A NOTE ON SUBTRACTION SEMIGROUPS

KYUNG HO KIM, EUN HWAN ROH AND YONG HO YON

Received March 5, 2004

Abstract

In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We prove that $x \wedge y$ is the greatest lower bound of x and y in subtraction semigroup X. Also we define a congruence relation on a subtraction semigroup and a quotient subtraction semigroup and prove the isomorphisms.

1. Introduction

B. M. Schein [2] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [3] discussed a problem proposed by B. M. Schein [2] concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We prove that $x \wedge y$ is the greatest lower bound of x and y in subtraction semigroup X. Also we define a congruence relation on a subtraction semigroup and a quotient subtraction semigroup and prove the isomorphisms.

2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(SA1) $x-(y-x)=x$;
(SA2) $x-(x-y)=y-(y-x)$;
(SA3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following hold:
(S1) $x-0=x$ and $0-x=0$.

[^0](S2) $x-(x-y) \leq y$.
(S3) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(S4) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(S5) $x-(x-(x-y))=x-y$.
By a subtraction semigroup we mean an algebra ($X ; \cdot,-$) with two binary operations "-" and "." that satisfies the following axioms: for any $x, y, z \in X$,
(SS1) $(X ; \cdot)$ is a semigroup;
(SS2) $(X ;-)$ is a subtraction algebra;
(SS3) $x(y-z)=x y-x z$ and $(x-y) z=x z-y z$.
A subtraction semigroup is said to be multiplicatively abelian if multiplication is commutative.

Example 2.1. Let $X=\{0,1\}$ in which "-" and "." are defined by

-	0	1
0	0	0
1	1	0

.	0	1
0	0	0
1	0	1

It is easy to check that X is a subtraction semigroup.
Lemma 2.2. Let X be a subtraction semigroup. Then the following hold.
(1) $x 0=0$ and $0 x=0$
(2) $x \leq y$ implies $a x \leq a y$ and $x a \leq y a$.
(3) $x(y \wedge z)=x y \wedge x z$ and $(x \wedge y) z=x z \wedge y z$

Proof. (1) $x 0=x(0-0)=x 0-x 0=0$ and $0 x=(0-0) x=0 x-0 x=0$.
(2) Let $x \leq y$. Then we have $x-y=0$, and so

$$
a x-a y=a(x-y)=a 0=0 .
$$

Hence $a x \leq a y$. Similarly, we have $x a \leq y a$.
(3) $x(y \wedge z)=x(y-(y-z))=x y-x(y-z)=x y-(x y-x z)=x y \wedge x z$. Similarly, we have $(x \wedge y) z=x z \wedge y z$.

Lemma 2.3. Let X be a subtraction semigroup. Then $(X ; \leq)$ is a poset, where $x \leq y \Leftrightarrow$ $x-y=0$ for any $x, y \in X$.

Proof. For any $x \in X$, we have $x \leq x$ since $x-x=0$. Thus \leq is reflexive.
Let $x, y \in X$ be such that $x \leq y$ and $y \leq x$. Then $x-y=0$ and $y-x=0$. Thus by (SA1) and (SA2) and (S1), we have $x=x-(y-x)=x-0=x-(x-y)=y-(y-x)=y-0=y$. Hence \leq is antisymmetry.

Let $x, y, z \in X$ be such that $x \leq y$ and $y \leq z$. Then by (S4), we have $x-z \leq y-z=0$. Thus we get $x-z=0$ by (S1). Hence \leq is transitivity.

Proposition 2.4. Let X be a subtraction semigroup. Then for any $x, y \in X, x \wedge y$ is the greatest lower bound of x and y.

Proof. Let $x, y \in X$. Then since $x \wedge y=x-(x-y)=y-(y-x) \leq x, y$ from (S2), $x \wedge y$ is a lower bound of x and y.

If z is a lower bound of x and y, then $z-y=0$ and $z=x-w$ for some $w \in X$ from (S5), and hence

$$
\begin{aligned}
z-(x \wedge y) & =z-(x-(x-y)) \\
& =(x-w)-(x-(x-y)) \\
& =(x-(x-(x-y)))-w \\
& =(x-y)-w \quad(\text { from (S5) }) \\
& =(x-w)-y \\
& =z-y \\
& =0
\end{aligned}
$$

It follows $z \leq x \wedge y$, and so $x \wedge y$ is the greatest lower bound of x and y.

