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TWO-PLAYER GAMES OF “SCORE SHOWDOWN”
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Abstract. There are some games widely played in the routine world of gambles,
roulette, quiz show and the sports excercises. The object of the game is to get the
highest score among all of the players in the game, from one or two chances of sampling.
The two-player sequential-move, imperfect-information games with the three kids of
score functions are investigated, and the optimal strategies for the two players and the
winning probabilities they can get in the optimal play are derived.

1 The Game of “Score Showdown”. Consider the two players I and II (sometimes
they are denoted by 1 and 2, respectively). Let Xij(i, j = 1, 2) be the random variable
(r.v.) observed by player i at the j-th observation. We assume that Xij s are i.i.d., each
with uniform distribution on [0, 1]. The game is played in the two stages:

In the first stage, I observes that X11 = x and chooses one of the either A1 (i.e., I
accepts x) or R1 (i.e., I rejects x, and resamples a new r.v. X12). The observed value x
and I’s choice of either A1 or R1 are informed to II. But the observed value of X12 is not
informed to II.

In the second stage, after knowing I’s choice of x&(A1 or R1), II observes that X21 = y
and chooses either one of A2 (i.e., II accepts y) or R2 (i.e., II rejects y and resamples a new
r.v. X22).

Let, for i = 1, 2,

Si(Xi1, Xi2) =
{

Xi1

Xi2

}
, if Xi1 is

{
accepted
rejected

}
by player i(1.1)

which we call the score for player i.
After the second stage is over, the showdown is made, the scores are compared, and the

player with the higher score than opponent’s becomes the winner. Each player aims to max-
imize the probability of his (or her) winning. We assume that both players are intelligent,
and each player should prepare for the optimal strategy employed by his opponent.

The solutions to the game with the score function (1.1) and the related simultaneous-
move game are given in Section 2. The games with other scores “Competing Average” and
“Showcase Showdown” are analyzed in Sections 3 and 4. Some interesting sequential-move
games, other than those treated in the present paper, which are often seen in card games
like LaRelance poker, TV show like Price is Right, and competition by sports players, are
discussed in Ref.[1, 2, 3, 4, 5, and 7].

2 Keep-or-Exchange. Let Wi(i = 1, 2) be the event that player i wins. To find the

players’ optimal strategies we must derive them in reverse order. Define state
{

(y|x,A1)
(y|x,R1)

}

2000 Mathematics Subject Classification. 60G40, 90C39, 90D10.
Key words and phrases. Two-player sequential game, optimal strategy, optimal play, concave-convex

game.



348 MINORU SAKAGUCHI

for II, to mean that I
{

accepted
rejected

}
X11 = x in the first stage and II has just observed

X21 = y in the second stage. Then we have

p2A(y|x,A1) = P{W2|II accepts X21 = y in state (y|x,A1)} = I(y > x),(2.1)

p2R(y|x,A1) = P{W2|II rejects X21 = y in state (y|x,A1)}(2.2)
= P (X22 > x) = x̄ ≡ 1 − x, indep. of y,

p2A(y|x,R1) = P{W2|II accepts X21 = y in state (y|x,R1)}(2.3)
= P (X12 < y) = y, indep. of x,

and

p2R(y|x,R1) = P{W2|II rejects X21 = y in state (y|x,R1)}(2.4)

= P (X12 < X22) =
1
2
, indep. of x and y,

Theorem 1 The solution to the two-player game with the score function (1.1) is as follows.
The optimal strategy for I in the first stage is given by:

Accept (Reject)X11 = x, if x > (<)
√

3/8 ≈ 0.6124.(2.5)

The optimal strategy for II in the second stage is given by

Accept (Reject)X21 = y, if y > (<)
{

x
1/2

}
in state

{
(y|x,A1)
(y|x,R1)

}
.(2.6)

The optimal values are

P (W1) =
1
3

{
1 + 2 (3/8)3/2

}
≈ 0.4864(2.7)

P (W2) = 1 − P (W1) =
2
3

{
1 − (3/8)3/2

}
≈ 0.5136.

