A MULTIDIMENSIONAL INTEGRATION

Shizu Nakanishi

Received September 25, 2003

Abstract

We proposed in [6] a multiple integration on a multidimensional interval, named the $(L A)$ integral in the strong sense, which reduces to the special Denjoy integral in the one-dimensional case (cf. [5]). In this paper, we show that in the two-dimensional case, Fubini's theorem holds for the $(L A)$ integral in the strong sense in addition to the following three statements which have been proved in [6]: The indefinite integral of an $(L A)$ integrable function in the strong sense is continuous; the derivative of a finitely additive interval function which is derivable in the strong sense at every point is $(L A)$ integrable in the strong sense; and the indefinite integral of an $(L A)$ integrable function f in the strong sense is, at almost all points p, derivable in the ordinary sense and its derivative coincides with $f(p)$.

In [6], we defined a multiple integration for a real valued function on a multidimensional interval, named the $(L A)$ integral in the strong sense or the strong $(L A)$ integral. In this paper, we discuss the statements shown in [6] which are true in all multidimensional cases, in more detail (Theorems 1, 2 and 3), and show that, in the two-dimensional case, Fubini's theorem holds for the strong ($L A$) integral (Theorem 6). Theorem 2 is already proved in [6], but in this paper, we show a direct proof of the theorem (Proposition 9).

In general, when a function f is strongly $(L A)$ integrable on an n-dimensional interval $R(n \geq 2)$, for a variable taken arbitrarily if, fixing a point p in the projection of the interval R into the ($n-1$)-dimensional space consisting of the other variables, we consider the function f as a function of the variable taken first, then the function is strongly $(L A)$ integrable for almost all p in the projection of R (Theorem 4).

This paper is a correction of the study for the multiple integral proposed in [4], named the (D) integral (we found recently an error in the study (precisely, in the proof of [4, Théorèm 6])).

We remark that we have defined in the paper [9] a multidimensional multiple integration, named the $\left(D_{0}\right)$ integral, whose integral reduces to the special Denjoy integral in the onedimensional case and is expressible as the iterated integral of the one-dimensional $\left(D_{0}\right)$ integral.

Throughout this paper, we refer to the terminology and notations indicated in the paper [9]. In this paper, parts of the proof are omitted. The proof of the parts omitted is leaved to the reader to see the corresponding parts in [6] or [9].

We denote the n-dimensional Euclidean space by E_{n}. A finite system of intervals is called non-overlapping if they have mutually no common inner points. An interval function in an interval $R_{0} \subset E_{n}$ means a function defined on the family of all sub-intervals of R_{0}. A finitely additive interval function, or in short, an additive interval function, in R_{0} means an interval function F such that $F\left(I_{1} \cup I_{2}\right)=F\left(I_{1}\right)+F\left(I_{2}\right)$ for any pair of non-overlapping intervals

[^0]I_{1} and I_{2} whose union is an interval. A finite system of intervals $I_{i}\left(i=1,2, \ldots, i_{0}\right)$ in E_{n} is called an elementary system if $I_{i} \cap I_{i^{\prime}}=\emptyset$ for $i \neq i^{\prime}$, sometimes the elementary system is denoted by $S:\left\{I_{i}\left(i=1,2, \ldots, i_{0}\right)\right\}$. Throughout this paper, μ_{n} denotes the Lebesgue measure on E_{n}, sometimes, the Lebesgue measure of an interval I in E_{n} is denoted by $|I|$. Sometimes, for an elementary system $S:\left\{I_{i}\left(i=1,2, \ldots, i_{0}\right)\right\}$, S denotes the set $\cup_{i=1}^{i_{0}} I_{i}$ and $|S|$ denotes the Lebesgue measure $\sum_{i=1}^{i_{0}}\left|I_{i}\right|$, and when F is a finitely additive interval function in an interval containing $S, F(S)$ denotes $\sum_{i=1}^{i_{0}} F\left(I_{i}\right)$. Measure means Lebesgue measure. For a set A in E_{n}, \bar{A} denotes the closure of A in E_{n} and A° denotes the interior of A in E_{n}. For an interval $I=\left[a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right]$, norm (I) denotes $\max \left\{b_{i}-a_{i}: i=1,2, \ldots, n\right\}$, and $d(I)$ denotes $\sup \{\operatorname{dist}(x, y): x, y \in I\}$. For a closed set F in the one-dimensional Euclidean space E_{1}, an interval I in E_{1} is said to be contiguous to F if the both end-points of I belong to F and $I^{\circ} \cap F=\emptyset . N$ denotes the set $\{1,2, \ldots\}$. Sometimes, the empty set is treated as a measurable set or a closed set.

Let the Euclidean space E_{n} be the product space $E_{n}=E_{n_{1}} \times E_{n_{2}}$ of Euclidean spaces $E_{n_{1}}$ and $E_{n_{2}}$ and A a subset of E_{n}. Then $\operatorname{proj}_{E_{n_{1}}}(A)$ denotes the projection of A into $E_{n_{1}}$ and $\operatorname{proj}_{y}(A)$ the projection of A into $E_{n_{2}}$, in particular, when $n=2$ and $n_{1}=n_{2}=1, \operatorname{proj}_{x}(A)$ denotes $\operatorname{proj}_{E_{n_{1}}}(A)$, and $\operatorname{proj}_{y}(A)$ denotes $\operatorname{proj}_{E_{n_{2}}}(A)$. For a point $p \in E_{n_{1}}, A^{p}$ denotes the set $\left\{(p, q):(p, q) \in A, q \in E_{n_{2}}\right\}$ and for a point $q \in E_{n_{2}}, A^{q}$ denotes the set $\{(p, q):(p, q) \in$ $\left.A, p \in E_{n_{1}}\right\}$.

§1 Multidimensional integration

Definition 1 ([6, Definition 5]). Let R_{0} be an interval in the n_{0}-dimensional Euclidean space $E_{n_{0}}$ and f a real valued measurable function on R_{0}. The function f is said to be $(L A)$ integrable in the strong sense or strongly $(L A)$ integrable on R_{0} if there exist a finitely additive interval function F in R_{0}, a nondecreasing sequence of measurable sets $M_{n}(n=$ $1,2, \ldots)$ such that $M_{n} \subset R_{0}$ and $\cup_{n=1}^{\infty} M_{n}=R_{0}$, and a nondecreasing sequence of closed sets $F_{n}(n=1,2, \ldots)$ such that $F_{n} \subset M_{n}$ and $\mu_{n_{0}}\left(R_{0}-\cup_{n=1}^{\infty} F_{n}\right)=0$, satisfying the following two conditions (1) and (2):
(1) The function f is Lebesgue integrable on F_{n} for each $n \in N$;
(2) Given $n \in N$ and $\varepsilon>0$, there exists a $\delta(n, \varepsilon)>0$ for which the following holds; if $I_{i}\left(i=1,2, \ldots, i_{0}\right)$ is a finite system of non-overlapping intervals in R_{0} such that
(2.1) $I_{i} \cap M_{n} \neq \emptyset$ for $i=1,2, \ldots, i_{0}$;
(2.2) $\mu_{n_{0}}\left(\cup_{i=1}^{i_{0}} I_{i}-M_{n}\right)<\delta(n, \varepsilon)$;
(2.3) $\operatorname{norm}\left(I_{i}\right)<1 / n$ for $i=1,2, \ldots, i_{0}$,
then the following inequality holds:

$$
\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f(p) d p\right|<\varepsilon .
$$

In this case, $F\left(R_{0}\right)$ is called the $(L A)$ integral in the strong sense or the strong $(L A)$ integral, of $f(p)$ on R_{0}, and is denoted by
$(S L A) \int_{R_{0}} f(p) d p$ or $(S L A) \int_{R_{0}} f\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right) d\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right)$.
In this definition, it does not arise any confusion by Proposition 2 below. The sequence $M_{n}(n=1,2, \ldots)$ is called a characteristic sequence of the strong $(L A)$ integral and the sequence $F_{n}(n=1,2, \ldots)$ a fundamental sequence of the strong $(L A)$ integral. In the case when we can choose $\left\{M_{n}\right\}_{n=1}^{\infty}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$ so that $M_{n}=F_{n}$ for every n, the function f is said to be strongly $\left(L A^{*}\right)$ integrable on R_{0}.

