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A NOTE ON SUBTRACTION SEMIGROUPS
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Abstract. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We prove that x ∧ y
is the greatest lower bound of x and y in subtraction semigroup X. Also we define a
congruence relation on a subtraction semigroup and a quotient subtraction semigroup
and prove the isomorphisms.

1. Introduction

B. M. Schein [2] considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition “◦” of functions (and hence (Φ; ◦) is a function semigroup)
and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the sense
of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [3] discussed a problem proposed by B. M. Schein [2]
concerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called the atomic subtraction algebras. In this
paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup
and characterizations of ideals is given. We prove that x ∧ y is the greatest lower bound of
x and y in subtraction semigroup X. Also we define a congruence relation on a subtraction
semigroup and a quotient subtraction semigroup and prove the isomorphisms.

2. Preliminaries

By a subtraction algebra we mean an algebra (X ;−) with a single binary operation “−”
that satisfies the following identities: for any x, y, z ∈ X ,

(SA1) x − (y − x) = x;
(SA2) x − (x − y) = y − (y − x);
(SA3) (x − y) − z = (x − z) − y.
The last identity permits us to omit parentheses in expressions of the form (x − y) − z.
The subtraction determines an order relation on X : a ≤ b ⇔ a − b = 0, where 0 = a − a
is an element that does not depend on the choice of a ∈ X . The ordered set (X ;≤) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a∧ b = a− (a− b); the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a − ((a − b) ∧ (a − c))
= a − ((a − b) − ((a − b) − (a − c))).

In a subtraction algebra, the following hold:
(S1) x − 0 = x and 0 − x = 0.
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(S2) x − (x − y) ≤ y.
(S3) x ≤ y if and only if x = y − w for some w ∈ X.
(S4) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X.
(S5) x − (x − (x − y)) = x − y.

By a subtraction semigroup we mean an algebra (X ; ·,−) with two binary operations “−”
and “·”that satisfies the following axioms: for any x, y, z ∈ X ,

(SS1) (X ; ·) is a semigroup;
(SS2) (X ;−) is a subtraction algebra;
(SS3) x(y − z) = xy − xz and (x − y)z = xz − yz.

A subtraction semigroup is said to be multiplicatively abelian if multiplication is commu-
tative.

Example 2.1. Let X = {0, 1} in which “−” and “·” are defined by

− 0 1
0 0 0
1 1 0

· 0 1
0 0 0
1 0 1

It is easy to check that X is a subtraction semigroup.

Lemma 2.2. Let X be a subtraction semigroup. Then the following hold.

(1) x0 = 0 and 0x = 0
(2) x ≤ y implies ax ≤ ay and xa ≤ ya.
(3) x(y ∧ z) = xy ∧ xz and (x ∧ y)z = xz ∧ yz

Proof. (1) x0 = x(0 − 0) = x0 − x0 = 0 and 0x = (0 − 0)x = 0x − 0x = 0.
(2) Let x ≤ y. Then we have x − y = 0, and so

ax − ay = a(x − y) = a0 = 0.

Hence ax ≤ ay. Similarly, we have xa ≤ ya.
(3) x(y ∧ z) = x(y − (y − z)) = xy − x(y − z) = xy − (xy − xz) = xy ∧ xz. Similarly, we

have (x ∧ y)z = xz ∧ yz.

Lemma 2.3. Let X be a subtraction semigroup. Then (X ;≤) is a poset, where x ≤ y ⇔
x − y = 0 for any x, y ∈ X.

Proof. For any x ∈ X , we have x ≤ x since x − x = 0. Thus ≤ is reflexive.
Let x, y ∈ X be such that x ≤ y and y ≤ x. Then x−y = 0 and y−x = 0. Thus by (SA1)

and (SA2) and (S1), we have x = x− (y−x) = x−0 = x− (x−y) = y− (y−x) = y−0 = y.
Hence ≤ is antisymmetry.

Let x, y, z ∈ X be such that x ≤ y and y ≤ z. Then by (S4), we have x − z ≤ y − z = 0.
Thus we get x − z = 0 by (S1). Hence ≤ is transitivity.

Proposition 2.4. Let X be a subtraction semigroup. Then for any x, y ∈ X, x ∧ y is the
greatest lower bound of x and y.