Proof. From (2.1)-(2.2), we find that

P (W2|x,A1) ≡ P (W2| I accepted X11 = x in the first stage)(2.8)

=
∫ 1

0

{p2A(y|x,A1) ∨ p2R(y|x,A1)} dy (∗)

=
∫ 1

0

{I(x < y) ∨ x̄} dy = xx̄ + x̄ = 1 − x2,

and computing the maximum in (∗) gives the first half of (2.6).
Also, from (2.3)-(2.4), we have

P (W2|x,R1) ≡ P (W2| I rejected X11 = x in the first stage)(2.9)

=
∫ 1

0

{p2A(y|x,R1) ∨ p2R(y|x,R1)} dy (∗∗)

=
∫ 1

0

(
y ∨ 1

2

)
dy =

5
8
, indep. of x,
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where computation of the maximum in (∗∗) gives the second half of (2.6).
It is clear that draw of the game cannot occur with positive probability, and therefore,

by (2.8)-(2.9),

p1A(x) ≡ P [W1| {I accepted X11 = x} ∩ {II behaves optimally in the second stage}]
= 1 − P (W2|x,A1) = x2,

p1R(x) ≡ P [W1| {I rejected X11 = x} ∩ {II behaves optimally in the second stage}]
= 1 − P (W2|x,R1) = 3/8,

and hence

P (W1) =
∫ 1

0

{p1A(x) ∨ p1R(x)}dx =
∫ 1

0

(
x2 ∨ 3

8

)
dx =

1
3

{
1 + 2

(
3
8

)3/2
}

where computation of the maximum in the second expression leads to (2.5). �

Theorem 1 shows that II, the second-mover, has an advantage over I, the first-mover.
In the simultaneous-move version of the game, the unfair information acquisition by the
players disappears. I (II) privately observes X11 = x(X21 = y) and chooses either one of
A1 or R1 (A2 or R2). The observed value and choice by each player are not known by the
opponent. Suppose that players’ strategies have the form of

I accepts (rejects) X11 = x, if x > (<)a,

II accepts (rejects) X21 = y, if y > (<)b,

Let M(a, b) ≡ P{W1|I chooses a and II chooses b}. We want to solve the zero-sum
game with payoff function M(a, b) on the unit square. Surprisingly the solution is given by
the famous golden bisection number.

Theorem 2 Solution to the two-player simultaneous-move version of the “Score Show-
down” game with score (1.1) is as follows; The game has the unique saddle point (g, g) and
the saddle value M(g, g) = 1

2 , where g = 1
2 (
√

5 − 1) ≈ 0.61803.

Proof. M(a, b) = P (X11 < a, X21 < b, X12 > X22) + P (X11 < a, X21 > b, X12 >
X21) + P (X11 > a, X21 > b, X11 > X21) + P (X11 > a, X21 < b, X11 > X22) and the first,
second, third and fourth terms in the r.h.s. are 1

2ab, 1
2ab̄2, 1

2 b̄2I(a ≤ b) + (āb̄− 1
2 ā2)I(a > b)

and 1
2 (1 − a2)b, respectively. Thus we have

M(a, b) =
1
2
{a + b − ab(a + b̄)} +

{
1
2 b̄2

āb̄ − 1
2 ā2

}
, if a

{ ≤
>

}
b.(2.10)

One can easily assertain from this equation, that M(a, b) + M(b, a) = 1, ∀(a, b), and hence
M(b, b) ≡ 1

2 , ∀b ∈ (0, 1).
Now for any fixed b ∈ (0, 1), M(a, b) given by (2.10) is a concave quadratic function of

a, satisfying

M(0, b) = M(1, b) =
1
2
(1 − bb̄) <

1
2

= M(b, b),

∂M

∂a

∣∣∣∣
a=0

=
1
2
(1 − bb̄) > 0,

∂M

∂a

∣∣∣∣
a=1

= −1
2
(1 + bb̄) < 0

and
∂M

∂a

∣∣∣∣
a=b−0

=
∂M

∂a

∣∣∣∣
a=b+0

=
1
2
(1 − b − b2).
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Consequently, for b = 1
2 (
√

5−1)(≡ g, golden bisection number), maxa M(a, g) = M(g, g) =
1
2 , since g + g2 = 1.

Also (2.10) gives

M(g, b) =
1
2

{
g + b − gb(g + b̄)

}
+

{
1
2 b̄2

ḡb̄ − 1
2 ḡ2

}
, if g

{ ≤
>

}
b,

which is a convex quadratic function of b, satisfying

M(g, 0) = M(g, 1) =
1
2

(1 − gḡ) <
1
2

= M(g, g),

∂M

∂b

∣∣∣∣
b=0

= −g < 0 < 2g =
∂M

∂b

∣∣∣∣
b=1

,

and
∂M

∂b

∣∣∣∣
b=g−0

=
∂M

∂b

∣∣∣∣
b=g+0

= g2 + g − 1 = 0.