We remark that in Definition 1 we can suppose that

$$
\delta(n, \varepsilon) \geq \delta(m, \varepsilon) \text { for } m>n, \text { and } \delta(n, \varepsilon) \geq \delta\left(n, \varepsilon^{\prime}\right) \text { for } \varepsilon>\varepsilon^{\prime}
$$

When no confusion is possible, we also use the symbols $(S L A) \int_{R_{0}} f d p,(S L A) \int_{R_{0}} f,(L) \int_{A} f$, etc.

Remark 1. In the definition of the strong $(L A)$ integral we can replace the condition (2.3) with the condition:
$\left(2.3^{\prime}\right) d\left(I_{i}\right)<1 / n$ for $i=1,2, \ldots, i_{0}$.
Because, we have $\operatorname{norm}(I) \leq d(I) \leq\left(n_{0}\right)^{1 / 2} \operatorname{norm}(I)$ for any interval I in $E_{n_{0}}$. First, suppose that, if, for $n \in N$ and $\varepsilon>0$, a system of non-overlapping intervals $I_{i}(i=$ $\left.1,2, \ldots, i_{0}\right)$ satisfies $(2.1),(2.2)$ and $\left(2.3^{\prime}\right)$, then $\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon$ holds, where $\left\{M_{n}\right\},\left\{F_{n}\right\}$ and $\delta(n, \varepsilon)$ are those indicated in the definition of the $(L A)$ integral. In this case, take a sequence of positive integers $m_{n}(n=1,2, \ldots)$ so that $m_{n} \geq\left(n_{0}\right)^{1 / 2} n$ and $1<m_{1}<m_{2}<\ldots$, and put

$$
\begin{gathered}
M_{1}^{*}=\ldots=M_{m_{1}-1}^{*}=\emptyset, M_{m_{1}}^{*}=M_{m_{1}+1}^{*}=\ldots=M_{m_{2}-1}^{*}=M_{1}, \ldots \\
M_{m_{n}}^{*}=M_{m_{n}+1}^{*}=\ldots=M_{m_{n+1}-1}^{*}=M_{n}, \ldots \\
F_{1}^{*}=\ldots=F_{m_{1}-1}^{*}=\emptyset, F_{m_{1}}^{*}=F_{m_{1}+1}^{*}=\ldots=F_{m_{2}-1}^{*}=F_{1}, \ldots \\
F_{m_{n}}^{*}=F_{m_{n}+1}^{*}=\ldots=F_{m_{n+1}-1}^{*}=F_{n}, \ldots
\end{gathered}
$$

Then, if, for $m_{n}+k \in N$ and $\varepsilon>0$, where $0 \leq k \leq\left(m_{n+1}-1\right)-m_{n}$, a finite system of nonoverlapping intervals $I_{i}\left(i=1,2, \ldots, i_{0}\right)$ satisfies (2.1), (2.2) and (2.3) for $m_{n}+k, M_{m_{n}+k}^{*}$ and $\delta\left(m_{n}+k, \varepsilon\right)$, then
(2.1) $I_{i} \cap M_{n} \neq \emptyset$ for $i=1,2, \ldots, i_{0}$;
(2.2) $\mu_{n_{0}}\left(\cup_{i=1}^{i_{0}} I_{i}-M_{n}\right)<\delta\left(m_{n}+k, \varepsilon\right) \leq \delta(n, \varepsilon)$ by $m_{n}+k>n$;
$\left(2.3^{\prime}\right) d\left(I_{i}\right) \leq\left(n_{0}\right)^{1 / 2} \operatorname{norm}\left(I_{i}\right)<\left(n_{0}\right)^{1 / 2}\left(1 /\left(m_{n}+k\right)\right) \leq\left(n_{0}\right)^{1 / 2}\left(1 / m_{n}\right)$

$$
\leq\left(n_{0}\right)^{1 / 2} /\left(\left(n_{0}\right)^{1 / 2} n\right)=1 / n \text { for } i=1,2, \ldots, i_{0}
$$

Hence, $\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon$, so $\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{m_{n}+k}^{*}} f\right|<\varepsilon$. The converse is clear by the inequality indicated first.

By Remark 1, we have:

Proposition 1. A function f is strongly $(L A)$ integrable on R_{0} in $E_{n_{0}}$ in the sense of Definition 1 if and only if it is $(L A)$ integrable in the strong sense on R_{0} in the sense of $[6$, Definition 5], and both integrals coincide.

By Proposition 1 above and [6, Corollary 1, p. 421], we have:
Proposition 2. Tha finitely additive interval function F indicated in the definition of the strong $(L A)$ integral is uniquely determined.

The following Propositions 3-5 follow immediately from the definition of the strong $(L A)$ integral.

Proposition 3. If a function f is strongly $(L A)$ integrable on an interval R_{0} in $E_{n_{0}}$, then so is it on any sub-interval R of R_{0}. If F is an interval function indicated in the definition of the strong $(L A)$ integral for f, then $F(R)$ is the strong $(L A)$ integral of f on R for any sub-interval $R \subset R_{0}$.

Proposition 4. Let $f=g$ almost everywhere in $R_{0} \subset E_{n_{0}}$. Then, if one of them is strongly $(L A)$ integrable on R_{0}, then so is the other, and the strong $(L A)$ integrals of f and g on R_{0} coincide.

Proposition 5. If f and g are strongly ($L A$) integrable on an interval R_{0} in $E_{n_{0}}$, then so is $\alpha f+\beta g$, where α and β are real numbers, and $(S L A) \int_{R_{0}}(\alpha f+\beta g)=\alpha(S L A) \int_{R_{0}} f+$ $\beta(S L A) \int_{R_{0}} g$.

Proposition 6. Let f be a function on an interval I_{0} in the one-dimensional Euclidean space E_{1}. Then it is strongly ($L A$) integrable on I_{0} if and only if it is $\left(D_{0}\right)$ integrable ([9], Definition 1) (so special Denjoy integrable by [9, Proposition 4]) on I_{0}, and both integrals coincide.

Proof. It is clear that if f is $\left(D_{0}\right)$ integrable, then f is strongly $(L A)$ integrable and both integrals coincide, because a finite system of non-overlapping intervals is classified into two parts so that each part is an elementary system. Next, we prove that if f is strongly $(L A)$ integrable on I_{0}, then f is $\left(D_{0}\right)$ integrable on I_{0}. Let $F,\left\{M_{n}\right\}_{n=1}^{\infty},\left\{F_{n}\right\}_{n=1}^{\infty}$ and $\delta(n, \varepsilon)$ be those indicated in the definition of the strong $(L A)$ integral for f. Now, given $n \in N$ and $\varepsilon>0$, put

$$
\delta^{*}(n, \varepsilon)=(1 / 2) \min \{1 / n, \delta(n, \varepsilon / 2)\}
$$

Next, we shall prove that:
If $I_{i}\left(i=1,2, \ldots, i_{0}\right)$ is an elementary system of intervals in I_{0} such that
(2.1) $I_{i} \cap M_{n} \neq \emptyset$ for $i=1,2, \ldots, i_{0}$;
(2.2) $\mu_{1}\left(\cup_{i=1}^{i_{0}} I_{i}-M_{n}\right)<\delta^{*}(n, \varepsilon)$,
then

$$
\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon
$$

In this case, without loss of generality, we can suppose that there exists an integer i_{1} with $0 \leq i_{1} \leq i_{0}$ for which

$$
\mu_{1}\left(I_{i} \cap M_{n}\right)=0 \text { for } i=1,2, \ldots, i_{1} \text { and } \mu_{1}\left(I_{i} \cap M_{n}\right)>0 \text { for } i=1_{1}+1, \ldots, i_{0}
$$

First:
(i) For $I_{i}\left(i=1,2, \ldots, i_{1}\right)$: We have $\mu_{1}\left(\cup_{i=1}^{i_{1}} I_{i}-M_{n}\right)<\delta^{*}(n, \varepsilon)<\delta(n, \varepsilon / 2)$, and for $i=1,2, \ldots, i_{1}, \mu_{1}\left(I_{i}\right)=\mu_{1}\left(I_{i}-M_{n}\right)<\delta^{*}(n, \varepsilon)$ and so norm $\left(I_{i}\right)<1 / n$. Hence, with (2.1) above by the definition of the strong $(L A)$ integral we have

$$
\left|\sum_{i=1}^{i_{1}} F\left(I_{i}\right)-\sum_{i=1}^{i_{1}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon / 2
$$

