ON FIRST-PASSAGE-TIME DENSITIES FOR CERTAIN SYMMETRIC MARKOV CHAINS

A. Di Crescenzo and A. Nastro

Received February 20, 2004

Abstract

The spatial symmetry property of truncated birth-death processes studied in Di Crescenzo [6] is extended to a wider family of continuous-time Markov chains. We show that it yields simple expressions for first-passage-time densities and avoiding transition probabilities, and apply it to a bilateral birth-death process with jumps. It is finally proved that this symmetry property is preserved within the family of strongly similar Markov chains.

1 Introduction A spatial symmetry for the transition probabilities of truncated birthdeath processes has been studied in Di Crescenzo [6]. Such a property leads to simple expressions for certain first-passage-time densities and avoiding transition probabilities. In this paper we aim to extend those results to a wider class of continuous-time Markov chains.

Given a set $\left\{x_{n}\right\}$ of positive real numbers and the transition probabilities $p_{k, n}(t)$ of a continuous-time Markov chain whose state-space is $\{0,1, \ldots, N\}$ or \mathbf{Z}, in Section 2 we introduce the following spatial symmetry property:

$$
\begin{equation*}
p_{N-k, N-n}(t)=\frac{x_{n}}{x_{k}} p_{k, n}(t) \tag{1}
\end{equation*}
$$

In section 3 we point out some properties of first-passage-time densities and avoiding transition probabilities for Markov chains that are symmetric in the sense of (1). These properties allow one to obtain simple expressions for first-passage-time densities in terms of probability current functions, and for avoiding transition probabilities in terms of the 'free' transition probabilities. In Section 4 we then apply these results to a special bilateral birth-death process with jumps. Finally, in Section 5 we refer to the notion of strong similarity between the transition probabilities of Markov chains, expressed by $\widetilde{p}_{k, n}(t)=\left(\beta_{n} / \beta_{k}\right) p_{k, n}(t)$ (see Pollett [16], and references therein) and show the following preservation result: if $p_{k, n}(t)$ possesses the symmetry property (1), then also $\widetilde{p}_{k, n}(t)$ does it.

2 Symmetric Markov chains Let $\{X(t), t \geq 0\}$ be a homogeneous continuous-time Markov chain on a state-space \mathcal{S}. We shall assume that $\mathcal{S}=\{0,1, \ldots, N\}$, where N is a fixed positive integer, or $\mathcal{S}=\mathbf{Z} \equiv\{\ldots,-1,0,1, \ldots\}$. Let

$$
\begin{equation*}
p_{k, n}(t)=\operatorname{Pr}\{X(\tau+t)=n \mid X(\tau)=k\}, \quad k, n \in \mathcal{S} ; \quad t, \tau \geq 0 \tag{2}
\end{equation*}
$$

be the stationary transition probabilities of $X(t)$, satisfying the initial conditions

$$
p_{k, n}(0)=\delta_{k, n}= \begin{cases}1, & k=n \\ 0, & k \neq n\end{cases}
$$

[^0]Let Q be the infinitesimal generator of the transition function (2), i.e. the matrix whose (k, n)-th finite entries are:

$$
\begin{equation*}
q_{k, n}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} p_{k, n}(t)\right|_{t=0} \tag{3}
\end{equation*}
$$

satisfying the following relations: (a) $q_{k, n} \geq 0$ for all $k, n \in \mathcal{S}$ such that $k \neq n$, (b) $q_{n, n} \leq 0$ for all $n \in \mathcal{S}$, and (c) $\sum_{n \in \mathcal{S}} q_{k, n}=0$ for all $k \in \mathcal{S}$.

The spatial symmetry of Markov processes allows one to approach effectively the first-passage-time problem. Indeed, it has been often exploited by various authors to obtain closed-form results for first-passage-time distributions; see Giorno et al. [13] and Di Crescenzo et al. [8] for one-dimensional diffusion processes, Di Crescenzo et al. [7] for two-dimensional diffusion processes, and Di Crescenzo [5] for a class of two-dimensional random walks. Moreover, in Di Crescenzo [6] a symmetry for truncated birth-death processes was expressed as in (1), with x_{i} suitably depending on the birth and death rates. Such symmetry notion can be extended to the wider class of continuous-time Markov chains considered above. Indeed, for a set of positive real numbers $\left\{x_{n} ; n \in \mathcal{S}\right\}$ there holds:

$$
\begin{equation*}
p_{N-k, N-n}(t)=\frac{x_{n}}{x_{k}} p_{k, n}(t) \quad \text { for all } k, n \in \mathcal{S} \text { and } t \geq 0 \tag{4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
q_{N-k, N-n}=\frac{x_{n}}{x_{k}} q_{k, n} \quad \text { for all } k, n \in \mathcal{S} \tag{5}
\end{equation*}
$$

The proof is similar to that of Theorem 2.1 in Di Crescenzo [6], and thus is omitted.
Eq. (4) focuses on a symmetry with respect to $N / 2$, which identifies with the mid point of \mathcal{S} when $\mathcal{S}=\{0,1, \ldots, N\}$. For each sample-path of $X(t)$ from k to n there is a symmetric path from $N-k$ to $N-n$, and the ratio of their probabilities is time-independent. Hence, in the following we shall say that $X(t)$ possesses a central symmetry if relation (4) is satisfied.