Proof. Let x, y ∈ X . Then since x ∧ y = x − (x − y) = y − (y − x) ≤ x, y from (S2), x ∧ y
is a lower bound of x and y.
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If z is a lower bound of x and y, then z − y = 0 and z = x − w for some w ∈ X from
(S5), and hence

z − (x ∧ y) = z − (x − (x − y))

= (x − w) − (x − (x − y))

= (x − (x − (x − y))) − w

= (x − y) − w (from (S5))

= (x − w) − y

= z − y

= 0.

It follows z ≤ x ∧ y, and so x ∧ y is the greatest lower bound of x and y.

3. Ideals of subtraction semigroup

Definition 3.1. Let X be a subtraction semigroup. A subalgebra I of (X,−) is called a
left ideal of X if XI ⊆ I, a right ideal if IX ⊆ I, and an (two-sided) ideal if it is both a left
and right ideal.

Example 3.2. Let X = {0, 1, 2, 3, 4, 5} in which “−” and “·” are defined by

− 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 3 4 3 1
2 2 5 0 2 5 4
3 3 0 3 0 3 3
4 4 0 0 4 0 4
5 5 5 0 5 5 0

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 4 3 4 0
2 0 4 2 0 4 5
3 0 3 0 3 0 0
4 0 4 4 0 4 0
5 0 0 5 0 0 5

It is easy to check that (X ;−, ·) is a subtraction semigroup. Let I = {0, 1, 3, 4}. Then I is
an ideal of X.

Example 3.3. Let X be a subtraction semigroup and a ∈ X. Then

Xa = {xa | x ∈ X}
is a left ideal of X.

Proof. Let xa, ya ∈ Xa. Then xa−ya = (x−y)a ∈ Xa, and so Xa is a subalgebra of (X,−).
Let xa ∈ Xa and z ∈ X. Then z(xa) = (zx)a ∈ Xa, which shows that X(Xa) ⊆ Xa.
Therefore, Xa is a left ideal.

Let S be a subset of a subtraction semigroup X . The ideal of X generated by S is the
intersection of all ideals in X containing S. The element 1 is called a unity in a subtraction
semigroup X if 1x = x1 = x for all x ∈ X .

Definition 3.4. A strong subtraction semigroup is a subtraction semigroup X that satisfies
the following condition : for each x, y ∈ X ,

x − y = x − xy.

If X ia a strong subtraction semigroup with a unity 1, then 1 is the greatest element in
X since x − 1 = x − x1 = x − x = 0 for all x ∈ X .
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Example 3.5. In Example 3.2, if · is defined by x ·y = 0 for all x, y ∈ X , then x ·y �= x∧y
in general.

Example 3.6. Let X = {0, a, b, 1} in which “−” and “·” are defined by

− 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

· 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

It is easy to check that (X ;−, ·) is a strong subtraction semigroup with unity 1.

Lemma 3.7. Let X be a strong subtraction semigroup. Then

(1) xy ≤ y for all x, y ∈ X,
(2) x ≤ y, x, y ∈ X if and only if x ≤ xy.

Proof. (1) For any x, y ∈ X , xy− y = xy− (xy)y = xy− x(yy) = x(y − yy) = x(y− y) = 0.
(2) It is easy to show from the definition of strong subtraction semigroup and the above

(1).

Theorem 3.8. Let (X,−, ·) be a strong subtraction semigroup and I a subalgebra of (X,−).
Then the followings are equivalent :

(1) I is an ideal in (X,−, ·),
(2) y ∈ I and x ≤ y imply x ∈ I.

Proof. Suppose that I is an ideal in X , and let y ∈ I and x ≤ y. Then x = y − w for some
w ∈ X from Lemma 2.2 and (S5), and so x = y − w = y − yw ∈ I

Conversely, Suppose that y ∈ I and x ≤ y imply x ∈ I. If s ∈ X and a ∈ I, then by the
Lemma 3.7,(1), sa ≤ a ∈ I, hence sa ∈ I. Since s ≤ s and s ≤ sa from Lemma 3.7,(2), we
have

as − a = as − (as)a = as − a(sa) = a(s − sa) = a0 = 0,

and as ≤ a ∈ I, and hence as ∈ I. This completes the proof.

Theorem 3.9. If X is a strong subtraction semigroup, then the principal ideal generated
by a ∈ X is (a] = {x ∈ X | x ≤ a}.
Proof. Let x, y ∈ (a]. Since (x− y)− a = (x− a)− y = 0− y = 0, x− y ≤ a and x− y ∈ (a],
and hence (a] is a subalgebra of X . From the Theorem 3.8, (a] is an ideal in X .