3. Ideals of subtraction semigroup

Definition 3.1. Let X be a subtraction semigroup. A subalgebra I of $(X,-)$ is called a left ideal of X if $X I \subseteq I$, a right ideal if $I X \subseteq I$, and an (two-sided) ideal if it is both a left and right ideal.

Example 3.2. Let $X=\{0,1,2,3,4,5\}$ in which "-" and "." are defined by

-	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	3	4	3	1
2	2	5	0	2	5	4
3	3	0	3	0	3	3
4	4	0	0	4	0	4
5	5	5	0	5	5	0

.	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	4	3	4	0
2	0	4	2	0	4	5
3	0	3	0	3	0	0
4	0	4	4	0	4	0
5	0	0	5	0	0	5

It is easy to check that $(X ;-, \cdot)$ is a subtraction semigroup. Let $I=\{0,1,3,4\}$. Then I is an ideal of X.

Example 3.3. Let X be a subtraction semigroup and $a \in X$. Then

$$
X a=\{x a \mid x \in X\}
$$

is a left ideal of X.
Proof. Let $x a, y a \in X a$. Then $x a-y a=(x-y) a \in X a$, and so $X a$ is a subalgebra of $(X,-)$.
Let $x a \in X a$ and $z \in X$. Then $z(x a)=(z x) a \in X a$, which shows that $X(X a) \subseteq X a$. Therefore, $X a$ is a left ideal.

Let S be a subset of a subtraction semigroup X. The ideal of X generated by S is the intersection of all ideals in X containing S. The element 1 is called a unity in a subtraction semigroup X if $1 x=x 1=x$ for all $x \in X$.

Definition 3.4. A strong subtraction semigroup is a subtraction semigroup X that satisfies the following condition : for each $x, y \in X$,

$$
x-y=x-x y .
$$

If X ia a strong subtraction semigroup with a unity 1 , then 1 is the greatest element in X since $x-1=x-x 1=x-x=0$ for all $x \in X$.

Example 3.5. In Example 3.2, if \cdot is defined by $x \cdot y=0$ for all $x, y \in X$, then $x \cdot y \neq x \wedge y$ in general.

Example 3.6. Let $X=\{0, a, b, 1\}$ in which "-" and "." are defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

.	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

It is easy to check that $(X ;-, \cdot)$ is a strong subtraction semigroup with unity 1.
Lemma 3.7. Let X be a strong subtraction semigroup. Then
(1) $x y \leq y$ for all $x, y \in X$,
(2) $x \leq y, x, y \in X$ if and only if $x \leq x y$.

Proof. (1) For any $x, y \in X, x y-y=x y-(x y) y=x y-x(y y)=x(y-y y)=x(y-y)=0$.
(2) It is easy to show from the definition of strong subtraction semigroup and the above (1).

Theorem 3.8. Let $(X,-, \cdot)$ be a strong subtraction semigroup and I a subalgebra of $(X,-)$. Then the followings are equivalent:
(1) I is an ideal in $(X,-, \cdot)$,
(2) $y \in I$ and $x \leq y$ imply $x \in I$.

Proof. Suppose that I is an ideal in X, and let $y \in I$ and $x \leq y$. Then $x=y-w$ for some $w \in X$ from Lemma 2.2 and (S5), and so $x=y-w=y-y w \in I$

Conversely, Suppose that $y \in I$ and $x \leq y$ imply $x \in I$. If $s \in X$ and $a \in I$, then by the Lemma 3.7,(1), $s a \leq a \in I$, hence $s a \in I$. Since $s \leq s$ and $s \leq s a$ from Lemma 3.7,(2), we have

$$
a s-a=a s-(a s) a=a s-a(s a)=a(s-s a)=a 0=0,
$$

and $a s \leq a \in I$, and hence $a s \in I$. This completes the proof.

Theorem 3.9. If X is a strong subtraction semigroup, then the principal ideal generated by $a \in X$ is $(a]=\{x \in X \mid x \leq a\}$.

Proof. Let $x, y \in(a]$. Since $(x-y)-a=(x-a)-y=0-y=0, x-y \leq a$ and $x-y \in(a]$, and hence (a] is a subalgebra of X. From the Theorem 3.8, $(a]$ is an ideal in X.

