in A$ imply $x \in A$

By (1), (2), (7) and Definition 1 we get $A \triangleleft X$. □

Corollary 2. Suppose that $I \triangleleft X$ and $\emptyset \neq A \subseteq I$, then $A \triangleleft I \iff A \triangleleft X$.

Let I be an ideal of a BCI-algebra X and A be an ideal of I in the sense of Definition 3. For $x, y \in I$ define $x \sim_A y \iff x \ast y, y \ast x \in A$. (If no confusion may arise by context, one may use \sim in stead of \sim_A.) One can easily verify that \sim_A is a congruence relation on I and so it gives a partition of I. For $x \in I$, by $A^{(I)}_x$ we denote the congruence class containing x. If no confusion may arise by context, one may use the brief symbol A_x in stead of $A^{(I)}_x$. By Theorem 1 A is also an ideal of X. Hence A also induces a congruence relation on X. We have
Theorem 3. Suppose that $A \unlhd I \unlhd X$ and $u \in I$. Set
\[A_u^X = \{ x \in X | x * u, u * x \in A \} \]
\[A_u^I = \{ x \in I | x * u, u * x \in A \} \]
then $A_u^I = A_u^X$.

Proof. By $A \unlhd I \unlhd X$ and Theorem 1 we obtain $A \unlhd X$, so A also induces a congruence relation on X. From the definition it is clear that
\[(1) \quad A_u^I \subseteq A_u^X \]
On the other hand, $\forall x \in A_u^X \implies x \in X$ and $x * u \in A$. It follows that $x * u \in I$ since $A \unlhd I$. Now $x * u \in I$, $u \in I$ and $I \unlhd X$ imply $x \in I$, therefore $x \in A_u^I$. This shows that
\[(2) \quad A_u^X \subseteq A_u^I \]
By (1) and (2) we obtain $A_u^I = A_u^X$. □

Theorem 3 shows that in this situation we can write $A_u^I = A_u^X$ briefly as A_u.

Corollary 4. $A \unlhd I \unlhd X \implies \emptyset \neq I/A \subseteq X/A$.

Theorem 5. Suppose that $A \unlhd X$, $A \subseteq H \subseteq X$, then

(i) $A \unlhd H$;
(ii) for $h \in H$, $A_h^H = H \cap A_h^X \subseteq A_h^X$;
(iii) if H is not an ideal of X, then A_h^H may be a proper subset of A_h^X.

Proof. (i) and (ii) hold obviously. We only need to give examples to show that (iii) holds.

The first example is $X = B_{4-2-1} = \{0, 1, 2, 3\}$ (see [3]). X is in fact a BCK-algebra and so certainly a BCI-algebra as well. Its multiplication table is showed by Table 1.

\[
\begin{array}{c|cccc}
\ast & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
3 & 3 & 2 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\ast & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 2 \\
3 & 3 & 2 & 1 & 0 \\
\end{array}
\]

Table 1 Table 2

Set $A = \{0, 1\}$, $H = \{0, 1, 2\}$, and $h = 2 \in H$. Then $A \unlhd X$, $A \subset H \subset X$. H is not an ideal of X. We have $A_h^X = \{2\}$, $A_h^X = \{2, 3\}$. So A_h^X is a proper subset of A_h^X.

The second example is $X = I_{4-2-1} = \{0, 1, 2, 3\}$ (see [4]). It is a proper BCI-algebra. Its multiplication table is showed by Table 2. Set $A = \{0, 1\}$, $H = \{0, 1, 2\}$, $h = 2 \in H$. Then $A \unlhd X$, $A \subset H \subset X$. H is not an ideal of X. It is easy to see that $A_h^X = \{2\}$, $A_h^X = \{2, 3\}$, hence A_h^X is a proper subset of A_h^X. □
Definition 6. Suppose that $A \triangleleft I \triangleleft X$, then we define

$$I/A = \{A_u | u \in I\}.$$

(Notice: By Theorem 3 we have $A_u^{(I)} = A_u^{(X)} = A_u$.)

Lemma 6. Suppose that $A \triangleleft I \triangleleft X$, $x \in X$, then $A_x \in I/A \iff x \in I$.

Proof. If $x \in I$, then by Definition 6 we have $A_x \in I/A$.

Now, suppose that $A_x \in I/A$, then by Definition 6 there exists $u \in I$ such that $A_x = A_u$, therefore $x * u \in A \subseteq I \implies x * u \in I$. From $u \in I$ and $I \triangleleft X$ it follows that $x \in I$. □

Corollary 7. $A \triangleleft I \triangleleft X$ and $A_x \in I/A \implies A_x \subseteq I$.

Theorem 8. $A \triangleleft I \triangleleft X = \implies I/A \triangleleft X/A$.

Proof. It is clear by Corollary 4 that

(1) $\emptyset \neq I/A \subseteq X/A$

$0 \in I$ since $I \triangleleft X$. Hence by Definition 6 we have

(2) $A_0 \in I/A$

Suppose that $A_x, A_y \in X/A$ such that $A_x * A_y \in I/A$ and $A_y \in I/A$. It follows that $A_{x+y} \in I/A$. By Lemma 6 we have $x * y \in I$ and $y \in I$. Thus we get $x \in I$ since $I \triangleleft X$. Therefore $A_x \in I/A$.