Remark 2.1 If $X(t)$ possesses a central symmetry, then

$$
\frac{x_{n}}{x_{k}}=\frac{x_{N-k}}{x_{N-n}} \quad \text { for all } k, n \in \mathcal{S}
$$

An example of a Markov chain with finite state-space and a central symmetry is given hereafter.

Example 2.1 Let $X(t)$ be a continuous-time Markov chain with state-space $\mathcal{S}=\{0,1,2,3\}$, with 0 and 3 absorbing states, and infinitesimal generator

$$
Q=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\alpha \varrho_{0}+\beta & -\alpha\left(\varrho_{0}+\varrho^{2}\right)-\beta \varrho_{0} & \beta \varrho & \alpha \varrho^{2} \\
\alpha & \beta & -\alpha\left(\varrho_{0}+\varrho^{2}\right)-\beta \varrho_{0} & \left(\alpha \varrho_{0}+\beta\right) \varrho \\
0 & 0 & 0 & 0
\end{array}\right]
$$

with $\alpha, \beta, \varrho>0$ and $\varrho_{0}=1+\varrho$. Then, $X(t)$ has a central symmetry, with $p_{N-k, N-n}(t)=$ $\varrho^{k-n} p_{k, n}(t)$ for all $k, n \in \mathcal{S}$ and $t \geq 0$, and $q_{N-k, N-n}(t)=\varrho^{k-n} q_{k, n}$ for all $k, n \in \mathcal{S}$.

Remark 2.2 If $X(t)$ has a central symmetry and possesses a stationary distribution $\left\{\pi_{n}, n \in\right.$ $\mathcal{S}\}$, with $\lim _{t \rightarrow+\infty} p_{k, n}(t)=\pi_{n}>0$ for all $k, n \in \mathcal{S}$, then the following statements hold:
(a) Sequence $\left\{x_{n}\right\}$ is constant, so that $p_{N-k, N-n}(t)=p_{k, n}(t)$ for all $k, n \in \mathcal{S}$ and $t \geq 0$.
(b) The stationary distribution is symmetric with respect to $N / 2$, i.e.

$$
\pi_{N-n}=\pi_{n} \quad \text { for all } n \in \mathcal{S}
$$

(c) Let $X^{*}(t)$ be the reversed process of $X(t)$, obtained from $X(t)$ when time is reversed, and characterized by rates and transition probabilities

$$
q_{k, n}^{*}=\frac{\pi_{n}}{\pi_{k}} q_{n, k}, \quad p_{k, n}^{*}(t)=\frac{\pi_{n}}{\pi_{k}} p_{n, k}(t), \quad k, n \in \mathcal{S}, \quad t \geq 0
$$

Then, also $X^{*}(t)$ has a central symmetry, with $p_{N-k, N-n}^{*}(t)=p_{k, n}^{*}(t)$ for all $k, n \in \mathcal{S}$ and $t \geq 0$.
(d) Let $D=\left\{d_{k, n}\right\}$ be the deviation matrix of $X(t)$, with elements (see Coolen-Schrijner and Van Doorn [2])

$$
d_{k, n}=\int_{0}^{+\infty}\left[p_{k, n}(t)-\pi_{n}\right] \mathrm{d} t, \quad k, n \in \mathcal{S} .
$$

Then, D has a central symmetry, i.e. $d_{N-k, N-n}=d_{k, n}$ for all $k, n \in \mathcal{S}$.
An example of a Markov chain satisfying the assumptions of Remark 2.2 is the birthdeath process on \mathcal{S} with birth rate $\lambda_{n}=\alpha(N-n)$ and death rate $\mu_{n}=\alpha n$ (see Giorno et al. [11], or Section 4.1 of Di Crescenzo [6]).