Hence we have
min

b
M(g, b) = M(b, b) =

1
2
.

This completes the proof of the theorem. �

Remark 1. The game (2.10) on the unit square is a typical example of the concave-convex
game (see. Ref. [6 ; Section 2.5]). Eq. (2.10) gives⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂M

∂a
=

1
2
(1 − b + b2) − ab + (b − a)I(a > b),

∂M

∂b
= ab − 1

2
(1 + a + a2) + bI(a ≤ b) + aI(a > b).

For a > b, the conditions ∂M
∂a = 0 and ∂M

∂b = 0 give

(∗) a =
1 + b + b2

2(1 + b)
and (∗∗) b =

1 − a + a2

2a

respectively. The simultaneous equation (∗) and (∗∗) has a unique root (a, b) = (g, g). (See
Figure 1).

For a < b, the result remains unchanged, if a and b are interchanged.

b

a

1/2

ḡ 3/4

(∗)

(∗∗)

1/2
Figure 1. The unique root

3 Competing Average. We consider in this section
the case where the score is defined by

Si(Xi1, Xi2) =
{

Xi1,
1
2 (Xi1 + Xi2),

(3.1)

if
{

Xi1 is accepted,
Xi2 is resampled.

We use R(=resample), instead of R(=reject) used in the
previous sections. Definition of states (y|x,A1), etc. are
the same as in Section 2. Then we have

p2A(y|x,A1) = I(y > x),(3.2)
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p2R(y|x,A1) = P (y + X22 > 2x)(3.3)
= (1 − 2x + y)I(0 < 2x − y < 1) + I(2x − y ≤ 0),

p2A(y|x,R1) = P (2y > x + X12) = (2y − x)I(0 < 2y − x < 1) + I(2y − x ≥ 1),(3.4)

and

p2R(y|x,R1) = P

{
1
2
(y + X22) >

1
2
(x + X12)

}
= P (X22 − X12 > x − y)(3.5)

= I(x ≤ y)
{

1 − 1
2
(x + ȳ)2

}
+ I(x > y)

1
2
(x̄ + y)2.

On the basis of (3.2)-(3.5), we prove the following

Theorem 3 The solution to the two-player game with the score function (3.1) is as follows.
The optimal strategy for I in the first stage is given by

Accept (Resample) X11 = x, if x > (<)x0 ≈ 0.549.(3.6)

where x0 is the unique root in (1
2 , 1) of the equation

7/(2x) − 4
√

2x = 6 − (15/2)x + x2.(3.7)

The optimal strategy for II in the second stage is given by

Accept (Resample) X21 = y, if y > (<)
{

x
y0(x)

}
in state

{
(y|x,A1)
(y|x,R1)

}
,(3.8)

where
y0(x) =

(√
2x̄ − x̄

)
I(x <

1
2
) + (1 + x −√

2x)I(x ≥ 1
2
).(3.9)

The optimal values for the players are P (W1) ≈ 0.490 and P (W2) ≈ 0.510.

Proof. We have from (3.2)-(3.3)

P (W2|x,A1) ≡ P{W2|I accepted X11 = x}(3.10)

=
∫ 1

0

{p2A(y|x,A1) ∨ p2R(y|x,A1)} dy

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ x

0

(1 − 2x + y)dy + x̄ = 1 − 3
2
x2, if x ≤ 1

2 ,

∫ x

2x−1

(1 − 2x + y)dy + x̄ =
1
2
x̄(3 − x), if x ≥ 1

2 .

The computation involved here is shown by Figure 2 in state (y|x,A1) and it leads to
the first half of the statement (3.8).

0 x 2x 1

1−2x

y
0 2x−1 x 1

2x̄

Figure 2a. Case x ∈ (0, 1
2 ) Figure 2b. Case x ∈ (1

2 , 1)
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The function P (W2|x,A1) is decreasing and concave (convex) for x < (>)1
2 with the

values, 1, 5/8, and 0 at x = 0, 1/2 and 1, respectively.
We make similar calculations to the above. From (3.4)-(3.5),

P (W2|x,R1) ≡ P{W2|I resampled X12 in addition to X11 = x}(3.11)

=
∫ 1

0

{p2A(y|x,R1) ∨ p2R(y|x,R1)} dy

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

0

1
2
(x̄ + y)2dy +

∫ y0

x

{
1 − 1

2
(x + ȳ)2

}
dy

+
∫ 1

2 (1+x)

y0

(2y − x)dy +
1
2
x̄, if x ≤ 1

2 ,

∫ y0

0

1
2
(x̄ + y)2dy +

∫ 1
2 (1+x)

y0

(2y − x)dy +
1
2
x̄, if x ≥ 1

2 .