Next:
(ii) For $I_{i}\left(i=i_{1}+1, \ldots, i_{0}\right)$: For each $i \in\left\{i_{1}+1, \ldots, i_{0}\right\}$, by the Vitali's covering theorem we can find finite intervals $J_{1}^{i}, \ldots, J_{k_{0}(i)}^{i}$ such that: $\left|J_{k}^{i}\right|<1 / n, J_{k}^{i} \subset I_{i}$ and both end-points of J_{k}^{i} belong to M_{n} for $k=1,2, \ldots, k_{0}(i) ; \mu_{1}\left(\left(I_{i} \cap M_{n}\right)-\cup_{k=1}^{k_{0}(i)} J_{k}^{i}\right)<1 / 2 n$; and $J_{1}^{i}, \ldots, J_{k_{0}(i)}^{i}$ are mutually disjoint. Denote the family of intervals contiguous to the closed set consisting of $\cup_{k=1}^{k_{0}(i)} J_{k}^{i}$ and the both end-points of I_{i} by $H_{h}^{i}\left(h=1,2, \ldots, h_{0}(i)\right)$. Then

$$
\left(\cup_{k=1}^{k_{0}(i)} J_{k}^{i}\right) \cup\left(\cup_{h=1}^{h_{0}(i)} H_{h}^{i}\right)=I_{i} \text { for each } i .
$$

Further

$$
\begin{aligned}
& J_{k}^{i} \cap M_{n} \neq \emptyset \text { for each pair } i, k ; \\
& H_{h}^{i} \cap M_{n} \neq \emptyset \text { for each pair } i, h ; \\
& \mu_{1}\left(\cup_{i=i_{1}+1}^{i_{0}}\left(\left(\cup_{k=1}^{k_{0}(i)} J_{k}^{i}\right) \cup\left(\cup_{h=1}^{h_{0}(i)} H_{h}^{i}\right)\right)-M_{n}\right)=\mu_{1}\left(\cup_{i=i_{1}+1}^{i_{0}} I_{i}-M_{n}\right)<\delta^{*}(n, \varepsilon)<\delta(n, \varepsilon / 2) ; \\
& \operatorname{norm}\left(J_{k}^{i}\right)=\left|J_{k}^{i}\right|<1 / n \text { for each pair } i, k ; \\
& \operatorname{norm}\left(H_{h}^{i}\right)= \\
& \quad\left|H_{h}^{i}\right| \leq \mu_{1}\left(I_{i}-\cup_{k=1}^{k_{0}(i)} J_{k}^{i}\right) \leq \mu_{1}\left(I_{i}-\left(I_{i} \cap M_{n}\right)\right)+\mu_{1}\left(\left(I_{i} \cap M_{n}\right)-\cup_{k=1}^{k_{0}(i)} J_{k}^{i}\right) \\
& \quad<\delta^{*}(n, \varepsilon)+1 / 2 n \leq 1 / 2 n+1 / 2 n=1 / n \text { for each pair } i, h .
\end{aligned}
$$

The system of intervals $\left\{J_{k}^{i}, H_{h}^{i}\right.$, where $i=i_{1}+1, \ldots, i_{0}, k=1,2, \ldots, k_{0}(i)$ and $h=$ $\left.1,2, \ldots, h_{0}(i)\right\}$ is a finite system of non-overlapping intervals in I_{0}. Hence by the definition of the strong $(L A)$ integral

$$
\begin{aligned}
&\left|\sum_{i=i_{1}+1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=i_{1}+1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|=\mid \sum_{i=i_{1}+1}^{i_{0}}\left(\sum_{k=1}^{k_{0}(i)} F\left(J_{k}^{i}\right)+\sum_{h=1}^{h_{0}(i)} F\left(H_{h}^{i}\right)\right) \\
&-\sum_{i=i_{1}+1}^{i_{0}}\left(\sum_{k=1}^{k_{0}(i)}(L) \int_{J_{k}^{i} \cap F_{n}} f+\sum_{h=1}^{h_{0}(i)}(L) \int_{H_{h}^{i} \cap F_{n}} f\right) \mid<\varepsilon / 2 .
\end{aligned}
$$

Thus, by (i) and (ii), $\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon$.
The indefinite integral of a strongly $(L A)$ integrable function f on R_{0} is the interval function F in R_{0} defined by $F(I)=(S L A) \int_{I} f$ for every interval $I \subset R_{0}$.

An interval function F in R_{0} is said to be continuous on R_{0} if, given $\varepsilon>0$, there exists a $\delta(\varepsilon)>0$ such that $|F(R)|<\varepsilon$ for every interval $R \subset R_{0}$ with $|R|<\delta(\varepsilon)$, to be continuous from the inside for an interval $R \subset R_{0}$ if, given $\varepsilon>0$, there exists a $\delta(\varepsilon)>0$ such that $|F(R)-F(J)|<\varepsilon$ for every interval $J \subset R$ with $\mu_{n_{0}}(R-J)<\delta(\varepsilon)$, and to be continuous from the inside on R_{0} if F is continuous from the inside for every intereval $R \subset R_{0}$.

Theorem 1. The indefine integral of a strongly $(L A)$ integrable function on an interval R_{0} in $E_{n_{0}}$ is continuous on R_{0}.

This theorem is true by Propositions 7 and 8 below. Proposition 7 is proved in [10, Théorèm, p. 282].

Proposition 7. An additive function F in an interval $R_{0} \subset E_{n_{0}}$ is continuous on R_{0} if and only if it is continuous from the inside on R_{0}.

Proposition 8. The indefinite integral of a strongly ($L A$) integrable function in an interval R_{0} is continuous from the inside on R_{0}.

In order to prove Proposition 8, it is sufficient to prove the following lemma (the proof is a correction of [6, Proposition 12]).

Lemma 1. Let F be the indefinite integral of a strongly $(L A)$ integrable function f on an interval R_{0} in $E_{n_{0}}$ and $A \subset R_{0}$ an $\left(n_{0}-1\right)$-dimensional interval contained in a hyperplane of $E_{n_{0}}$ written for some $i \in\left\{1,2, \ldots, n_{0}\right\}$ in the from

$$
A=\left\{\left(\xi_{1}, \ldots, \xi_{n_{0}}\right): \xi_{i}=c \text { and } a_{j} \leq \xi_{i} \leq b_{j} \text { for } j \neq i\right\}
$$

Then given $\varepsilon>0$, there exists $\rho(\varepsilon)>0$ such that for any intervals $A_{+\varepsilon}$ and $A_{-\varepsilon}$ in $E_{n_{0}}$ written in the form

$$
\begin{aligned}
& A_{+e}=\left\{\left(\xi_{1}, \ldots, \xi_{n_{0}}\right): c \leq \xi_{i} \leq c+e \text { and } a_{j} \leq \xi_{j} \leq b_{j} \text { for } j \neq i\right\} \\
& A_{-e}=\left\{\left(\xi_{1}, \ldots, \xi_{n_{0}}\right): c-e \leq \xi_{i} \leq c \text { and } a_{j} \leq \xi_{j} \leq b_{j} \text { for } j \neq i\right\} .
\end{aligned}
$$

where $0<e<\rho(\varepsilon)$, and contained in R_{0}, we have $\left|F\left(A_{+e}\right)\right|<\varepsilon$ and $\left|F\left(A_{-e}\right)\right|<\varepsilon$.
Proof. We shall prove only for the case of $i=1$. Let $\left\{M_{n}\right\}_{n=1}^{\infty}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$ be the sequences of measurable sets and closed sets indicated in the definition of the strong $(L A)$ integral of f. In this case, by the definition given $n \in N$ and $\varepsilon>0$, there exists a $\delta^{*}(n, \varepsilon)>0$ such that for any interval $I \subset R_{0}$ such that $I \cap M_{n} \neq \emptyset,|I|<\delta^{*}(n, \varepsilon)$, and $\operatorname{norm}(I)<1 / n$, we have $|F(I)|<\varepsilon$. For each $p \in A$, take the $n(p) \in N$ with $p \in M_{n(p)}-M_{n(p)-1}$, where $M_{0}=\emptyset$. Define a function g on A by $g(p)=1 / 3 n(p)$ for $p \in A$. Then, by [3, Compatibility theorem, p. 168] for example, there exists a g-fine division of the ($n_{0}-1$)-dimensional interval A, written $\left(D_{s}, p_{s}\right)\left(s=1,2, \ldots, s_{0}\right)$ with $p_{s} \in D_{s}$. Given $\varepsilon>0$, put