3 First-passage-time densities In this section we shall focus on the first-passage-time problem for Markov chains $X(t)$ that have a central symmetry and that satisfy the following assumptions:
(i) $N=2 s$, with s a positive integer;
(ii) $q_{i, j}=q_{j, i}=0, \sum_{i \in \mathcal{S}_{-}} q_{i, s}>0, \sum_{j \in \mathcal{S}_{+}} q_{j, s}>0, \sum_{i \in \mathcal{S}_{-}} q_{s, i}>0$ and $\sum_{j \in \mathcal{S}_{+}} q_{s, j}>0$ for all $i \in \mathcal{S}_{-}$and $j \in \mathcal{S}_{+}$, where

$$
S_{-}=\{n \in \mathcal{S} ; n<s\}, \quad S_{+}=\{n \in \mathcal{S} ; n>s\} ;
$$

(in other words, if states i and j are separated by s then all sample-paths of $X(t)$ from i to j, or from j to i, must cross s);
(iii) the subchains defined on S_{-}and S_{+}are irreducibles.

In addition, we introduce the following non-negative random variables:

$$
\begin{aligned}
& T_{i, s}^{+}=\text {upward first-passage time of } X(t) \text { from state } i \in S_{-} \text {to state } s \\
& T_{j, s}^{-}=\text {downward first-passage time of } X(t) \text { from state } j \in S_{+} \text {to state } s .
\end{aligned}
$$

We shall denote by $g_{i, s}^{+}(t)$ and $g_{j, s}^{-}(t)$ the corresponding probability density functions. Due to assumptions (i)-(iii), for all $t>0$ such densities satisfy the following renewal equations:

$$
\begin{array}{ll}
p_{i, j}(t)=\int_{0}^{t} g_{i, s}^{+}(\vartheta) p_{s, j}(t-\vartheta) \mathrm{d} \vartheta, & i \in S_{-}, \quad j \in\{s\} \cup S_{+} \\
p_{j, i}(t)=\int_{0}^{t} g_{j, s}^{-}(\vartheta) p_{s, i}(t-\vartheta) \mathrm{d} \vartheta, & i \in S_{-} \cup\{s\}, \quad j \in S_{+} \tag{7}
\end{array}
$$

For all $t>0$ and $k \in \mathcal{S}$ let us now introduce the probability currents

$$
\begin{align*}
& h_{k, s}^{+}(t)=\lim _{\tau \downarrow 0} \frac{1}{\tau} \mathrm{P}\{X(t+\tau)=s, X(t)<s \mid X(0)=k\}=\sum_{i \in \mathcal{S}_{-}} p_{k, i}(t) q_{i, s} \tag{8}\\
& h_{k, s}^{-}(t)=\lim _{\tau \downarrow 0} \frac{1}{\tau} \mathrm{P}\{X(t+\tau)=s, X(t)>s \mid X(0)=k\}=\sum_{j \in \mathcal{S}_{+}} p_{k, j}(t) q_{j, s} \tag{9}
\end{align*}
$$

They represent respectively the upward and downward entrance probability fluxes at state s at time t. Due to assumptions (i)-(iii) and Eqs. (6)-(9), for $i \in \mathcal{S}_{-}, j \in \mathcal{S}_{+}$and $t>0$ they satisfy the following integral equations:

$$
\begin{align*}
& h_{i, s}^{-}(t)=\int_{0}^{t} g_{i, s}^{+}(\vartheta) h_{s, s}^{-}(t-\vartheta) \mathrm{d} \vartheta \tag{10}\\
& h_{j, s}^{+}(t)=\int_{0}^{t} g_{j, s}^{-}(\vartheta) h_{s, s}^{+}(t-\vartheta) \mathrm{d} \vartheta \tag{11}
\end{align*}
$$

Hereafter we extend Proposition 2.2 of Di Crescenzo [6] to the case of Markov chains.
Proposition 3.1 Under assumptions (i)-(iii), for all $i \in \mathcal{S}_{-}, j \in \mathcal{S}_{+}$and $t>0$ the following equations hold:

$$
\begin{align*}
& g_{i, s}^{+}(t)=h_{i, s}^{+}(t)-\int_{0}^{t} g_{i, s}^{+}(\vartheta) h_{s, s}^{+}(t-\vartheta) \mathrm{d} \vartheta \tag{12}\\
& g_{j, s}^{-}(t)=h_{j, s}^{-}(t)-\int_{0}^{t} g_{j, s}^{-}(\vartheta) h_{s, s}^{-}(t-\vartheta) \mathrm{d} \vartheta \tag{13}
\end{align*}
$$

Proof. For all $t>0$ and $i \in \mathcal{S}_{-}$, making use of assumptions (i)-(iii) and Eq. (8) we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{i, s}(t)=\sum_{n \in \mathcal{S}} p_{i, n}(t) q_{n, s}=h_{i, s}^{+}(t)+\sum_{n \in\{s\} \cup S_{+}} p_{i, n}(t) q_{n, s} .
$$