where y0 = y0(x) is a unique root of the equation 2y−x = 1− 1
2 (x+ȳ)2, i.e., y0(x) =

√
2x̄−x̄,

if x ≤ 1
2 ; and 2y − x = 1

2 (x̄ + y)2 i.e., y0 = 1− (
√

2x− x), if x ≥ 1
2 . Computation involved

here may be clear by Figure 3. The function y0 = y0(x) is shown by Figure 4. Thus we
have the statement in the second half of (3.8). And so, we obtain, after simplifying,

P (W2|x,R1) =

⎧⎪⎪⎨
⎪⎪⎩

y0(2 −√
2x̄) + 1

6 (2 −√
2x̄)3

− 1
6 x̄3 + 1

4 (3 − 6x − x2), if x ≤ 1
2 ,

1
6y0

{
(1 + x)

√
2x + x̄2

}
+ 1

4 (3 + x)x̄, if x ≥ 1
2 .

(3.12)

One can find, by computer calculation or direct differentiation, that this function is decreas-
ing in [0, 1], with values 1

12 (8
√

2 − 1) ≈ 0.8595, 7
12 and 2

3 (
√

2 − 1) ≈ 0.2761, at x = 0, 1/2
and 1, respectively.

y

Figure 3a. Case x ∈ (0, 1
2 ) Figure 3b. Case x ∈ (1

2 , 1)

y

1
2 x̄2

x
1/2

x/2 x y0 1/2 (1+x)/2

1− 1
2x2

1
2 x̄2

1/2
x

x/2 1/2 y0 x (1+x)/2

1− 1
2x2

Since
P (W1|x,A1) ∨ P (W1|x,R1) = 1 − {P (W2|x,A1) ∧ P (W2|x,R1)},

the optimal policy for I in the first stage is;

Accept (Resample) X11 = x, if x > (<)x0,

where x0 is a unique root in (1/2, 1) of the equation P (W2|x,A1) = P (W2|x,R1), i.e.,
1
6y0

{
(1 + x)

√
2x + x̄2

}
+

(
3+x

4

)
x̄ = 1

2 x̄(3 − x) (by (3.10)-(3.12)). By substituting y0 =
1 + x −√

2x into this equation and simplifying, we obtain (3.6) (See Figure 5).
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It remains to derive the optimal values for the players.
By (3.6), (3.9), (3.10) and(3.12), it follows that

P (W2) =
∫ x0

0

P (W2|x,R1)dx +
∫ 1

x0

P (W2|x,A1)dx

=
∫ 1

2

0

[
(
√

2x̄ − x̄)(2 −√
2x̄) +

1
6
(2 −√

2x̄)3 − 1
6
x̄3 +

1
4
(3 − 6x − x2)

]
dx

+
∫ x0

1
2

[
1
6
(1 + x −√

2x)
{

(1 + x)
√

2x + x̄2
}

+
1
4
(3 + x)x̄

]
dx +

∫ 1

x0

1
2
x̄(3 − x)dx

where the three integrals are computed with the result

≈ 0.36514 + 0.02784 + 0.11699 ≈ 0.50998

This completes the proof of Theorem 3. �

x

Figure 4. The function y0(x) in state (y|x,R1) Figure 5. Determination of x0

x
1/2

√
2−1

2−√
2

1/2 x0

0.276

7/12

5/8

0.860

R2

A2

1 + x −√
2x

Remark2. Theorem 3 shows that the disadvantage for the first-mover is very small. We
give here a numerical example to Theorem 3. If X11 = x = 0.482, in the first stage, then I
announces 0.482 and R1 (since x < x0 ≈ 0.549), and resamples X12. In the second stage,
if II observes X21 = y = 0.713, then II accepts it (since y > y0(x) =

√
2x̄ − x̄ ≈ 0.298 at

x = 0.482). After the showdown is made, I (II) is the winner, if 1
2 (0.482+X12) > (<)0.713.

4 Showcase Showdown. Consider the case where the score is defined by

Si(Xi1, Xi2) =
{

Xi1,
(Xi1 + Xi2)I(Xi1 + Xi2 < 1), if

{
Xi1 is accepted,
Xi2 is resampled.

(4.1)

The problem becomes a little bit difficult, since draw (i.e., both players have zero scores)
can occur with positive probability.