If J is an ideal containing a and $x \in(a]$, then $x \leq a \in J$. Since J is an ideal, $x \in J$ from the Theorem 3.8. Hence $(a] \subseteq J$ and it follows that $(a]$ is the principal ideal generated by a.

If X is a strong subtraction semigroup with 1 , then the principal ideal generated by a is $(a]=X a$.

Theorem 3.10. Let X be a strong subtraction semigroup with a unity 1. Then the following are equivalent :
(1) I is an ideal in X,
(2) $y \in I$ and $x \leq y$ imply $x \in I$.

Proof. Let I be an ideal in X, and let $y \in I$ and $x \leq y$. Then $x=y-w$ for some $w \in X$, hence $x=y-w=y-y w \in I$

Suppose that $y \in I$ and $x \leq y$ imply $x \in I$. If $x, y \in I$, then $x-y \in I$, since $x-y=x-x y=x(1-y) \leq x \cdot 1=x \in I$. Hence I is a subalgebra of X. Let $s \in X$ and $a \in I$. Then

$$
a s-a=a(s-1)=a 0=0
$$

and

$$
s a-a=(s-1) a=0 a=0,
$$

hence $a s \leq a$ and $s a \leq a$, that is, $I X \subseteq I$ and $X I \subseteq I$. It follows that I is an ideal in X.

Theorem 3.11. Let X be a strong subtraction semigroup with 1. Then we have

$$
x \wedge y=x y .
$$

Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
x \wedge y=x-(x-y) & =x-(x-x y)=x y-(x y-x) \\
& =x y-x(y-1)=x y-x 0 \\
& =x y-0=x y
\end{aligned}
$$

Corollary 3.12. If X is a strong subtraction semigroup with 1 , then $s s=s$ for all $s \in X$, i.e, X is a multiplicatively abelian idempotent subtraction semigroup.

Lemma 3.13. Let X be a strong subtraction semigroup with 1 . Then the set

$$
\operatorname{ann}(a)=\{x \in X \mid x \wedge a=0, a \in X\}
$$

is an ideal of X.
Proof. Let $x, y \in \operatorname{ann}(a)$. Then we have $x \wedge a=x a=0$ and $y \wedge a=y a=0$. Hence we get $(x-y) \wedge a=(x-y) a=x a-y a=0-0=0$, and so $x-y \in \operatorname{ann}(a)$. Also, let $x \in \operatorname{ann}(a)$ and $s \in X$. Then we obtain $x \wedge a=x a=0$, and so, $s x \wedge a=(s x) a=s(x a)=s 0=0$. Thus $s x \in \operatorname{ann}(a)$. Similarly, we have $x s \in \operatorname{ann}(a)$. This completes the proof.

Let X be a strong subtraction semigroup. If $s \leq t$ for all $s, t \in X$, then we have $\operatorname{ann}(s) \subseteq \operatorname{ann}(t)$.

4. Congruence relation and Isomorphism theorem

In what follows, let X denote a subtraction semigroup unless otherwise specified.
Definition 4.1. Let X be a subtraction semigroup and let ρ be a binary relation on X. Then
(1) ρ is said to be right (resp. left) compatible if whenever $(x, y) \in \rho$ then $(x-z, y-z) \in \rho$ (resp. $(z-x, z-y) \in \rho)$ and $(x z, y z) \in \rho($ resp. $(z x, z y) \in \rho)$ for all $x, y, z \in X$;
(2) ρ is said to be compatible if $(x, y) \in \rho$ and $(u, v) \in \rho$ imply $(x-u, y-v) \in \rho$ and $(x u, y v) \in \rho$ for all $x, y, u, v \in X$,
(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a characterization of a congruence relation.

Theorem 4.2. Let X be a subtraction semigroup. Then an equivalence relation ρ on X is congruence if and only if it is both left and right compatible.