Hence, recalling (6) we obtain

$$
\begin{align*}
h_{i, s}^{+}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{0}^{t} g_{i, s}^{+}(\vartheta) p_{s, s}(t-\vartheta) \mathrm{d} \vartheta\right]-\sum_{n \in\{s\} \cup S_{+}}\left[\int_{0}^{t} g_{i, s}^{+}(\vartheta) p_{s, n}(t-\vartheta) \mathrm{d} \vartheta\right] q_{n, s} \\
& =g_{i, s}^{+}(t)+\int_{0}^{t} g_{i, s}^{+}(\vartheta)\left[\frac{\partial}{\partial t} p_{s, s}(t-\vartheta)-\sum_{n \in\{s\} \cup S_{+}} p_{s, n}(t-\vartheta) q_{n, s}\right] \mathrm{d} \vartheta \tag{14}
\end{align*}
$$

where use of initial condition $p_{s, s}(0)=1$ has been made. From Chapman-Kolmogorov forward equation we have

$$
\frac{\partial}{\partial t} p_{s, s}(t-\vartheta)-\sum_{n \in\{s\} \cup S_{+}} p_{s, n}(t-\vartheta) q_{n, s}=h_{s, s}^{+}(t-\vartheta), \quad t>\vartheta
$$

so that Eq. (14) gives (12). The proof of (13) goes along similar lines.
With reference to a Markov chain that has a central symmetry, we now come to the main result of this paper, expressing the first-passage-time densities through the symmetry state s as difference of probability currents (8) and (9).

Theorem 3.1 For a Markov chain that has a central symmetry and satisfies assumptions (i)-(iii), for all $t>0$ and $k \in \mathcal{S}$ there results:

$$
\begin{equation*}
h_{2 s-k, s}^{-}(t)=\frac{x_{s}}{x_{k}} h_{k, s}^{+}(t) \tag{15}
\end{equation*}
$$

Moreover, for all $i \in \mathcal{S}_{-}, j \in \mathcal{S}_{+}$and $t>0$ the upward and downward first-passage-time densities through state s are given by

$$
\begin{equation*}
g_{i, s}^{+}(t)=h_{i, s}^{+}(t)-h_{i, s}^{-}(t), \quad g_{j, s}^{-}(t)=h_{j, s}^{-}(t)-h_{j, s}^{+}(t) \tag{16}
\end{equation*}
$$

Proof. Recalling that $N=2 s$, for $t>0$ we have

$$
\begin{array}{rlrl}
h_{2 s-k, s}^{-}(t) & =\sum_{j \in \mathcal{S}_{+}} p_{2 s-k, j}(t) q_{j, s} & & (\text { from }(9)) \\
& =\sum_{i \in \mathcal{S}_{-}} p_{2 s-k, 2 s-i}(t) q_{2 s-i, s} \\
& =\frac{x_{s}}{x_{k}} \sum_{i \in \mathcal{S}_{-}} p_{k, i}(t) q_{i, s} & & (\text { setting } j=2 s-i) \\
& =\frac{x_{s}}{x_{k}} h_{k, s}^{+}(t) . & & (\text { from (4) and (5)) }
\end{array}
$$

Eq. (15) then holds. In particular, for $k=s$ it implies that $h_{s, s}^{-}(t-\vartheta)=h_{s, s}^{+}(t-\vartheta)$ for all $t>\vartheta$. Hence, relations (16) follow from Eqs. (10)-(13).

For a Markov chain $X(t)$ satisfying assumptions (i)-(iii) let us now introduce the s avoiding transition probabilities:

$$
p_{k, n}^{\langle s\rangle}(t)=\mathrm{P}\{X(t)=n, X(\vartheta) \neq s \text { for all } \vartheta \in(0, t) \mid X(0)=k\}
$$

where $k, n \in \mathcal{S}_{-} \cup \mathcal{S}_{+}$. We note that $p_{k, n}^{\langle s\rangle}(t)$ is related to $p_{k, n}(t)$ by

$$
p_{k, n}^{\langle s\rangle}(t)= \begin{cases}p_{k, n}(t)-\int_{0}^{t} g_{k, s}^{+}(\vartheta) p_{s, n}(t-\vartheta) \mathrm{d} \vartheta, & k, n \in \mathcal{S}_{-} \tag{17}\\ p_{k, n}(t)-\int_{0}^{t} g_{k, s}^{-}(\vartheta) p_{s, n}(t-\vartheta) \mathrm{d} \vartheta, & k, n \in \mathcal{S}_{+}\end{cases}
$$

In the following theorem, for symmetric Markov chains two different expressions are given for $p_{k, n}^{\langle s\rangle}(t)$ in terms of $p_{k, n}(t)$. It extends Theorem 2.4 of Di Crescenzo [6]; the proof is similar and therefore is omitted.