We define states (y|x,A1), etc, as the same as in Section 3. We have

p2A(y|x,A1) = I(x < y),(4.2)

p2R(y|x,A1) = P (x < y + X22 < 1) = ȳI(x ≤ y) + x̄I(x > y),(4.3)

p2A(y|x,R1) = P (x + X12 > 1 or x + X12 < y) = yI(x ≤ y) + xI(x > y),(4.4)

p2R(y|x,R1) = P {(x + X12)I(x + X12 < 1) < (y + X22)I(y + X22 < 1)}(4.5)

= I(x ≤ y)
1
2
(1 − y2) + I(x > y)

(
1
2
x̄2 + xȳ

)
.
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and therefore, from (4.2)-(4.3),

P (W2|x,A1) =
∫ 1

0

{p2A(y|x,A1) ∨ p2R(y|x,A1)}dy = xx̄ + x̄ = 1 − x2.(4.6)

The optimal strategy for II in state (y|x,A1) is;

Accept (Resample) X21 = y, if y > (<)x(4.7)

(See Figure 4). Also from (4.4)-(4.5)

P (W2|x,R1) =
∫ 1

0

{p2A(y|x,R1) ∨ p2R(y|x,R1)}dx(4.8)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ x

0

(
1
2
x̄2 + xȳ

)
dy +

∫ y0

x

1
2
(1 − y2)dy +

∫ 1

y0

ydy, if x ≤ √
2 − 1

∫ y0

0

(
1
2
x̄2 + xȳ

)
dy +

∫ x

y0

xdy +
∫ 1

x

ydy, if x ≥ √
2 − 1

=

⎧⎪⎪⎨
⎪⎪⎩

1
6
x3 +

1
3
(2
√

2 − 1), if x ≤ √
2 − 1

x̄4/(8x) +
1
2
x2 +

1
2
, if x ≥ √

2 − 1,

where y0 is a unique root of the equation y = 1
2 (1 − y2), i.e., y0 =

√
2 − 1, if x ≤ √

2 − 1
; and x = 1

2 x̄2 + xȳ, i.e., y0 = x̄2/(2x) = 1
2 (x + x−1) − 1, if x ≥ √

2 − 1. Computation
involved here for deriving the second expression in the r.h.s. of (4.8) may be clear as shown
by Figure 6. The function y0 = y0(x) is shown by Figure 7.

y

Figure 6a. Case x ∈ (0,
√

2 − 1) Figure 6b. Case x ∈ (
√

2 − 1, 1)

y

x

1
2 (1−x2)

1
2 (1+x2)

x

1
2 (1−x2)

1
2 (1+x2)

x y0(=
√

2−1) y0 x

1
2 (1 − y2) 1

2 (1 − y2)

The optimal strategy for II in state (y|x,R1) is ;

Accept (Resample) X21 = y, if y > (<)y0(x).(4.9)

Now, by using (4.7)-(4.9) we can find the probability of draw, denoted by P (D).

P (D|x,A1) = P [D|{I accepts X11 = x} ∩(4.10)
{II behaves optimally in the second stage}] = 0,

P (D|x,R1) = P [D|{I resamples X12, in addition to X11 = x}(4.11)
∩{II behaves optimally in the second stage}],
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= P{x + X12 > 1, X21 < y0(x),X21 + X22 > 1} = 1 − x(y0(x))2

=
{

1
2 (3 − 2

√
2)x,

x̄4/(8x),
if x

{
<
>

√
2 − 1

and so, it follows from (4.6) and (4.8) that

p1A(x) = 1 − P (W2|x,A1) − P (D|x,A1) = x2.(4.12)

p1R(x) = 1 − P (W2|x,R1) − P (D|x,R1)(4.13)

= 1 −
{

1
6x3 + 1

3 (2
√

2 − 1)
x̄4/(8x) + 1

2x2 + 1
2

−
{

1
2 (3 − 2

√
2)x

x̄4/(8x),
if x

{
<
>

√
2 − 1

=
{ − 1

6x3 − 1
2 (3 − 2

√
2)x + 2

3 (2 −√
2),

−x̄4/(4x) − 1
2x2 + 1

2 ,
if x

{
<
>

√
2 − 1

The two functions above in the different parts are both concave and decreasing, and
they are continuously connected at x =

√
2 − 1 as shown by Figure 8.

x

Figure 7. y0(x) in state (y|x,R1) Figure 8. Determination of x0

x√
2−1

√
2−1 x0

0.3249

√
2−1

6−4
√

2

2
3 (2−√

2)