$$
\rho(\varepsilon)=\left[\min \left\{\min _{1 \leq s \leq s_{0}} \delta^{*}\left(n\left(p_{s}\right), \varepsilon / s_{0}\right), \min _{1 \leq s \leq s_{0}} 1 / n\left(p_{s}\right)\right\}\right] / 3 \max \left\{1,\left(n_{0}-1\right)\right. \text {-dimensional }
$$

measure of $A\}$.
Let $0<e<\rho(\varepsilon)$ and put $D_{s}^{*}=[c-\rho(\varepsilon), c+\rho(\varepsilon)] \times \operatorname{proj}_{y}\left(D_{s}\right)$. Then, the set A_{+e} is the union of non-overlapping intervals $D_{s}^{*} \cap A_{+e}\left(s=1,2, \ldots, s_{0}\right)$. In this case, $p_{s} \in\left(D_{s}^{*} \cap A_{+e}\right) \cap$ $M_{n\left(p_{s}\right)}, \operatorname{norm}\left(D_{s}^{*} \cap A_{+e}\right) \leq d\left(D_{s}^{*}\right)<1 / n\left(p_{s}\right)$ and $\left|D_{s}^{*} \cap A_{+\varepsilon}\right|<\rho(\varepsilon)\left(\left(n_{0}-1\right)\right.$-dimensional
measure of $A)<\delta^{*}\left(n\left(p_{s}\right), \varepsilon / s_{0}\right)$ for each $s \in\left\{1,2, \ldots, s_{0}\right\}$. Hence, $\left|F\left(D_{s}^{*} \cap A_{+e}\right)\right|<\varepsilon / s_{0}$ for each $s \in\left\{1,2, \ldots, s_{0}\right\}$. Therefore, $\left|F\left(A_{+\varepsilon}\right)\right|<\varepsilon$ for every e with $0<e<\rho(\varepsilon)$. Similarly, $\left|F\left(A_{-\varepsilon}\right)\right|<\varepsilon$ for every e with $0<e<\rho(\varepsilon)$.

For an interval function F in an interval $R \subset E_{n_{0}}$ and a $p \in R$, consider a variable interval $I \subset R$ with $p \in I$. Then, if there exists the limit value $\lim _{d(I) \rightarrow 0} F(I) /|I|$ as a finite value, the interval function F is said to be derivable in the strong sense at p, and the limit value is called the strong derivative of F at p and is denoted by $F_{s}^{\prime}(p)$.

Theorem 2 ([6, Proposition 3]). Let F be a finitely additive interval function in an interval R_{0} in the n_{0}-dimensional Euclidean space $E_{n_{0}}\left(n_{0} \geq 1\right)$ which is derivable in the strong sense at every point of R_{0}. Then the strong derivative F_{s}^{\prime} of F is strongly $(L A)$ integrable, more precisely, strongly $\left(L A^{*}\right)$ integrable, on R_{0}, and $F\left(R_{0}\right)=(S L A) \int_{R_{0}} F_{s}^{\prime}$ holds.

This theorem is proved in [6, Proposition 3], but in what follows, we shall show a direct proof of the theorem, as an immediate consequence of Proposition 9 below.

For a finitely additive interval function F in an interval R_{0} which is derivable in the strong sense at every point of R_{0}, we denote, for each $n \in N$, by A_{n} the set of all $p \in R_{0}$ at which
$[A, n]:|F(I)| /|I|<n$ for any interval $I \subset R_{0}$ such that $p \in I$ and $d(I)<4 / n$.
Lemma 2. Let F be a finitely additive interval function in an interval R_{0} in $E_{n_{0}}\left(n_{0} \geq\right.$ 1). Suppose that F is derivable in the strong sense at every point of R_{0}. Then:
(1) $\bar{A}_{n} \subset A_{2 n}$ for every $n \in N$;
(2) $\left|F_{s}^{\prime}\right| \leq n$ on A_{n} for every $n \in N$;
(3) F_{s}^{\prime} is measurable and bounded on \bar{A}_{n} for every $n \in N$;
(4) $\bar{A}_{n} \uparrow R_{0}$ as $n \rightarrow \infty$.

Proof. It is proved in [11, p. 112, (4.2), Theorem] that F_{s}^{\prime} is measurable on R_{0}. For (1), see $[6, \mathrm{p} .415]$. The other parts are clear.

Let $R=\left[a_{1}, b_{1} ; \ldots ; a_{n_{0}}, b_{n_{0}}\right]$ be an interval in $E_{n_{0}}$. Corresponding to each $s \in\{0,1, \ldots\}$, consider a grating(s) of R obtained by the family of hyperplanes:

$$
x_{i}=a_{i}+k\left(b_{i}-a_{i}\right) 2^{-s}\left(1 \leq i \leq n_{0}, 0 \leq k \leq 2^{s}, i, k \text { are integers }\right)
$$

where x_{i} is i th coordinate of point of $E_{n_{0}}$. We denote the family of hyperplanes indicated above by $\mathfrak{H}_{s}(R)$. An interval in R written

$$
\begin{gathered}
{\left[a_{1}+k_{1}\left(b_{1}-a_{1}\right) 2^{-s}, a_{1}+\left(k_{1}+1\right)\left(b_{1}-a_{1}\right) 2^{-s} ; \ldots ; a_{i}+k_{i}\left(b_{i}-a_{i}\right) 2^{-s}, a_{i}+\left(k_{i}+1\right)\right.} \\
\left.\quad\left(b_{i}-a_{i}\right) 2^{-s} ; \ldots ; a_{n_{0}}+k_{n_{0}}\left(b_{n_{0}}-a_{n_{0}}\right) 2^{-s}, a_{n_{0}}+\left(k_{n_{0}}+1\right)\left(b_{n_{0}}-a_{n_{0}}\right) 2^{-s}\right]
\end{gathered}
$$

where $k_{1}, \ldots, k_{n_{0}}$ are integers with $0 \leq k_{i} \leq 2^{s}-1\left(i=1,2, \ldots, n_{0}\right)$, is called a mesh of grating(s) of R. An interval in R is called a mesh of R if it is a mesh of grating(s) of R for some $s \in\{0,1, \ldots\}$. For an interval $I=\left[c_{1}, d_{1} ; \ldots ; c_{i}, d_{i} ; \ldots ; c_{n_{0}}, d_{n_{0}}\right]$, the intersection of
the interval I and any one of the $2 n_{0}$ hyperplanes $x_{i}=c_{i}$ and $x_{i}=d_{i}$ is called a face of the interval I.

We denote the family of all intervals I in R for which there exists an s such that each face of I is contained in some hyperplane belonging to $\mathfrak{H}_{s}(R)$, by $\mathfrak{J}(R)$.

Lemma 3 Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_{0}$, the following (1) and (2) hold:
(1) For each interval $I \in \mathfrak{J}(R)$ such that $I \cap \bar{A}_{n} \neq \emptyset$, let us choose a sequence of meshes of $R ; R_{j}^{n}(j=1,2, \ldots)$ (possibly empty or finite) as in [A], (a) and (b) indicated in [6, p. 409]. In this case, we have:
(i) $\cup_{j=1}^{\infty} R_{j}^{n}=I-\bar{A}_{n}$, and $R_{j}^{n}(j=1,2, \ldots)$ is non-overlapping;
(ii) $\sum_{j=1}^{\infty} F\left(R_{j}^{n}\right)$ is convergent;
(iii) If I is a mesh of R with $d(I)<1 / n$, then

$$
\sum_{j=1}^{\infty}\left|F\left(R_{j}^{n}\right)\right| \leq\left(n \kappa_{n_{0}}\right) \sum_{j=1}^{\infty}\left|R_{j}^{n}\right|
$$

where $\kappa_{n_{0}}$ is a number depending only on the dimension of $E_{n_{0}}$ such that $\kappa_{n_{0}}>1$.
(2) For each interval $I \in \mathfrak{J}(R)$ such that $I \cap \bar{A}_{n}=\emptyset$, let us choose a finite sequence $R_{j}^{n}\left(j=1,2, \ldots, j_{0}\right)$ as in [A], (c) indicated in [6, p. 410]. In this case, we have
(iv) $F(I)=\sum_{j=1}^{j_{0}} F\left(R_{j}^{n}\right)$.