Theorem 3.2 Under the assumptions of Theorem 3.1, for $t>0$ and for $k, n \in \mathcal{S}_{-} \cup \mathcal{S}_{+}$ there holds:

$$
\begin{aligned}
p_{k, n}^{\langle s\rangle}(t) & =p_{k, n}(t)-\frac{x_{k}}{x_{s}} p_{2 s-k, n}(t) \\
& =p_{k, n}(t)-\frac{x_{s}}{x_{n}} p_{k, 2 s-n}(t) .
\end{aligned}
$$

We conclude this section by pointing out that for a Markov chain having a central symmetry, for all $t>0$ the following relations hold:

$$
\begin{gather*}
g_{i, s}^{+}(t)=\frac{x_{i}}{x_{s}} g_{2 s-i, s}^{-}(t), \quad g_{j, s}^{-}(t)=\frac{x_{j}}{x_{s}} g_{2 s-j, s}^{+}(t), \quad i \in \mathcal{S}_{-}, \quad j \in \mathcal{S}_{+}, \tag{18}\\
p_{2 s-k, 2 s-n}^{\langle s\rangle}(t)=\frac{x_{n}}{x_{k}} p_{k, n}^{\langle s\rangle}(t), \quad k, n \in \mathcal{S}_{-} \cup \mathcal{S}_{+}
\end{gather*}
$$

4 A bilateral birth-death process with jumps In this section we shall apply the above results to a special symmetric Markov chain $X(t)$ with state-space \mathbf{Z}, characterized by the following transitions: (a) from $n \in \mathbf{Z}$ to $n+1$ with rate λ, (b) from $n \in \mathbf{Z}$ to $n-1$ with rate μ, and (c) from $n \in \mathbf{Z}-\{0\}$ to 0 with rate α. Hence, $X(t)$ is a bilateral
birth-death process that includes jumps toward state 0 . In order to obtain an expression for the transition probabilities $p_{k, n}(t)$, we note that for all $t>0$ the following system holds:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} p_{k, n}(t)=-(\lambda+\mu+\alpha) p_{k, n}(t)+\lambda p_{k, n-1}(t)+\mu p_{k, n+1}(t), \quad n \in \mathbf{Z}-\{0\}, \\
& \frac{\mathrm{d}}{\mathrm{~d} t} p_{k, 0}(t)=-(\lambda+\mu) p_{k, 0}(t)+\lambda p_{k,-1}(t)+\mu p_{k, 1}(t)+\alpha \sum_{r \neq 0} p_{k, r}(t)
\end{aligned}
$$

The probability generating function

$$
H(z, t)=\sum_{n=-\infty}^{+\infty} p_{k, n}(t) z^{n}
$$

is thus solution of

$$
\begin{equation*}
\frac{\partial}{\partial t} H(z, t)=u(z) H(z, t)+\alpha \tag{19}
\end{equation*}
$$

where $u(z)=-(\lambda+\mu+\alpha)+\lambda z+\frac{\mu}{z}$, with initial condition $H(z, 0)=z^{k}$. The unique solution of (19) is

$$
\begin{equation*}
H(z, t)=H(z, 0) e^{u(z) t}+\alpha \int_{0}^{t} e^{u(z) \tau} \mathrm{d} \tau \tag{20}
\end{equation*}
$$

Hence, recalling that

$$
\exp \left\{\left(\lambda z+\frac{\mu}{z}\right) t\right\}=\sum_{n=-\infty}^{+\infty} I_{n}(\gamma t)(\beta z)^{n}
$$

for $\gamma=2 \sqrt{\lambda \mu}$ and $\beta=\sqrt{\lambda / \mu}$, from (20) we obtain:
(21) $H(s, t)=e^{-(\lambda+\mu+\alpha) t} \sum_{n=-\infty}^{+\infty} I_{n-k}(\gamma t) \beta^{n-k} s^{n}+\alpha \int_{0}^{t} e^{-(\lambda+\mu+\alpha) \tau} \sum_{n=-\infty}^{+\infty} I_{n}(\gamma \tau)(\beta s)^{n} \mathrm{~d} \tau$,
where $I_{n}(x)$ denotes the modified Bessel function of the first kind. Equating the coefficients of z^{n} on both sides of (21) finally yields the transition probabilities
(22) $p_{k, n}(t)=\left(\frac{\lambda}{\mu}\right)^{\frac{n-k}{2}} I_{n-k}(2 \sqrt{\lambda \mu} t) e^{-(\lambda+\mu+\alpha) t}+\alpha\left(\frac{\lambda}{\mu}\right)^{\frac{n}{2}} \int_{0}^{t} e^{-(\lambda+\mu+\alpha) \tau} I_{n}(2 \sqrt{\lambda \mu} \tau) \mathrm{d} \tau$.