R2

A2

x̄2/(2x)

x2
p1R(x)

From (4.12)-(4.13), we have

P (W1) =
∫ 1

0

{p1A(x) ∨ p1R(x)}dx(4.14)

=
∫ √

2−1

0

{
−1

6
x3 − 1

2
(3 − 2

√
2)x +

2
3
(2 −

√
2)

}
dx

+
∫ x0

√
2−1

{
−x̄4/(4x) − 1

2
x2 +

1
2

}
dx +

∫ 1

x0

x2dx,

where x0 ≈ 0.570 is a unique root in (
√

2 − 1, 1) of the equation p1A(x) = p1R(x), i.e.,

x̄4 = 2x(1 − 3x2).(4.15)

The optimal strategy for I in the first stage is;

Accept (Resample) X11 = x, if x > (<)x0.(4.16)

By substituting the value x0 = 0.570 into (4.14) and computing, we finally get P (W1) ≈
0.4768, in which the integrand of second integral in (4.14) was approximated by the closest
linear function. This result combined with (4.10)-(4.11) gives

P (D) =
∫ x0

0

P (D|x,R1)dx =
∫ √

2−1

0

1
2
(3 − 2

√
2)xdx(4.17)

+
∫ x0

√
2−1

x̄4/(8x)dx ≈ 0.0108.
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Here, in computing the second integral we used the above approximation again, consid-
ering

x̄4/(8x) = −1
2

{
−x̄4/(4x) − 1

2
x2 +

1
2

}
− 1

4
x2 +

1
4
.

Then at last we have, from (4.14) and (4.17),

P (W2) = 1 − P (W1) − P (D) ≈ 1 − 0.4768 − 0.0108 = 0.5124.(4.18)

Summarizing the whole arguments above we obtain

Theorem 4 The solution to the two-player game with the score (4.1) is as follows. The
optimal strategy for I in the first stage is given by ;

Accept (Resample) X11 = x, if x > (<)x0 ≈ 0.570,

where x0 is the unique root in (
√

2 − 1, 1) of the equation x̄4 = 2x(1 − 3x2).
The optimal strategy for II in the second stage is given by ;

Accept (Resample) X21 = y, if y > (<)
{

x
y0(x), in state

{
(y|x,A1)
(y|x,R1),

where y0(x) = (
√

2 − 1)I(x ≤ √
2 − 1) +

(
x̄2/(2x)

)
I(x >

√
2 − 1).

The players’ optimal values and the probability of draw under the optimal play are

P (W1) ≈ 0.4768, P (W2) ≈ 0.5124 and P (D) ≈ 0.0108.

The exprecit expressions of P (W1) and P (D) are given by (4.14) and (4.17) respectively.

5 Final Remarks.

Remark 3. Consider the one-player version of the games, where player aims to maximize
his (or her) expected score. Let a∗ and M(a∗) be the optimal threshold number and the
expected score obtained by using it, respectively. Then it is easy to obtain the table below.

Keep-or Exchange Competing Average Showcase Showdown
Theorem 1&2 Theorem 3 Theorem 4

a∗ 1/2 (0.6124 in (2.5)) 1/2 (0.549 in (3.6))
√

2 − 1 (0.570 in(4.16))
M(a∗) 5/8 9/16 1

3 (2
√

2 − 1) ≈ 0.60904

⎛
⎝ c.f. The corresponding number x0 in the two-player cases are given in the paren-

theses. The player behaves much easier than in the two-player cases, since he hasn’t
the second-mover.

⎞
⎠

Remark4. There remain some interesting problems to be solved.

1◦) Simultaneous-move versions of Competing Average and Showcase Showdown. Do
there exist interesting threshold values like g (golden bisection number) as in Keep-
or-Exchange?

2◦) Less-information case. If the first-mover opens his X11 = x to both of himself and II,
but his choice of A and R kept private, then how do the solutions change?
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3◦) Dependent-observation case. If Xi1 and Xi2(i = 1, 2) are dependent r.v.s, for example,
a family with density

f(x1, x2) = 1 + θ(2x1 − 1)(2x2 − 1), ∀(x1, x2) ∈ [0, 1]2, ∀|θ| ≤ 1,

then how do the solutions change?

And furthermore

4◦) Extension to the three-player games should be investigated. Intuitively, it would seem
that, the last-mover has an advantage over the middle-mover, and the middle-mover,
in turn, has an advantage over the first-mover. Is this intuition always correct? We
present some results in the forth-coming paper.
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