Proof. The case of (1) is proved in a quite similar way as in [6, p. 410], replacing F with \bar{A}_{n} and using Lemma 2, (1) above instead of (2.3) in [6, p. 408]. The case of (2) is clear.

Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_{0}$, we define a function $G_{n}(R ; I)$ on $\mathfrak{J}(R)$ as follows:
(a) $G_{n}(R ; I)=(L) \int_{I \cap \bar{A}_{n}} f+\sum_{j=1}^{\infty} F\left(R_{j}^{n}\right)$ if $I-\bar{A}_{n} \neq \emptyset$ and $I \cap \bar{A}_{n} \neq \emptyset$;
(b) $G_{n}(R ; I)=(L) \int_{I \cap \bar{A}_{n}} f$ if $I-\bar{A}_{n}=\emptyset$ and $I \cap \bar{A}_{n} \neq \emptyset$;
(c) $G_{n}(R ; I)=F(I)$ if $I-\bar{A}_{n}=\emptyset$,
where $R_{j}^{n}(j=1,2, \ldots)$ is the sequence of meshes of R chosen in Lemma 3.
Let $R \subset R_{0}$ be an interval, K a function of mesh of interval $R \subset R_{0}$ and $p \in R$. Let I be a variable mesh of R with $p \in I$. Then, if there exists a unique limit: $\lim _{d(I) \rightarrow 0} K(I) /|I|$ as a finite limit, we say that K is derivable with respect to meshes of R at p, and denote the limit by $K_{\mathfrak{R}}^{\prime}(P)$.

Lemma 4. Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_{0}$, the function $G_{n}(R ; I)$ on $\mathfrak{J}(R)$ has the following properties:
(1) $G_{n}(R ; I)$ is additive;
(2) $\left(G_{n}(R)\right)_{\mathfrak{R}}^{\prime}=F_{s}^{\prime}$ almost everywhere in $R \cap \bar{A}_{n}$.

This is proved in a quite similar way as in the proof of [6. Lemma 2], replacing F with \bar{A}_{n} and F_{η}^{\prime} with F_{s}^{\prime}.

Lemma 5. Under the same assumption as in Lemma 2, for each $n \in N F(R)=$ $G_{n}(R ; R)$ holds for any interval $R \subset R_{0}$, where $G_{n}(R ; R)$ is the value defined above as $I=R$. More precisely

$$
F(R)=(L) \int_{R \cap \bar{A}_{n}} f+\sum_{j=1}^{\infty} F\left(R_{j}^{n}\right)
$$

where $\left\{R_{j}^{n}\right\}$ (possibly empty or finite) is the sequence of meshes of R indicated in Lemma 3 .
Proof. This is proved in a quite similar way as in [6, Lemma 3], replacing F with $\bar{A}_{n}, F_{\eta}^{\prime}$ with F_{s}^{\prime}, and $A_{2 n}(\eta)$ with $A_{2 n}$, and putting

$$
\delta(\varepsilon)=\min \left\{\delta_{1}(\varepsilon), \varepsilon / 4 n \kappa_{n_{0}},\left(|R| /(\operatorname{norm}(R))^{n_{0}}\right)\left(1 /\left(n \sqrt{n_{0}}\right)\right)^{n_{0}}\right\}
$$

Proposition 9. Let F be a finitely additive interval function in an interval $R_{0} \subset$ $E_{n_{0}}\left(n_{0} \geq 1\right)$. Suppose that F is derivable in the strong sense at every point of R_{0}. Then, for $\bar{A}_{n}(n=1,2, \ldots)$ the following statements hold:
(1) $\bar{A}_{n} \uparrow R_{0}$ as $n \rightarrow \infty$;
(2) F_{s}^{\prime} is measurable and bounded on \bar{A}_{n} for every $n \in N$;
(3) Given $n \in N$ and $\varepsilon>0$, there exists $\delta(n, \varepsilon)>0$ such that, if a finite system of non-overlapping intervals $R_{i}\left(i=1,2, \ldots, i_{0}\right)$ in R_{0} satisfies:
(3.1) $R_{i} \cap \bar{A}_{n} \neq \emptyset$ for $i=1,2, \ldots, i_{0}$;
(3.2) $\mu_{n_{0}}\left(\cup_{i=1}^{i_{0}} R_{i}-\bar{A}_{n}\right)<\delta(n, \varepsilon)$; and
(3.3) $d\left(R_{i}\right)<1 / n$ for $i=1,2, \ldots, i_{0}$,
then

$$
\left|\sum_{i=1}^{i_{0}} F\left(R_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{R_{i} \cap \bar{A}_{n}} F_{s}^{\prime}\right|<\varepsilon
$$

Proof. (1) and (2) hold by Lemma 2. Next, we prove (3). For $n \in N$ and $\varepsilon>0$ given, put $\delta(n, \varepsilon)=\varepsilon / n \kappa_{n_{0}}$, where $\kappa_{n_{0}}$ is the number indicated in (iii) of Lemma 3. For each interval R_{i}, let $\left\{R_{j}^{i n}\right\}(j=1,2, \ldots)$ be the sequence of meshes of R_{i} chosen as in Lemma 3 to define $G_{n}\left(R_{i} ; R_{i}\right)$. Then, by Lemmas 5 and 3 we have

$$
\begin{aligned}
& \left|\sum_{i=1}^{i_{0}} F\left(R_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{R_{i} \cap \bar{A}_{n}} F_{s}^{\prime}\right| \\
& =\left|\sum_{i=1}^{i_{0}}(L) \int_{R_{i} \cap \bar{A}_{n}} F_{s}^{\prime}-\sum_{i=1}^{i_{0}} \sum_{j=1}^{\infty} F\left(R_{j}^{i n}\right)-\sum_{i=1}^{i_{0}}(L) \int_{R_{i} \cap \bar{A}_{n}} F_{s}^{\prime}\right| \\
& \leq \sum_{i=1}^{i_{0}}\left(n \kappa_{n_{0}} \sum_{j=1}^{\infty}\left|R_{j}^{i n}\right|\right)=n \kappa_{n_{0}}\left(\sum_{i=1}^{i_{0}} \mu_{n_{0}}\left(R_{i}-\bar{A}_{n}\right)\right)<n \kappa_{n_{0}} \delta(n, \varepsilon)=\varepsilon
\end{aligned}
$$

For an interval I in E_{n}, the parameter of regurality of I is the number $|I| /|R|$, where R is the minimum cube containing I, and is denoted by $r(I)$. If $r(I) \geq \eta$, the interval I is called
η-regular. A sequence of intervals $\left\{I_{i}\right\}$ is said to be η-regular if I_{i} is η-regular for every i, and we say that the sequence $\left\{I_{i}\right\}$ tends to p if $d\left(I_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$ and $p \in I_{i}$ for every i. Let F be an interval function in an interval R_{0} in E_{n} and $p \in R_{0}$. For an η with $1 \geq \eta>0$, we call the least upper bound [resp. the greatest lower bound] (extended real number) of the numbers l for which there is an η-regular sequence $\left\{I_{i}\right\}$ of intervals tending to p such that $\lim _{i \rightarrow \infty} F\left(I_{i}\right) /\left|I_{i}\right|=l$ the upper derivate [resp. the lower derivate] in the η-regular sense of F at p. The upper [resp. lower] derivate of F in the η-regular sense at p is denoted by $\bar{D}_{\eta} F(p)\left[\operatorname{resp} . \underline{\mathrm{D}}_{\eta} F(p)\right]$. When $\bar{D}_{\eta} F(p)=\underline{\mathrm{D}}_{\eta} F(p)$, the common value is called the derivative in the η-regular sense of F at p, and is denoted by $F_{\eta}^{\prime}(p)$. If further $F_{\eta}^{\prime}(p)$ is finite, F is said to be derivable in the η-regular sanse at p. As easily seen, F is derivable in the η-regular sense at p if and only if there exists a unique limit $\lim _{d(I) \rightarrow 0} F(I) /|I|$ as a finite limit, where I is a variable η-regular interval with $p \in I$. If $\lim _{\eta \rightarrow 0} \bar{D}_{\eta} F(p)=\lim _{\eta \rightarrow 0} \underline{\mathrm{D}}_{\eta} F(p)$, then the common value is called the ordinary derivative of F at p, and is denoted by $F^{\prime}(p)$. When $F^{\prime}(p)$ is finite, F is said to be derivable in the ordinary sense at p.