Proof. Assume that ρ is a congruence relation on X. Let $x, y \in X$ be such that $(x, y) \in \rho$. Note that $(z, z) \in \rho$ for all $z \in X$ because ρ is reflexive. It follows from the compatibility of ρ that $(x-z, y-z) \in \rho$ and $(x z, y z) \in \rho$. Hence ρ is right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let $x, y, u, v \in X$ be such that $(x, y) \in \rho$ and $(u, v) \in \rho$. Then $(x-u, y-u) \in \rho$ and $(x u, y u) \in \rho$. by the right compatibility. Using the left compatibility of ρ, we have $(y-u, y-v) \in \rho$ and $(y u, y v) \in \rho$. It follows from the transitivity of ρ that $(x-u, y-v) \in \rho$ and $(x u, y v) \in \rho$. Hence ρ is congruence.

For a binary relation ρ on a subtraction semigroup X, we denote

$$
x \rho:=\{y \in X \mid(x, y) \in \rho\} \text { and } X / \rho:=\{x \rho \mid x \in X\} .
$$

Theorem 4.3. Let ρ be a congruence relation on a subtraction semigroup X. Then X / ρ is a subtraction semigroup under the operations

$$
x \rho-y \rho=(x-y) \rho \text { and }(x \rho)(y \rho)=(x y) \rho
$$

for all $x \rho, y \rho \in X / \rho$.
Proof. Since ρ is a congruence relation, the operations are well-defined. Clearly, ($X / \rho,-$) is a subtraction algebra and $(X / \rho, \cdot)$ is a semigroup. For every $x \rho, y \rho, z \rho \in X / \rho$, we have

$$
\begin{aligned}
x \rho(y \rho-z \rho) & =x \rho(y-z) \rho=x(y-z) \rho \\
& =(x y-x z) \rho=(x y) \rho-(x z) \rho \\
& =x \rho y \rho-x \rho z \rho,
\end{aligned}
$$

and

$$
\begin{aligned}
(x \rho-y \rho) z \rho & =(x-y) \rho z \rho=((x-y) z) \rho \\
& =(x z-y z) \rho=(x z) \rho-(y z) \rho \\
& =x \rho z \rho-y \rho z \rho .
\end{aligned}
$$

Thus X / ρ is a subtraction semigroup.
Definition 4.4. Let X and X^{\prime} be subtraction semigroups. A mapping $f: X \rightarrow X^{\prime}$ is called a subtraction semigroup homomorphism (briefly, homomorphism) if $f(x-y)=f(x)-f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in X$.
Lemma 4.5. Let $f: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism. Then
(1) $f(0)=0$,
(2) $x \leq y$ imply $f(x) \leq f(y)$.
(3) $f(x \wedge y)=f(x) \wedge f(y)$.

Proof. (1). Suppose that x is an element of X. Then

$$
f(0)=f(x-x)=f(x)-f(x)=0
$$

(2) Let $x \leq y$. Then we have $x-y=0$. Thus we have

$$
0=f(x-y)=f(x)-f(y),
$$

and so $f(x) \leq f(y)$.
(3) $f(x \wedge y)=f(x-(x-y))=f(x)-(f(x)-f(y))=f(x) \wedge f(y)$.

Proposition 4.6. Let $f: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism and $J=$ $f^{-1}(0)=\{0\}$. Then $f(x) \leq f(y)$ imply $x \leq y$.

Proof. If $f(x) \leq f(y)$, then we have $f(x)-f(y)=f(x-y)=0$, and so $x-y$ is an element of J. Hence $x-y=0$, and so we obtain $x \leq y$.

Theorem 4.7. Let ρ be a congruence relation on a subtraction semigroup X. Then the mapping $\rho^{*}: X \rightarrow X / \rho$ defined by $\rho^{*}(x)=x \rho$ for all $x \in X$ is a subtraction semigroup homomorphism.

Proof. Let $x, y \in X$. Then $\rho^{*}(x-y)=(x-y) \rho=x \rho-y \rho=\rho^{*}(x)-\rho^{*}(y)$, and $\rho^{*}(x y)=$ $(x y) \rho=(x \rho)(y \rho)=\rho^{*}(x) \rho^{*}(y)$. Hence ρ^{*} is a subtraction semigroup homomorphism.