If J is an ideal containing a and x ∈ (a], then x ≤ a ∈ J . Since J is an ideal, x ∈ J from
the Theorem 3.8. Hence (a] ⊆ J and it follows that (a] is the principal ideal generated by
a.

If X is a strong subtraction semigroup with 1, then the principal ideal generated by a is
(a] = Xa.

Theorem 3.10. Let X be a strong subtraction semigroup with a unity 1. Then the following
are equivalent :

(1) I is an ideal in X,
(2) y ∈ I and x ≤ y imply x ∈ I.
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Proof. Let I be an ideal in X , and let y ∈ I and x ≤ y. Then x = y − w for some w ∈ X ,
hence x = y − w = y − yw ∈ I

Suppose that y ∈ I and x ≤ y imply x ∈ I. If x, y ∈ I, then x − y ∈ I, since
x − y = x − xy = x(1 − y) ≤ x · 1 = x ∈ I. Hence I is a subalgebra of X . Let s ∈ X and
a ∈ I. Then

as − a = a(s − 1) = a0 = 0
and

sa − a = (s − 1)a = 0a = 0,

hence as ≤ a and sa ≤ a, that is, IX ⊆ I and XI ⊆ I. It follows that I is an ideal in
X .

Theorem 3.11. Let X be a strong subtraction semigroup with 1. Then we have

x ∧ y = xy.

Proof. For any x, y ∈ X, we have

x ∧ y = x − (x − y) = x − (x − xy) = xy − (xy − x)
= xy − x(y − 1) = xy − x0
= xy − 0 = xy

Corollary 3.12. If X is a strong subtraction semigroup with 1, then ss = s for all s ∈ X,
i.e, X is a multiplicatively abelian idempotent subtraction semigroup.

Lemma 3.13. Let X be a strong subtraction semigroup with 1. Then the set

ann(a) = {x ∈ X | x ∧ a = 0, a ∈ X}
is an ideal of X.

Proof. Let x, y ∈ ann(a). Then we have x ∧ a = xa = 0 and y ∧ a = ya = 0. Hence we get
(x − y) ∧ a = (x − y)a = xa − ya = 0 − 0 = 0, and so x − y ∈ ann(a). Also, let x ∈ ann(a)
and s ∈ X. Then we obtain x∧ a = xa = 0, and so, sx∧ a = (sx)a = s(xa) = s0 = 0. Thus
sx ∈ ann(a). Similarly, we have xs ∈ ann(a). This completes the proof.

Let X be a strong subtraction semigroup. If s ≤ t for all s, t ∈ X, then we have
ann(s) ⊆ ann(t).

4. Congruence relation and Isomorphism theorem

In what follows, let X denote a subtraction semigroup unless otherwise specified.

Definition 4.1. Let X be a subtraction semigroup and let ρ be a binary relation on X .
Then

(1) ρ is said to be right (resp. left) compatible if whenever (x, y) ∈ ρ then (x−z, y−z) ∈ ρ
(resp. (z − x, z − y) ∈ ρ) and (xz, yz) ∈ ρ (resp. (zx, zy) ∈ ρ) for all x, y, z ∈ X ;

(2) ρ is said to be compatible if (x, y) ∈ ρ and (u, v) ∈ ρ imply (x − u, y − v) ∈ ρ and
(xu, yv) ∈ ρ for all x, y, u, v ∈ X,

(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a characterization of a
congruence relation.

Theorem 4.2. Let X be a subtraction semigroup. Then an equivalence relation ρ on X is
congruence if and only if it is both left and right compatible.
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Proof. Assume that ρ is a congruence relation on X . Let x, y ∈ X be such that (x, y) ∈ ρ.
Note that (z, z) ∈ ρ for all z ∈ X because ρ is reflexive. It follows from the compatibility
of ρ that (x− z, y− z) ∈ ρ and (xz, yz) ∈ ρ. Hence ρ is right compatible. Similarly, ρ is left
compatible.

Conversely, suppose that ρ is both left and right compatible. Let x, y, u, v ∈ X be such
that (x, y) ∈ ρ and (u, v) ∈ ρ. Then (x − u, y − u) ∈ ρ and (xu, yu) ∈ ρ. by the right
compatibility. Using the left compatibility of ρ, we have (y− u, y− v) ∈ ρ and (yu, yv) ∈ ρ.
It follows from the transitivity of ρ that (x − u, y − v) ∈ ρ and (xu, yv) ∈ ρ. Hence ρ is
congruence.