Theorem 3. Let f be strongly $(L A)$ integrable on an interval R_{0} in $E_{n_{0}}$ and F an indefinite integral of f. Then, at almost all $p \in R_{0}, F$ is derivable in the ordinary sense and $F^{\prime}(p)=f(p)$ holds.

The theorem holds by virtue of [6, Theorem 5, (2), p. 424] and Proposition 1 above. Because, a strongly ($L A$) integrable function on R_{0} is $(L A)$ integrable in the ordinary sense on R_{0} (see, for the definition of " $L A$) integrable in the ordinary sense", [6, Definition 4, p. 423]). To prove the theorem we extend the idea of the semi-regular integral in the Burkill sense introduced by S.Kempisty in [2] to the η-regular integral in the Burkill sense with any η, where $0<\eta<1([6$, p. 416] $)$ (cf. [1]).

We improve on the definition of (D) integrability proposed in [4] as in Definition 2 below, by replacing the condition that " M_{n} is closed" with the condition that " M_{n} is measurable".

Definition 2. Let R_{0} be an interval in $E_{n_{0}}$ and f a measurable function on R_{0}. The function f is said to be (D) integrable on R_{0} if there exist a finitely additive interval function F in R_{0}, a nondecreasing sequence of measurable sets $M_{n}(n=1,2, \ldots)$ such that $M_{n} \subset R_{0}$ and $\cup_{n=1}^{\infty} M_{n}=R_{0}$, and a nondecreasing sequence of closed sets $F_{n}(n=1,2, \ldots)$ such that $F_{n} \subset M_{n}$ and $\mu_{n_{0}}\left(R_{0}-\cup_{n=1}^{\infty} F_{n}\right)=0$, satisfying the following two conditions (1) and (2):
(1) The function f is Lebesgue integrable on F_{n} for each $n \in N$;
(2) Given $n \in N$ and $\varepsilon>0$, there exists a $\delta(n, \varepsilon)>0$ for which the following holds: if $I_{i}\left(i=1,2, \ldots, i_{0}\right)$ is an elementary system in R_{0} such that
(2.1) $I_{i} \cap M_{n} \neq \emptyset$ for $i=1,2, \ldots, i_{0}$;
(2.2) $\mu_{n_{0}}\left(\cup_{i=1}^{i_{0}} I_{i}-M_{n}\right)<\delta(n, \varepsilon)$;
(2.3) $\operatorname{norm}\left(I_{i}\right)<1 / n$ for $i=1,2, \ldots, i_{0}$,
then the following inequality holds:

$$
\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\varepsilon
$$

In this case, the sequence $M_{n}(n=1,2, \ldots)$ is called a characteristic sequence of the (D) integral and the sequence $F_{n}(n=1,2, \ldots)$ is called a fundamental sequence of the (D) integral.

We remark that in Definition 2 we can suppose that

$$
\delta(n, \varepsilon) \geq \delta(m, \varepsilon) \text { for } m>n \text { and } \delta(n, \varepsilon) \geq \delta\left(n, \varepsilon^{\prime}\right) \text { for } \varepsilon>\varepsilon^{\prime}
$$

Proposition 10. Let $f=g$ almost everywhere in an interval $R_{0} \subset E_{n_{0}}$. Then, if one of them is (D) integrable on R_{0}, then so is the other, and both integrals coincide.

The condition imposed on the definition of (D) integrability is weaker than it imposed on the definition of the $\left(D_{0}\right)$ integral and is weaker than it imposed on the definition of the strong $(L A)$ integral. Hence

Proposition 11. (1) If f is $\left(D_{0}\right)$ integrable on an interval R_{0} in $E_{n_{0}}$, then it is (D) integrable on R_{0}.
(2) If f is strongly $(L A)$ integrable on an interval R_{0} in $E_{n_{0}}$, then it is (D) integrable on R_{0}.

Since the difference in the definition of strong $(L A)$ integrability and (D) integrability is only the difference of condition given for the system of intervals $I_{i}\left(i=1,2, \ldots, i_{0}\right)$: "nonoverlapping intervals" and "mutually disjoint intervals". Hence, when $n_{0}=1$, the finitely additive interval function F indicated in the definition of (D) integrability is uniquely determined by Proposition 2, so we may call $F\left(R_{0}\right)$ the (D) integral of f on R_{0}, and denote $F\left(R_{0}\right)$ by $(D) \int_{R_{0}} f(p) d p$ etc.

By Proposition 6 and the statement above, we have
Proposition 12. When $n_{0}=1$, for the $(L A)$ in the strong sense, (D), and $\left(D_{0}\right)$ their integrabilities are equivalent with the integrability of Denjoy in the special sense, and their integrals coincide.

In what follows, R_{0} denotes an interval in $E_{n_{0}}$. When f is (D) integrable on R_{0}, let $F,\left\{M_{n}\right\}_{n=1}^{\infty},\left\{F_{n}\right\}_{n=1}^{\infty}$ and $\delta(n, \varepsilon)$ be those indicated in the definition of (D) integrability for f.

Lemma 6. Let f be (D) integrable on an interval R_{0} in $E_{n_{0}}$. Then, if, for $n \in N$ and $\varepsilon>0, I_{i}\left(i=1,2, \ldots, i_{0}\right)$ is an elementary system in R_{0} such that

$$
\left(2.1^{*}\right) I_{i} \cap \bar{M}_{n} \neq \emptyset \text { for } i=1,2, \ldots, i_{0}
$$

$\left(2.2^{*}\right) \mu_{n_{0}}\left(\cup_{i=1}^{i_{0}} I_{i}\right)<\delta(n, \varepsilon) ;$
$\left(2.3^{*}\right) \operatorname{norm}\left(I_{i}\right)<1 / n$ for $i=1,2, \ldots, i_{0}$,
then

$$
\left|\sum_{i=1}^{i_{0}} F\left(I_{i}\right)-\sum_{i=1}^{i_{0}}(L) \int_{I_{i} \cap F_{n}} f\right|<\lambda_{n_{0}} \varepsilon
$$

where $\lambda_{n_{0}}$ is a positive number depending only on the dimension of the space $E_{n_{0}}$. In particular $\lambda_{2}=4$.

The lemma follows easily from the definition of (D) integrability.

Let f be (D) integrable on R_{0} in $E_{n_{0}}$. For $n \in N$ and $\varepsilon>0$, let $\eta(n, \varepsilon)$ be a positive number such that

$$
\text { if } \mu_{n_{0}}(E)<\eta(n, \varepsilon), \text { then }(L) \int_{E \cap F_{n}}|f|<\varepsilon .
$$

Without loss of generality, we can suppose that

$$
\eta(n, \varepsilon) \geq \eta(m, \varepsilon) \text { for } n<m \text { and } \eta(n, \varepsilon) \geq \eta\left(n, \varepsilon^{\prime}\right) \text { for } \varepsilon>\varepsilon^{\prime}
$$

Throughout this paper, let $\varepsilon_{n}(n=1,2, \ldots)$ be a sequence of positive numbers such that

$$
\varepsilon_{n} \downarrow 0 \text { and } \sum_{m=n+1}^{\infty} \varepsilon_{m} \leq \varepsilon_{n} \text { for each } n \in N
$$

and let $\varepsilon_{n}^{* *}(n=1,2, \ldots)$ be the nonincreasing sequence defined by

$$
\varepsilon_{n}^{* *}=\min \left\{1 / n, \delta\left(n, \varepsilon_{n} / 2^{n+5}\right), \eta\left(n, \varepsilon_{n} / 2^{n+5}\right)\right\} \text { for each } n \in N
$$

We have $\varepsilon_{n}^{* *} \downarrow 0$
Let J be an interval in the one-dimensional Euclidean space E_{1} and $A_{n}(n=1,2, \ldots)$ a nondecreasing sequence of closed sets in E_{1} such that $\cup_{n=1}^{\infty} A_{n}=J$. Then we say that a non-empty closed set $F_{n m}$ in E_{1}, where $n<m$, has the property $\left(\mathbf{B}_{1}\right)$ for $n<m$ in J associated with $\left\{A_{n}\right\}_{n=1}^{\infty}$ and $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$ if it has the following property $\left(\mathbf{B}_{1}\right)$.
$\left(\mathbf{B}_{1}\right):(1) F_{n m} \subset J$ and $F_{n m} \subset A_{m} ;$
(2) Denote the sequence of intervals contiguous to the set consisting of the set $F_{n m}$ and the both end-points of J by $J_{j}(j=1,2, \ldots)$. Then, $J_{j}(j=1,2, \ldots)$ are classified into $m-n+1$ parts written $J_{k j}(j=1,2, \ldots)$ (possibly empty or finite), where $k=$ $n, n+1, n+2, \ldots, m$, so that

1) $\sum_{j=1}^{\infty}\left|J_{k j}\right|<\varepsilon_{n}^{* *}$;
2) $\left(J_{k j}\right)^{\circ} \cap A_{k}=\emptyset$ for every $j \in N$;
3) one at least of the end-points of the interval $J_{k j}$ belongs to A_{k} for each $j \in N$.