Theorem 4.8. Let X and X^{\prime} be subtraction semigroups and let $f: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism. Then the set

$$
K_{f}:=\{(x, y) \in X \times X \mid f(x)=f(y)\}
$$

is a congruence relation on X and there exists a unique 1-1 subtraction semigroup homomorphism $\bar{f}: X / K_{f} \rightarrow X^{\prime}$ such that $\bar{f} \circ K_{f}^{*}=f$, where $K_{f}^{*}: X \rightarrow X / K_{f}$. That is, the following diagram commute:

Proof. It is clear that K_{f} is an equivalence relation on X. Let $x, y, u, v \in X$ be such that $(x, y),(u, v) \in K_{f}$. Then $f(x)=f(y)$ and $f(u)=f(v)$, which imply that

$$
f(x-u)=f(x)-f(u)=f(y)-f(v)=f(y-v)
$$

and

$$
f(x u)=f(x) f(u)=f(y) f(v)=f(y v) .
$$

It follows that $(x-u, y-v) \in K_{f}$ and $(x u, y v) \in K_{f}$. Hence K_{f} is a congruence relation on X. Let $\bar{f}: X / K_{f} \rightarrow X^{\prime}$ be a map defined by $\bar{f}\left(x K_{f}\right)=f(x)$ for all $x \in X$. It is clear that \bar{f} is well-defined. For any $x K_{f}, y K_{f} \in X / K_{f}$, we have

$$
\begin{aligned}
\bar{f}\left(x K_{f}-y K_{f}\right) & =\bar{f}\left((x-y) K_{f}\right)=f(x-y) \\
& =f(x)-f(y)=\bar{f}\left(x K_{f}\right)-\bar{f}\left(y K_{f}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{f}\left(\left(x K_{f}\right)\left(y K_{f}\right)\right) & =\bar{f}\left((x y) K_{f}\right)=f(x y) \\
& =f(x) f(y)=\bar{f}\left(x K_{f}\right) \bar{f}\left(y K_{f}\right) .
\end{aligned}
$$

If $\bar{f}\left(x K_{f}\right)=\bar{f}\left(y K_{f}\right)$, then $f(x)=f(y)$ and so $(x, y) \in K_{f}$, that is, $x K_{f}=y K_{f}$. Thus \bar{f} is a 1-1 subtraction semigroup homomorphism. Now let g be a subtraction semigroup homomorphism from X / K_{f} to X^{\prime} such that $g \circ K_{f}^{*}=f$. Then

$$
g\left(x K_{f}\right)=g\left(K_{f}^{*}(x)\right)=f(x)=\bar{f}\left(x K_{f}\right)
$$

for all $x K_{f} \in X / K_{f}$. It follows that $g=\bar{f}$ so that \bar{f} is unique. This completes the proof.

Corollary 4.9. Let ρ and σ be congruence relations on a subtraction semigroup X such that $\rho \subseteq \sigma$. Then the set

$$
\sigma / \rho:=\{(x \rho, y \rho) \in X / \rho \times X / \rho \mid(x, y) \in \sigma\}
$$

is a congruence relation on X / ρ and there exists a 1-1 and onto subtraction semigroup homomorphism from $\frac{X / \rho}{\sigma / \rho}$ to X / σ.
Proof. Let $g: X / \rho \rightarrow X / \sigma$ be a function defined by $g(x \rho)=x \sigma$ for all $x \rho \in X / \rho$. Since $\rho \subseteq$ σ, it follows that g is a well-defined onto subtraction semigroup homomorphism. According to Theorem 4.8, it is sufficient to show that $K_{g}=\sigma / \rho$. Let $(x \rho, y \rho) \in K_{g}$. Then $x \sigma=$ $g(x \rho)=g(y \rho)=y \sigma$ and so $(x, y) \in \sigma$. Hence $(x \rho, y \rho) \in \sigma / \rho$, and thus $K_{g} \subseteq \sigma / \rho$.

Conversely, if $(x \rho, y \rho) \in \sigma / \rho$, then $(x, y) \in \sigma$ and so $x \sigma=y \sigma$. It follows that

$$
g(x \rho)=x \sigma=y \sigma=g(y \rho)
$$

so that $(x \rho, y \rho) \in K_{g}$. Hence $K_{g}=\sigma / \rho$, and the proof is complete.
Theorem 4.10. Let I be an ideal of a subtraction semigroup X. Then $\rho_{I}:=(I \times I) \cup \Delta_{X}$ is a congruence relation on X, where $\Delta_{X}:=\{(x, x) \mid x \in X\}$.