The above argument shows that

(3) for $A_x, A_y \in X/A$, $A_x * A_y \in I/A$, $A_y \in I/A \implies A_x \in I/A$

From (1),(2),(3) and Definition 1 we obtain $I/A \triangleleft X/A$. □

Corollary 9. $A \triangleleft I \triangleleft X \implies I/A \triangleleft X/A$.

Proof. $A \triangleleft I \triangleleft X \implies A \triangleleft I \triangleleft X$. Thus by Theorem 8 we obtain

(1) $I/A \triangleleft X/A$

$I \triangleleft X$ means that I is also a subalgebra of X. Suppose that $A_x, A_y \in I/A$, then by Lemma 6 we get $x, y \in I$, it follows that $x * y \in I$ since $I \triangleleft X$. Therefore $A_x * A_y = A_{x+y} \in I/A$. This shows that

(2) $I/A \leq X/A$

By (1) and (2) we have $I/A \triangleleft X/A$. □

Theorem 10. Suppose that $A \triangleleft I \triangleleft X$ and $x \in X$, then we have

(i) $A_x \subseteq I_x$;
(ii) $y \in I_x \implies A_y \subseteq I_x$;
(iii) $I_x = \bigcup_{y \in I_x} A_y$.

Proof. (i) By definition we have
\[A_x = \{ y \in X | y \ast x, x \ast y \in A \} \]
\[I_x = \{ y \in X | y \ast x, x \ast y \in I \} \]
By \(A \preceq I \) we have
\[A \subseteq I \]
From (1), (2) and (3) it is clear that \(A_x \subseteq I_x \).

(ii) If \(y \in I_x \), then
\[y \sim^I x \]
\[u \sim^I y \]
\[\forall u \in A_y \implies u \ast y, y \ast u \in A \implies u \ast y, u \ast y \in I \text{ since } A \subseteq I \] It follows that
\[u \sim^I y \]
By (4) and (5) we obtain \(u \sim^I x \), i.e., \(u \in I_x \). Hence \(A_y \subseteq I_x \).

(iii) By (ii) it is obvious that
\[\bigcup_{y \in I_x} A_y \subseteq I_x \]
On the other hand, \(\forall y \in I_x \implies y \in A_y \subseteq \bigcup_{y \in I_x} A_y \), therefore
\[I_x \subseteq \bigcup_{y \in I_x} A_y \]
Combining (6) and (7) it follows that \(I_x = \bigcup_{y \in I_x} A_y \). □

Theorem 11. Let \(f : X \longrightarrow X' \) be BCI-epimorphism and \(\text{Ker} f \leq A \preceq X \), then

(i) \(f(A) \preceq X' \);

(ii) \(X/A \cong X'/f(A) \).

Proof. (i) By the given conditions and Proposition 4 we have \(f(A) \preceq X' \).

(ii) Set \(A' = f(A) \), then \(A' \preceq X' \).
Define
\[\psi : X \longrightarrow X'/A' \]
\[x \mapsto A'_{f(x)} \]
here \(A'_{f(x)} \) denotes the congruence class containing \(f(x) \) in the quotient algebra \(X'/A' \).
Then it follows that \(\psi(x \ast y) = A'_{f(x \ast y)} = A'_{f(x)} \ast A'_{f(y)} = A'_{f(x)} \ast A'_{f(y)} = \psi(x) \ast \psi(y) \), hence \(\psi \) is a homomorphism.

For any \(A_y' \in X'/A' \), where \(y \in X' \), there exists \(x \in X \) such that \(y = f(x) \), since \(f \) is surjective. So we have \(A_y' = A'_{f(x)} = \psi(x) \), this shows that \(\psi \) is surjective.

By the given conditions and Proposition 7 we get
\[f^{-1}(A') = f^{-1}(f(A)) = A \]
Then we have
\[x \in \ker \psi \iff A'_{f(x)} = A'_0, \quad (0' \text{ is the zero element of } X'). \]
\[\iff f(x) * 0' \in A' \text{ and } 0' * f(x) \in A' \]
\[\iff f(x) * f(0) \in A' \text{ and } f(0) * f(x) \in A' \text{ (by Proposition 1)} \]
\[\iff f(x * 0) \in A' \text{ and } f(0 * x) \in A' \]
\[(1) \iff x * 0 \in A \text{ and } 0 * x \in A \]
\[\iff x \in A_0 \]

This shows that \(\ker \psi = A_0 \). Then by Proposition 8 it follows that
\[(2) \quad X/A_0 \cong X'/A' \]

By Proposition 3 we get
\[(3) \quad X/A = X/A_0 \]

From (2) and (3) we have \(X/A \cong X'/A' \). □

Theorem 12. Suppose that \(A \triangleleft I \triangleleft X \), then \(X/I \cong (X/A)/(I/A) \).

Proof. Let
\[\varphi : X \longrightarrow X/A \]
\[x \longmapsto A_x \]

be the natural homomorphism. By Proposition 6 we have \(\ker \varphi = A_0 \). By Proposition 2 it follows that \(A_0 \subseteq A \). Therefore \(\ker \varphi = A_0 \subseteq A \subseteq I \).

From Definition 6 we have \(\varphi(I) = \{ A_x \mid x \in I \} = I/A \). Using above conditions and Theorem 11 it follows that \(X/I \cong (X/A)/(\varphi(I)) = (X/A)/(I/A) \). □

References

Department of Mathematics, Xixi Campus of Zhejiang University, Hangzhou 310028

E-mail address: jmhty@mail.hz.zj.cn