For a binary relation ρ on a subtraction semigroup X, we denote

xρ := {y ∈ X | (x, y) ∈ ρ} and X/ρ := {xρ | x ∈ X}.
Theorem 4.3. Let ρ be a congruence relation on a subtraction semigroup X. Then X/ρ
is a subtraction semigroup under the operations

xρ − yρ = (x − y)ρ and (xρ)(yρ) = (xy)ρ

for all xρ, yρ ∈ X/ρ.

Proof. Since ρ is a congruence relation, the operations are well-defined. Clearly, (X/ρ,−)
is a subtraction algebra and (X/ρ, ·) is a semigroup. For every xρ, yρ, zρ ∈ X/ρ, we have

xρ(yρ − zρ) = xρ(y − z)ρ = x(y − z)ρ
= (xy − xz)ρ = (xy)ρ − (xz)ρ
= xρyρ − xρzρ,

and
(xρ − yρ)zρ = (x − y)ρzρ = ((x − y)z)ρ

= (xz − yz)ρ = (xz)ρ − (yz)ρ
= xρzρ − yρzρ.

Thus X/ρ is a subtraction semigroup.

Definition 4.4. Let X and X ′ be subtraction semigroups. A mapping f : X → X ′ is called
a subtraction semigroup homomorphism (briefly, homomorphism) if f(x− y) = f(x)− f(y)
and f(xy) = f(x)f(y) for all x, y ∈ X.

Lemma 4.5. Let f : X → X ′ be a subtraction semigroup homomorphism. Then
(1) f(0) = 0,
(2) x ≤ y imply f(x) ≤ f(y).
(3) f(x ∧ y) = f(x) ∧ f(y).

Proof. (1). Suppose that x is an element of X. Then

f(0) = f(x− x) = f(x) − f(x) = 0

(2) Let x ≤ y. Then we have x − y = 0. Thus we have

0 = f(x − y) = f(x) − f(y),

and so f(x) ≤ f(y).
(3) f(x ∧ y) = f(x − (x − y)) = f(x) − (f(x) − f(y)) = f(x) ∧ f(y).

Proposition 4.6. Let f : X → X ′ be a subtraction semigroup homomorphism and J =
f−1(0) = {0}. Then f(x) ≤ f(y) imply x ≤ y.

Proof. If f(x) ≤ f(y), then we have f(x)− f(y) = f(x− y) = 0, and so x− y is an element
of J. Hence x − y = 0, and so we obtain x ≤ y.
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Theorem 4.7. Let ρ be a congruence relation on a subtraction semigroup X. Then the
mapping ρ∗ : X → X/ρ defined by ρ∗(x) = xρ for all x ∈ X is a subtraction semigroup
homomorphism.

Proof. Let x, y ∈ X. Then ρ∗(x − y) = (x − y)ρ = xρ − yρ = ρ∗(x) − ρ∗(y), and ρ∗(xy) =
(xy)ρ = (xρ)(yρ) = ρ∗(x)ρ∗(y). Hence ρ∗ is a subtraction semigroup homomorphism.

Theorem 4.8. Let X and X ′ be subtraction semigroups and let f : X → X ′ be a subtrac-
tion semigroup homomorphism. Then the set

Kf := {(x, y) ∈ X × X | f(x) = f(y)}
is a congruence relation on X and there exists a unique 1-1 subtraction semigroup homo-
morphism f̄ : X/Kf → X ′ such that f̄ ◦ K∗

f = f, where K∗
f : X → X/Kf . That is, the

following diagram commute:

X �
K∗

f
X/Kf

�
�

�
�

���
f̄

X′
�

f

Proof. It is clear that Kf is an equivalence relation on X . Let x, y, u, v ∈ X be such that
(x, y), (u, v) ∈ Kf . Then f(x) = f(y) and f(u) = f(v), which imply that

f(x − u) = f(x) − f(u) = f(y) − f(v) = f(y − v)

and
f(xu) = f(x)f(u) = f(y)f(v) = f(yv).