Proof. Clearly, ρ_{I} is reflexive and symmetric. Noticing that $(x, y) \in \rho_{I}$ if and only if $x, y \in I$ or $x=y$, we know that if $(x, y) \in \rho_{I}$ and $(y, z) \in \rho_{I}$ then $(x, z) \in \rho_{I}$. Hence ρ_{I} is an equivalence relation on X. Assume that $(x, y) \in \rho_{I}$ and $(u, v) \in \rho_{I}$. Then we have the following four cases: (i) $x, y \in I$ and $u, v \in I$; (ii) $x, y \in I$ and $u=v$; (iii) $x=y$ and $u, v \in I$; and (iv) $x=y$ and $u=v$. In either case, we get $x-u=y-v$ or $(x-u, y-v) \in I \times I$, and $x u=y v$ or $(x u, y v) \in I \times I$. Therefore ρ_{I} is a congruence relation on X.

Let X be a multiplicatively abelian subtraction semigroup and ρ_{X} be a binary relation on X defined by

$$
\begin{equation*}
(a, b) \in \rho_{X} \Longleftrightarrow \exists u \in X \text { such that } a u=b u . \tag{*}
\end{equation*}
$$

Clearly, ρ_{X} is reflexive and symmetric. Let $(a, b),(b, c) \in \rho_{X}$. Then there exist $u, v \in X$ such that $a u=b u$ and $b v=c v$. These imply $a(b u v)=(a u)(b v)=(b u)(c v)=c(b u v)$, whence ρ_{X} is transitive. Thus ρ_{X} is an equivalence relation on X.

Theorem 4.11. Let X be a multiplicatively abelian subtraction semigroup and ρ_{X} be a binary relation on X defined by (*). Then ρ_{X} is a congruence relation on X, and X / ρ_{X} is a multiplicatively abelian subtraction semigroup.

Proof. Let $(a, b),(c, d) \in \rho_{X}$, Then there exist $u, v \in X$ such that $a u=b u$ and $c v=d v$. These imply $(a c)(u v)=(a u)(c v)=(b u)(d v)=(b d)(u v)$ and $(a-c)(u v)=a u v-c u v=$ buv $-d u v=(b-d) u v$, whence $(a c, b d) \in \rho_{X}$ and $(a-c, b-d) \in \rho_{X}$. Thus ρ_{X} is a congruence relation on X, and clearly X / ρ_{X} is a multiplicatively abelian subtraction semigroup.

Let X be a multiplicatively abelian subtraction semigroup. Then $\left(\rho_{X}\right)^{*}: X \rightarrow X / \rho_{X}$ defined by

$$
\left(\rho_{X}\right)^{*}(a)=a \rho_{X}
$$

is a surjective subtraction semigroup homomorphism.
Theorem 4.12. Let X and X^{\prime} be multiplicatively abelian subtraction semigroups with X / ρ_{X} and $X^{\prime} / \rho_{X}^{\prime}$, respectively and $\phi: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism. Then there exists a unique homomorphism $\phi / \rho: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ such that $\phi / \rho \circ\left(\rho_{X}\right)^{*}=$ $\left(\rho_{X^{\prime}}\right)^{*} \circ \phi$.