In this case, the point taken as one at least of the end-points of $J_{k j}$ in 3) is called the characteristic point of $J_{k j}$ and the number k is called the characteristic number of $J_{k j}$.

First, let us spply Lemma 2 in [4, p. 72; 8, p. 2] for the interval R_{0}, the sequence of closed sets $\left\{\bar{M}_{n}\right\}_{n=1}^{\infty}$ and the sequence of positive numbers $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$. Then, the following statement (I) holds.
(I) There exist two increasing sequences of positive integers

$$
n_{i} \text { and } m_{i}(i=1,2, \ldots) \text { such that } i<n_{i} \text { and } n_{i}<m_{i}<n_{i+1}
$$

and a nondecreasing sequence of non-empty closed sets

$$
F_{n_{i} m_{i}}(i=1,2, \ldots)
$$

having the following properties (1) and (2):
(1) $F_{n_{i} m_{i}} \subset R_{0}$ and $F_{n_{i} m_{i}} \subset \bar{M}_{m_{i}}$ for every $i \in N$;
(2) Put

$$
Y=\cup_{i=1}^{\infty} \operatorname{proj}_{E_{n_{0}}-1} y\left(F_{n_{i} m_{i}}\right) \text { and } Z=\operatorname{proj}_{E_{n_{0}}-1} y\left(R_{0}\right)-Y
$$

then
a) $\mu_{n_{0}-1}(Z)=0$;
b) for each $q \in Y$ and $i \in N$, if $\left(F_{n_{i} m_{i}}\right)^{q} \neq \emptyset$, the closed set $\left(F_{n_{i} m_{i}}\right)^{q}$ has the property $\left(\mathbf{B}_{1}\right)$ for $n_{i}<m_{i}$ in $\left(R_{0}\right)^{q}$ associated with $\left\{\left(\bar{M}_{n}\right)^{q}\right\}_{n=1}^{\infty}$ and $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$; and
c) $\cup_{i=1}^{\infty}\left(F_{n_{i} m_{i}}\right)^{q}=\left(R_{0}\right)^{q}$ holds for each $q \in Y$.

Next, to each point

$$
q \in Z\left(=\operatorname{proj}_{E_{n_{0}}-1}\left(R_{0}\right)-\cup_{i=1}^{\infty} \operatorname{proj}_{E_{n_{0}}-1}\left(F_{n_{i} m_{i}}\right)\right)
$$

let us apply Lemma 1 in [4, p. 72; 8, p. 2] for the one-dimensional interval $\left(R_{0}\right)^{q}$, the sequence of one-dimensional closed set $\left\{\left(\bar{M}_{n}\right)^{q}\right\}_{n=1}^{\infty}$ and the sequence of positive numbers $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$. Then:
(II) There exist two increasing sequences of positive integers

$$
n_{i}(q) \text { and } m_{i}(q)(i=1,2, \ldots) \text { such that } i<n_{i}(q) \text { and } n_{i}(q)<m_{i}(q)<n_{i+1}(q)
$$

and a nondecreasing sequence of non-empty closed sets

$$
F_{n_{i}(q) m_{i}(q)} \quad(i=1,2, \ldots)
$$

such that:
a) each $F_{n_{i}(q) m_{i}(q)}$ has the property $\left(\mathbf{B}_{1}\right)$ for $n_{i}(q)<m_{i}(q)$ in $\left(R_{0}\right)^{q}$ associated with $\left\{\left(\bar{M}_{n}\right)^{q}\right\}_{n=1}^{\infty}$ and $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$, in particular, $F_{n_{i}(q) m_{i}(q)} \subset\left(R_{0}\right)^{q}$ and $F_{n_{i}(q) m_{i}(q)} \subset\left(\bar{M}_{m_{i}(q)}\right)^{q}$; and
b) $\cup_{i=1}^{\infty} F_{n_{i}(q) m_{i}(q)}=\left(R_{0}\right)^{q}$.

An elementary system $S: I_{i}\left(i=1,2, \ldots, i_{0}\right)$ in E_{n} is called a $(*)$-elemetary system if

$$
\operatorname{proj}_{E_{n-1}}\left(I_{1}\right)=\operatorname{proj}_{E_{n-1}}\left(I_{2}\right)=\ldots=\operatorname{proj}_{E_{n-1}}\left(I_{i_{0}}\right) .
$$

An elementary system S is called a $(* *)$-elementary system if it is composed of finite $(*)$ elemetary systems $S_{l}\left(l=1,2, \ldots, l_{0}\right)$ such that

$$
\operatorname{proj}_{E_{n-1}}\left(S_{l}\right) \cap \operatorname{proj}_{E_{n-1}}\left(S_{l^{\prime}}\right)=\emptyset \text { for } l, l^{\prime} \in\left\{1,2, \ldots, l_{0}\right\} \text { with } l \neq l^{\prime}
$$

Lemma 7. If f is (D) integrable on an interval R_{0} in $E_{n_{0}}\left(n_{0} \geq 2\right)$, then there exists a nondecreasing sequence of measurable sets $B_{h}(h=1,2, \ldots)$ (the first finite sets may be empty) such that:
(1) $B_{h} \uparrow R_{0}$ as $h \rightarrow \infty$;
(2) for every $h \in N$, the set $\left(B_{h}\right)^{q}$ is a closed set for every $q \in \operatorname{proj}_{E_{n-1}}\left(B_{h}\right)$,
in such a way that the following statement holds:
Corresponding to h, ε with $h \in N$ and $\varepsilon>0$, there exists a $\rho^{*}(h, \varepsilon)>0$ such that:
Given $\varepsilon>0$, suppose that, for some $h \in N$, a $(* *)$-elementary system S consisting of $(*)$-elementary systems $S_{l}\left(l=1,2, \ldots, l_{0}\right)$, where for each l
S_{l} is a $(*)$-elementary system consisting of intervals written

$$
I_{l j}\left(j=1,2, \ldots, j_{0}(l)\right)
$$

satisfies the following conditions:
(a) For each $l \in\left\{1,2, \ldots, l_{0}\right\}$, there exists a $q_{l} \in \operatorname{proj}_{E_{n_{0}-1}} y\left(S_{l}\right) \cap \operatorname{proj}_{E_{n_{0}-1}} y\left(B_{h}\right)$ such that $\left(I_{l j}\right)^{q_{l}} \cap\left(B_{h}\right)^{q_{l}} \neq \emptyset$ for every $j \in\left\{1,2, \ldots, j_{0}(l)\right\} ;$
(b) $\left|\operatorname{proj}_{E_{n_{0}-1}} y(S)\right|<\rho^{*}(h, \varepsilon)$;
(c) $\operatorname{norm}\left(\operatorname{proj}_{E_{n_{0}-1}} y\left(S_{l}\right)\right)<1 / h$ for every $l \in\left\{1,2, \ldots, l_{0}\right\}$.

Then the following inequality holds:

$$
|F(S)|<\varepsilon
$$

Proof. For simplicity, we prove only for the case when $n_{0}=2$ and $R_{0}=[0,1 ; 0,1]$. Denote q_{l} taken in the assumption (a) of the lemma by y_{l}.