It follows that (x − u, y − v) ∈ Kf and (xu, yv) ∈ Kf . Hence Kf is a congruence relation
on X . Let f̄ : X/Kf → X ′ be a map defined by f̄(xKf ) = f(x) for all x ∈ X. It is clear
that f̄ is well-defined. For any xKf , yKf ∈ X/Kf , we have

f̄(xKf − yKf) = f̄((x − y)Kf) = f(x − y)
= f(x) − f(y) = f̄(xKf ) − f̄(yKf)

and

f̄((xKf )(yKf)) = f̄((xy)Kf ) = f(xy)
= f(x)f(y) = f̄(xKf )f̄(yKf).

If f̄(xKf ) = f̄(yKf), then f(x) = f(y) and so (x, y) ∈ Kf , that is, xKf = yKf . Thus
f̄ is a 1-1 subtraction semigroup homomorphism. Now let g be a subtraction semigroup
homomorphism from X/Kf to X ′ such that g ◦ K∗

f = f . Then

g(xKf ) = g(K∗
f (x)) = f(x) = f̄(xKf )

for all xKf ∈ X/Kf . It follows that g = f̄ so that f̄ is unique. This completes the
proof.

Corollary 4.9. Let ρ and σ be congruence relations on a subtraction semigroup X such
that ρ ⊆ σ. Then the set

σ/ρ := {(xρ, yρ) ∈ X/ρ × X/ρ | (x, y) ∈ σ}
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is a congruence relation on X/ρ and there exists a 1-1 and onto subtraction semigroup
homomorphism from X/ρ

σ/ρ to X/σ.

Proof. Let g : X/ρ → X/σ be a function defined by g(xρ) = xσ for all xρ ∈ X/ρ. Since ρ ⊆
σ, it follows that g is a well-defined onto subtraction semigroup homomorphism. According
to Theorem 4.8, it is sufficient to show that Kg = σ/ρ. Let (xρ, yρ) ∈ Kg. Then xσ =
g(xρ) = g(yρ) = yσ and so (x, y) ∈ σ. Hence (xρ, yρ) ∈ σ/ρ, and thus Kg ⊆ σ/ρ.

Conversely, if (xρ, yρ) ∈ σ/ρ, then (x, y) ∈ σ and so xσ = yσ. It follows that

g(xρ) = xσ = yσ = g(yρ)

so that (xρ, yρ) ∈ Kg. Hence Kg = σ/ρ, and the proof is complete.

Theorem 4.10. Let I be an ideal of a subtraction semigroup X. Then ρI := (I × I) ∪ ∆X

is a congruence relation on X, where ∆X := {(x, x) | x ∈ X}.
Proof. Clearly, ρI is reflexive and symmetric. Noticing that (x, y) ∈ ρI if and only if
x, y ∈ I or x = y, we know that if (x, y) ∈ ρI and (y, z) ∈ ρI then (x, z) ∈ ρI . Hence ρI is
an equivalence relation on X . Assume that (x, y) ∈ ρI and (u, v) ∈ ρI . Then we have the
following four cases: (i) x, y ∈ I and u, v ∈ I; (ii) x, y ∈ I and u = v; (iii) x = y and u, v ∈ I;
and (iv) x = y and u = v. In either case, we get x− u = y − v or (x− u, y− v) ∈ I × I, and
xu = yv or (xu, yv) ∈ I × I. Therefore ρI is a congruence relation on X .

Let X be a multiplicatively abelian subtraction semigroup and ρX be a binary relation
on X defined by

(a, b) ∈ ρX ⇐⇒ ∃u ∈ X such that au = bu. (∗)
Clearly, ρX is reflexive and symmetric. Let (a, b), (b, c) ∈ ρX . Then there exist u, v ∈ X
such that au = bu and bv = cv. These imply a(buv) = (au)(bv) = (bu)(cv) = c(buv), whence
ρX is transitive. Thus ρX is an equivalence relation on X.

Theorem 4.11. Let X be a multiplicatively abelian subtraction semigroup and ρX be a
binary relation on X defined by (∗). Then ρX is a congruence relation on X, and X/ρX is
a multiplicatively abelian subtraction semigroup.

Proof. Let (a, b), (c, d) ∈ ρX , Then there exist u, v ∈ X such that au = bu and cv = dv.
These imply (ac)(uv) = (au)(cv) = (bu)(dv) = (bd)(uv) and (a − c)(uv) = auv − cuv =
buv−duv = (b−d)uv, whence (ac, bd) ∈ ρX and (a−c, b−d) ∈ ρX . Thus ρX is a congruence
relation on X, and clearly X/ρX is a multiplicatively abelian subtraction semigroup.