Note that (22) can be expressed as

$$
\begin{equation*}
p_{k, n}(t)=e^{-\alpha t} \widehat{p}_{k, n}(t)+\alpha \int_{0}^{t} e^{-\alpha \tau} \widehat{p}_{0, n}(\tau) \mathrm{d} \tau \tag{23}
\end{equation*}
$$

where, for all $t \geq 0$ and $k, n \in \mathbf{Z}$,

$$
\begin{equation*}
\widehat{p}_{k, n}(t):=\left(\frac{\lambda}{\mu}\right)^{\frac{n-k}{2}} I_{n-k}(2 \sqrt{\lambda \mu} t) e^{-(\lambda+\mu) t} \tag{24}
\end{equation*}
$$

is the transition probability of the Poisson bilateral birth-death process with birth rate λ and death rate μ (see, for instance, Section 2.1 of Conolly [1]). Assuming that the stationary
probabilities $\pi_{n}=\lim _{t \rightarrow+\infty} p_{k, n}(t)$ exist for all $n \in \mathbf{Z}$, from (19) we have

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty} \pi_{n} z^{n} & =\lim _{t \rightarrow+\infty} H(z, t)=-\frac{\alpha}{u(z)}=\frac{\alpha z}{\lambda\left(z-z_{1}\right)\left(z_{2}-z\right)} \\
& =\frac{\alpha}{\lambda\left(z_{2}-z_{1}\right)}\left[\sum_{n=-\infty}^{-1}\left(\frac{z}{z_{1}}\right)^{n}+\sum_{n=0}^{+\infty}\left(\frac{z}{z_{2}}\right)^{n}\right]
\end{aligned}
$$

where

$$
z_{1,2}=\frac{\lambda+\mu+\alpha \pm \sqrt{(\lambda+\mu+\alpha)^{2}-4 \lambda \mu}}{2 \lambda}, \quad 0<z_{1}<1<z_{2}
$$

Hence,

$$
\pi_{n}=\left\{\begin{array}{cl}
\frac{\alpha z_{1}-n}{\lambda\left(z_{2}-z_{1}\right)} & \text { for } n=-1,-2, \ldots \tag{25}\\
\frac{\alpha z_{2}-n}{\lambda\left(z_{2}-z_{1}\right)} & \text { for } n=0,1,2, \ldots
\end{array}\right.
$$

It is not hard to see that if $\lambda=\mu$ then $X(t)$ has a central symmetry with respect to state 0 , with $x_{k}=1$ for all k :

$$
p_{-k,-n}(t)=p_{k, n}(t), \quad q_{-k,-n}=q_{k, n}
$$

for all $t>0$ and $k, n \in \mathbf{Z}$. Note that if $\lambda=\mu$, then z_{1} and z_{2} are reciprocal zeroes of $u(z)$, so that the stationary distribution (25) is symmetric, i.e. $\pi_{n}=\pi_{-n}$ for all $n \in \mathbf{Z}$. Since $q_{i, j}=q_{j, i}=0, q_{i, 0}>0$ and $q_{j, 0}>0$ for all $i, j \in \mathbf{Z}$ such that $i<0<j$, and $q_{0,-1}>0$ and $q_{0,1}>0$, this Markov chain satisfies assumptions (i)-(iii) for which 0 is a symmetry state. In this case the first-passage-time densities through 0 can be obtained via Theorem 3.1. Indeed, if $\lambda=\mu$, making use of (22) and of property $I_{n}(x)=I_{-n}(x)$, for all $t>0$ and $k=1,2, \ldots$ we have:

$$
\begin{aligned}
g_{k, 0}^{-}(t) & =h_{k, 0}^{-}(t)-h_{k, 0}^{+}(t)=\sum_{j=1}^{+\infty} p_{k, j}(t) q_{j, 0}-\sum_{i=-\infty}^{-1} p_{k, i}(t) q_{i, 0} \\
& =\lambda\left[p_{k, 1}(t)-p_{k,-1}(t)\right]+\alpha\left[\sum_{j=1}^{+\infty} p_{k, j}(t)-\sum_{i=-\infty}^{-1} p_{k, i}(t)\right] \\
& =e^{-(2 \lambda+\alpha) t}\left\{\lambda\left[I_{k-1}(2 \lambda t)-I_{k+1}(2 \lambda t)\right]+\alpha \sum_{j=1}^{+\infty}\left[I_{k-j}(2 \lambda t)-I_{k+j}(2 \lambda t)\right]\right\}
\end{aligned}
$$