Proof. Define $\phi / \rho: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ by $\phi / \rho\left(a \rho_{X}\right)=\phi(a) \rho_{X^{\prime}}$. If $a \rho_{X}=b \rho_{X}$, then there exists $u \in X$ such that $a u=b u$. Thus $\phi(a) \phi(u)=\phi(b) \phi(u)$ and $(\phi(a), \phi(b)) \in \rho_{X^{\prime}}$, so $\phi(a) \rho_{X^{\prime}}=\phi(b) \rho_{X^{\prime}}$. Therefore ϕ / ρ is well-defined. Next, we prove that ϕ / ρ is a homomorphism. In fact, $\phi / \rho\left(a \rho_{X}-b \rho_{X}\right)=\phi / \rho\left((a-b) \rho_{X}\right)=\phi(a-b) \rho_{X^{\prime}}=(\phi(a)-\phi(b)) \rho_{X^{\prime}}=$ $\phi(a) \rho_{X^{\prime}}-\phi(b) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right)-\phi / \rho\left(b \rho_{X}\right)$ and $\phi / \rho\left(a \rho_{X} \cdot b \rho_{X}\right)=\phi / \rho\left((a b) \rho_{X}\right)=\phi(a b) \rho_{X^{\prime}}=$ $(\phi(a) \cdot \phi(b)) \rho_{X^{\prime}}=\phi(a) \rho_{X^{\prime}} \cdot \phi(b) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right) \cdot \phi / \rho\left(b \rho_{X}\right)$. For any $a \in X$, we have
$\left(\phi / \rho \circ\left(\rho_{X}\right)^{*}\right)(a)=\phi / \rho\left(\left(\rho_{X}\right)^{*}(a)\right)=\phi / \rho\left(a \rho_{X}\right)=\phi(a) \rho_{X^{\prime}}=\left(\rho_{X^{\prime}}\right)^{*}(\phi(a))=\left(\left(\rho_{X^{\prime}}\right)^{*} \circ \phi\right)(a)$. Thus $\phi / \rho \circ\left(\rho_{X}\right)^{*}=\left(\rho_{X^{\prime}}\right)^{*} \circ \phi$. Finally, if there exists a homomorphism $g: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ such that $g \circ\left(\rho_{X}\right)^{*}=\left(\rho_{X^{\prime}}\right)^{*} \circ \phi$, then $g\left(a \rho_{X}\right)=g\left(\left(\rho_{X}\right)^{*}(a)\right)=\left(g \circ\left(\rho_{X}\right)^{*}\right)(a)=\left(\left(\rho_{X^{\prime}}\right)^{*} \circ\right.$ $\phi)(a)=\left(\rho_{X^{\prime}}\right)^{*}(\phi(a))=\phi(a) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right)$. Thus $g=\phi / \rho$ and ϕ / ρ is unique.

It is clear that $\operatorname{Hom}\left(X, X^{\prime}\right)$ is a semigroup under multiplication defined by $\left(\phi_{1} \cdot \phi_{2}\right)(a)=$ $\phi_{1}(a) \cdot \phi_{2}(a)$. Likewise $\operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)$ is a semigroup by Theorem 4.12, we can define a mapping

$$
\Phi: \operatorname{Hom}\left(X, X^{\prime}\right) \rightarrow \operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)
$$

by $\Phi(\phi)=\phi / \rho$. Then we have the following theorem.
Theorem 4.13. Let X and X^{\prime} be multiplicatively abelian subtraction semigroups with X / ρ_{X} and $X^{\prime} / \rho_{X^{\prime}}$, respectively. Then the above mapping Φ given by $\Phi(\phi)=\phi / \rho$ is a semigroup homomorphism.

Proof. Let $\phi_{1}, \phi_{2} \in \operatorname{Hom}\left(X, X^{\prime}\right)$ and $a \rho_{X} \in X / \rho_{X}$. Then $\left(\left(\phi_{1} \cdot \phi_{2}\right) / \rho\right)\left(a \rho_{X}\right)=\left(\left(\phi_{1}\right.\right.$. $\left.\left.\phi_{2}\right)(a)\right) \rho_{X^{\prime}}=\left(\phi_{1}(a) \cdot \phi_{2}(a)\right) \rho_{X^{\prime}}=\phi_{1}(a) \rho_{X^{\prime}} \cdot \phi_{2}(a) \rho_{X^{\prime}}=\phi_{1} / \rho\left(a \rho_{X}\right) \cdot \phi_{2} / \rho\left(a \rho_{X}\right)=\left(\phi_{1} / \rho\right.$. $\left.\phi_{2} / \rho\right)\left(a \rho_{X}\right)$. Consequently, $\left(\phi_{1} \cdot \phi_{2}\right) / \rho=\phi_{1} / \rho \cdot \phi_{2} / \rho$. Thus the map

$$
\Phi: \operatorname{Hom}\left(X, X^{\prime}\right) \rightarrow \operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)
$$

given by $\Phi(\phi)=\phi / \rho$ is a semigroup homomorphism.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[3] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.
Kyung Ho Kim
Department of Mathematics, Chungju National University, Chungju 380-702, Korea
ghkim@gukwon.chungju.ac.kr
Eun Hwan Roh
Department of Mathematics Education, Chinju National University of Education, Chinju (Jinju) 660-756, Korea
ehroh@cue.ac.kr
Yong Ho Yon
Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea yhyonkr@hanmail.net

[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. Subtraction algebra, subtraction semigroup, congruence, compatible.