Let X be a multiplicatively abelian subtraction semigroup. Then (ρX)∗ : X → X/ρX

defined by
(ρX)∗(a) = aρX

is a surjective subtraction semigroup homomorphism.

Theorem 4.12. Let X and X ′ be multiplicatively abelian subtraction semigroups with X/ρX

and X ′/ρ′
X , respectively and φ : X → X ′ be a subtraction semigroup homomorphism. Then

there exists a unique homomorphism φ/ρ : X/ρX → X ′/ρX′ such that φ/ρ ◦ (ρX)∗ =
(ρX′)∗ ◦ φ.

Proof. Define φ/ρ : X/ρX → X ′/ρX′ by φ/ρ(aρX) = φ(a)ρX′ . If aρX = bρX , then there
exists u ∈ X such that au = bu. Thus φ(a)φ(u) = φ(b)φ(u) and (φ(a), φ(b)) ∈ ρX′ , so
φ(a)ρX′ = φ(b)ρX′ . Therefore φ/ρ is well-defined. Next, we prove that φ/ρ is a homomor-
phism. In fact, φ/ρ(aρX − bρX) = φ/ρ((a − b)ρX) = φ(a − b)ρX′ = (φ(a) − φ(b))ρX′ =
φ(a)ρX′−φ(b)ρX′ = φ/ρ(aρX)−φ/ρ(bρX) and φ/ρ(aρX ·bρX) = φ/ρ((ab)ρX) = φ(ab)ρX′ =
(φ(a) · φ(b))ρX′ = φ(a)ρX′ · φ(b)ρX′ = φ/ρ(aρX) · φ/ρ(bρX). For any a ∈ X, we have
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(φ/ρ ◦ (ρX)∗)(a) = φ/ρ((ρX)∗(a)) = φ/ρ(aρX) = φ(a)ρX′ = (ρX′)∗(φ(a)) = ((ρX′)∗ ◦φ)(a).
Thus φ/ρ◦ (ρX)∗ = (ρX′)∗ ◦φ. Finally, if there exists a homomorphism g : X/ρX → X ′/ρX′

such that g ◦ (ρX)∗ = (ρX′)∗ ◦ φ, then g(aρX) = g((ρX)∗(a)) = (g ◦ (ρX)∗)(a) = ((ρX′)∗ ◦
φ)(a) = (ρX′)∗(φ(a)) = φ(a)ρX′ = φ/ρ(aρX). Thus g = φ/ρ and φ/ρ is unique.

It is clear that Hom(X,X ′) is a semigroup under multiplication defined by (φ1 ·φ2)(a) =
φ1(a) ·φ2(a). Likewise Hom(X/ρX , X ′/ρX′) is a semigroup by Theorem 4.12, we can define
a mapping

Φ : Hom(X,X ′) → Hom(X/ρX , X ′/ρX′)
by Φ(φ) = φ/ρ. Then we have the following theorem.

Theorem 4.13. Let X and X ′ be multiplicatively abelian subtraction semigroups with X/ρX

and X ′/ρX′ , respectively. Then the above mapping Φ given by Φ(φ) = φ/ρ is a semigroup
homomorphism.

Proof. Let φ1, φ2 ∈ Hom(X,X ′) and aρX ∈ X/ρX . Then ((φ1 · φ2)/ρ)(aρX) = ((φ1 ·
φ2)(a))ρX′ = (φ1(a) · φ2(a))ρX′ = φ1(a)ρX′ · φ2(a)ρX′ = φ1/ρ(aρX) · φ2/ρ(aρX) = (φ1/ρ ·
φ2/ρ)(aρX). Consequently, (φ1 · φ2)/ρ = φ1/ρ · φ2/ρ. Thus the map

Φ : Hom(X,X ′) → Hom(X/ρX , X ′/ρX′)

given by Φ(φ) = φ/ρ is a semigroup homomorphism.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153–2169.
[3] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445–447.

Kyung Ho Kim
Department of Mathematics, Chungju National University, Chungju 380-702, Korea
ghkim@gukwon.chungju.ac.kr

Eun Hwan Roh
Department of Mathematics Education, Chinju National University of Education, Chinju (Jinju)
660-756, Korea
ehroh@cue.ac.kr

Yong Ho Yon

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

yhyonkr@hanmail.net