Furthermore, recalling (18), in this special case for all $t>0$ and $k=1,2, \ldots$ there holds:

$$
g_{-k, 0}^{+}(t)=g_{k, 0}^{-}(t)
$$

In analogy with Theorem 3.2 and by virtue of (22), when $\lambda=\mu$, we have

$$
\begin{align*}
p_{k, n}^{\langle 0\rangle}(t) & =p_{k, n}(t)-p_{-k, n}(t) \\
& =e^{-(2 \lambda+\alpha) t}\left[I_{n-k}(2 \lambda t)-I_{n+k}(2 \lambda t)\right], \quad t>0 \tag{27}
\end{align*}
$$

Note that

$$
\begin{align*}
& p_{k, n}^{\langle 0\rangle}(t)=p_{n, k}^{\langle 0\rangle}(t), \tag{28}\\
& p_{k, n}^{\langle 0\rangle}(t)=e^{-\alpha t} \widehat{p}_{k, n}^{\langle 0\rangle}(t), \tag{29}
\end{align*}
$$

where $\widehat{p}_{k, n}^{\langle 0\rangle}(t)$ is the transition probability of $\widehat{X}(t)$ when $\lambda=\mu$. Functions (26) and (27) are shown in Figure 1 for some choices of the involved parameters.

We finally remark that Eqs. (23) and (29) are in agreement with similar results for birth-death processes with catastrophes obtained in Di Crescenzo et al. [9] and [10].

Figure 1: On the left-hand are the plots of the downward first-passage-time density (26) for $k=3, \lambda=1$ and $\alpha=0.1,0.2,0.3$, from bottom to top near the origin. On the right the 0 -avoiding transition probabilities (27) for $k=3, n=1, \lambda=1$ and $\alpha=0.1,0.2,0.5,1$ (top to bottom) are indicated.

5 Strong similarity The notion of similarity between stochastic processes has attracted the attention of several authors (see Giorno et al. [12], for time-homogeneous diffusion processes, Gutiérrez Jáimez et al. [14] for time-nonhomogeneous diffusion processes, Di Crescenzo [3], [4], and Lenin et al. [15], for birth-death processes, and Pollett [16], for Markov chains). Two continuous-time Markov chains $X(t)$ and $\widetilde{X}(t)$, with state-space \mathcal{S}, are said to be strongly similar if their transition probabilities satisfy

$$
\begin{equation*}
\widetilde{p}_{k, n}(t)=\frac{\beta_{n}}{\beta_{k}} p_{k, n}(t), \quad \text { for all } t \geq 0 \text { and } k, n \in \mathcal{S} \tag{30}
\end{equation*}
$$

where $\left\{\beta_{n}, n \in \mathcal{S}\right\}$ is a suitable sequence of real positive numbers (we refer the reader to Pollett [16], for further details). In the following theorem we state that if a Markov chain has a central symmetry, then any of its similar chains has a central symmetry as well.
Theorem 5.1 Let $X(t)$ and $\widetilde{X}(t)$ be strongly similar continuous-time Markov chains with state-space \mathcal{S}; if $X(t)$ has a central symmetry, then for all $t \geq 0$ and $k, n \in \mathcal{S}$ one has:

$$
\widetilde{p}_{N-k, N-n}(t)=\frac{\widetilde{x}_{n}}{\widetilde{x}_{k}} \widetilde{p}_{k, n}(t)
$$

with

$$
\widetilde{x}_{n}=\frac{\beta_{N-n}}{\beta_{n}} x_{n}, \quad n \in \mathcal{S} .
$$

The proof is an immediate consequence of assumed symmetry and similarity properties.
Hereafter we show an application of Theorem 5.1 to a birth-death process having constant rates and state-space \mathbf{Z}.

Example 5.1 Let $X(t)$ be the bilateral birth-death process with birth and death rates λ and μ, respectively. From transition probabilities (24) it is not hard to see $X(t)$ has a central symmetry with respect to 0 , i.e. for all $t \geq 0$ and $k, n \in \mathbf{Z}$ there results

$$
p_{-k,-n}(t)=\frac{x_{n}}{x_{k}} p_{k, n}(t), \quad \text { with } x_{n}=\left(\frac{\lambda}{\mu}\right)^{-n} .
$$

The Markov chains that are strongly similar to $X(t)$ constitute a family of bilateral birthdeath processes characterized by birth and death rates (see Section 4 of Di Crescenzo [4], and Example 3 of Pollett [16])

$$
\widetilde{\lambda}_{n}=\frac{\beta_{n+1}}{\beta_{n}} \lambda, \quad \widetilde{\mu}_{n}=\frac{\beta_{n-1}}{\beta_{n}} \mu, \quad n \in \mathbf{Z}
$$

and by transition probabilities (30), with $p_{k, n}(t)$ given in (24) and

$$
\beta_{n}=1+\eta\left(\frac{\lambda}{\mu}\right)^{n}, \quad n \in \mathbf{Z}
$$

for all $\eta \geq 0$. Due to Theorem 5.1, the family of strongly similar processes has a central symmetry with respect to 0 :

$$
\widetilde{p}_{-k,-n}(t)=\frac{\widetilde{x}_{n}}{\widetilde{x}_{k}} \widetilde{p}_{k, n}(t), \quad \text { with } \widetilde{x}_{n}=\frac{\beta_{-n}}{\beta_{n}} x_{n}=\frac{1+\eta\left(\frac{\lambda}{\mu}\right)^{-n}}{1+\eta\left(\frac{\lambda}{\mu}\right)^{n}}\left(\frac{\lambda}{\mu}\right)^{-n}, \quad n \in \mathbf{Z}
$$

Acknowledgements This work has been partially supported by MIUR (cofin 2003) and INdAM (G.N.I.M.).

References

[1] Conolly, B. (1975), Lecture Notes on Queueing Systems (Ellis Horwood, Chichester).
[2] Coolen-Schrijner, P. and Van Doorn, E.A. (2002), The deviation matrix of a continuous-time Markov chain. Prob. Engin. Inform. Sci. 16, 351-366.
[3] Di Crescenzo, A. (1994), On certain transformation properties of birth-and-death processes, in: R. Trappl, ed. Cybernetics and Systems '94 (World Scientific, Singapore) pp. 839-846. ISBN 981-02-1936-9.
[4] Di Crescenzo, A. (1994), On some transformations of bilateral birth-and-death processes with applications to first passage time evaluations, in: SITA '94 - Proc. 17th Symp. Inf. Theory Appl. (Hiroshima, Japan) pp. 739-742.
[5] Di Crescenzo, A. (1996), On the straight line crossing problem for two-dimensional random walks, in: R. Trappl, ed. Cybernetics and Systems '96 (Austrian Society for Cybernetics Studies, Vienna) pp. 514-517. ISBN 3-85206-133-4.
[6] Di Crescenzo, A. (1998), First-passage-time densities and avoiding probabilities for birth-anddeath processes with symmetric sample paths. J. Appl. Prob. 35, 383-394.
[7] Di Crescenzo, A., Giorno, V., Nobile, A.G. and Ricciardi, L.M. (1995), On a symmetry-based constructive approach to probability densities for two-dimensional diffusion processes. J. Appl. Prob. 32, 316-336.
[8] Di Crescenzo, A., Giorno, V., Nobile, A.G. and Ricciardi, L.M. (1997), On first-passagetime and transition densities for strongly symmetric diffusion processes. Nagoya Mathematical Journal 145, 143-161.
[9] Di Crescenzo A., Giorno V., Nobile A.G. and Ricciardi L.M. (2003), On the $M / M / 1$ queue with catastrophes and its continuous approximation. Queueing Systems 43, 329-347.
[10] Di Crescenzo, A., Giorno, V., Nobile, A.G. and Ricciardi, L.M. (2004), On birth-death processes with catastrophes. (submitted)
[11] Giorno, V., Negri, C. and Nobile, A.G. (1985), A solvable model for a finite-capacity queueing system. J. Appl. Prob. 22, 903-911.
[12] Giorno, V., Nobile, A.G. and Ricciardi, L.M. (1988), A new approach to the construction of first-passage-time densities, in: R. Trappl, ed. Cybernetics and Systems '88 (Kluwer Academic Publishers, Dordrecht) pp. 375-381. ISBN 90-277-2718-X.
[13] Giorno, V., Nobile, A.G. and Ricciardi, L.M. (1989), A symmetry-based constructive approach to probability densities for one-dimensional diffusion processes. J. Appl. Prob. 26, 707-721.
[14] Gutiérrez Jáimez, R., Juan Gonzales, A. and Román Román, P. (1991), Construction of first-passage-time densities for a diffusion process which is not necessarily time-homogeneous. J. Appl. Prob. 28, 903-909.
[15] Lenin, R.B., Parthasarathy, P.R., Scheinhardt, W.R.W. and Van Doorn, E.A. (2000), Families of birth-death processes with similar time-dependent behaviour. J. Appl. Prob. 37, 835-849.
[16] Pollett, P.K. (2001), Similar Markov chains, in: D.J. Daley, ed. Probability, Statistics and Seismology. A Festschrift for David Vere-Jones J. Appl. Prob. special volume 38A, pp. 53-65.
A. Di Crescenzo: Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
A. Nastro: Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy

[^0]: 2000 Mathematics Subject Classification. 60J27, 60J35.
 Key words and phrases. Transition probabilities; first-passage-time densities; avoiding probabilities; flow functions; birth-death processes with jumps; strong similarity.