Let

$$
n_{i}, m_{i} \text { and } F_{n_{i} m_{i}}(i=1,2, \ldots)
$$

be the two sequeces of positive integers and the sequence of non-empty closed sets indicated in (I) above.

Corresponding to each $h \in N$, if there exists an m_{i} with $m_{i} \leq h$, then we put

$$
i(h)=\max \left\{i: m_{i} \leq h, \quad i \in N\right\}
$$

In this case, the following holds:

$$
F_{n_{k} m_{k}}=F_{n_{i\left(m_{k}\right)} m_{i\left(m_{k}\right)}} \text { for every } k \in N .
$$

Put, as in $\left(8^{\circ}\right)$

$$
Z=\operatorname{proj}_{y}\left(R_{0}\right)-\cup_{i=1}^{\infty} \operatorname{proj}_{y}\left(F_{n_{i} m_{i}}\right)
$$

Then

$$
\mu_{1}(Z)=0 .
$$

Corresponding to each $y \in Z$, let $n_{i}(y), m_{i}(y)$ and $F_{n_{i}(y) m_{i}(y)}(i=1,2, \ldots)$ be the two sequences of positive integers and the sequence of closed sets indicated in (II) above.

Corresponding to $h \in N$, if there exists an $m_{i}(y)$ with $m_{i}(y) \leq h$, then we put

$$
i(y, h)=\max \left\{i: m_{i}(y) \leq h, i \in N\right\}
$$

Given an $h \in N$, put

$$
\begin{align*}
& B_{h}=F_{n_{i(h)} m_{i(h)}} \cup\left(\cup_{y \in Z}^{*} F_{n_{i(y, h)}(y) m_{i(y, h)}(y)}\right) \text { when } i(h) \text { is definable; } \\
& B_{h}=\cup_{y \in Z}^{*} F_{n_{i(y, h)}(y) m_{i(y, h)}(y)} \text { for the other case, }
\end{align*}
$$

where the union $\cup_{y \in Z}^{*}$ is over all $y \in Z$ for which $i(y, h)$ is definable. Then, $B_{h}(h=1,2, \ldots)$ is a nondecreasing sequence of measurable sets (the first finite sets may be empty) satisfying (1) and (2) of the lemma.

Now, for $h \in N$ and $\varepsilon>0$, put

$$
\rho^{*}(h, \varepsilon)=\min \left\{\delta\left(h, \varepsilon / 2^{7} h\right), \eta\left(h, \varepsilon / 2^{4} h\right)\right\} .
$$

Then

$$
\rho^{*}(h, \varepsilon) \geq \rho^{*}(k, \varepsilon) \text { for } k>h \text { and } \rho^{*}(h, \varepsilon) \geq \rho^{*}\left(h, \varepsilon^{\prime}\right) \text { for } \varepsilon>\varepsilon^{\prime}
$$

Given $\varepsilon>0$, let, for some $h \in N, S$ be a $(* *)$-elementary system $S_{l}\left(l=1,2, \ldots, l_{0}\right)$ satisfying the conditions (a), (b) and (c) of the lemma for $B_{h}, \rho^{*}(h, \varepsilon)$ defined above and h.

First of all, for the $(* *)$-elementary system S we suppose the following condition:
(d) Let $l \in\left\{1,2, \ldots, l_{0}\right\}$ and y_{l} the point of $\operatorname{proj}_{y}\left(S_{l}\right) \cap \operatorname{proj}_{y}\left(B_{h}\right)$ taken in the condition (a). For each pair l, j with $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $j \in\left\{1,2, \ldots, j_{0}(l)-1\right\}$, if we denote by a_{j}^{l} the right hand end-point of one-dimensional interval $\left(I_{l j}\right)^{y_{l}}$ and by b_{j}^{l} the left hand end-point of one-dimensional interval $\left(I_{l, j+1}\right)^{y_{l}}$, then $\left(\left[a_{j}^{l}, b_{j}^{l}\right] \times\left\{y_{l}\right\}\right) \cap B_{h} \neq \emptyset$ for $j=1,2, \ldots j_{0}(l)-1$.

The proof requires four steps.
(1) Consider the family of all intervals $I_{l j}$, possibly empty, for which

$$
\left|\operatorname{proj}_{x}\left(I_{l j}\right)\right|<1 / h, \text { where } l \in\left\{1,2, \ldots, l_{0}\right\} \text { and } j \in\left\{1,2, \ldots, j_{0}(l)\right\}
$$

and denote the family by

$$
R_{m}^{1}\left(m=1,2, \ldots, m_{1}\right)
$$

Then, by the condition (a), we have $R_{m}^{1} \cap B_{h} \neq \emptyset$ for $m=1,2, \ldots, m_{1}$. Further since $\bar{M}_{m_{i(h)}} \supset F_{n_{i(h)} m_{i(h)}}, \bar{M}_{m_{i(y, h)}(y)} \supset F_{n_{i(y, h)}(y) m_{i(y, h)}(y)}$ by (1) of (I) and a) of (II), $m_{i(h)} \leq h$ and $m_{i(y, h)}(y) \leq h$, we have $\bar{M}_{h} \supset B_{h}$. Therefore

$$
R_{m}^{1} \cap \bar{M}_{h} \neq \emptyset \text { for } m=1,2, \ldots, m_{1}
$$

(2) Consider the family of all intervals $I_{l j}$, possibly empty, for which

$$
\left|\operatorname{proj}_{x}\left(I_{l j}\right)\right| \geq 1 / h, \text { where } l \in\left\{1,2, \ldots, l_{0}\right\} \text { and } j \in\left\{1,2, \ldots, j_{0}(l)\right\}
$$

For each interval $I_{l j}$ of the family and y_{l} taken in (a), denote the sequence of one-dimensional intervals contiguous to the one-dimensional closed set consisting of the non-empty closed set $\left(I_{l j}\right)^{y_{l}} \cap\left(B_{h}\right)^{y_{l}}$ and the both end-points of the interval $\left(I_{l j}\right)^{y_{l}}$ by

$$
J_{l j r} \quad(r=1,2, \ldots)
$$

where we can suppose that $\left|J_{l j r}\right| \geq\left|J_{l j r+1}\right|$ for $r=1,2, \ldots$. Take an index r such that

$$
\left|J_{l j r}\right| \geq 1 / 2 h \text { and }\left|J_{l j r+1}\right|<1 / 2 h, \text { and written } r_{0}(l, j)
$$

Next consider the sequence of one-dimensional intervals contiguous to the one-dimensional closed set consisting of the set $\cup_{r=1}^{r_{0}(l, j)} J_{l j r}$ and the both end-points of the interval $\left(I_{l j}\right)$. Denote the sequence by

$$
K_{l j t}\left(t=1,2, \ldots, t_{0}(l, j)\right)
$$

Then, for $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $j \in\left\{1,2, \ldots, j_{0}(l)\right\}$, we have

$$
\begin{align*}
& \cup_{r=1}^{r_{0}(l, j)} J_{l j r} \cup \cup_{t=1}^{t_{0}(l, j)} K_{l j t}=\left(I_{l j}\right)^{y_{l}} \\
& \cup_{t=1}^{t_{0}(l, j)} K_{l j t}=\cup_{r=r_{0}(l, j)+1}^{\infty} J_{l j r} \cup\left(\left(I_{l j}\right)^{y_{l}} \cap\left(B_{h}\right)^{y_{l}}\right) ; \\
& \left\{J_{l j r}\left(r=1,2, \ldots, r_{0}(l, j)\right) ; K_{l j t}\left(t=1,2, \ldots, t_{0}(l, j)\right)\right\} \text { are non-overlapping. }
\end{align*}
$$

For $K_{l j t}\left(l=1,2, \ldots, l_{0}, j=1,2, \ldots, j_{0}(l), t=1,2, \ldots, t_{0}(l, j)\right)$, first consider
(2.1): the family (possibly empty)
$\left\{K_{l j t}:\left|K_{l j t}\right|<1 / h\right.$, where l, j is any pair belonging to the set of all indices (l, j) for which $I_{l j}$ is chosen to be $\left(13^{\circ}\right)$, and $\left.t \in\left\{1,2, \ldots, t_{0}(l, j)\right\}\right\}$,
and associate, with each $K_{l j t}$ of the family, the two-dimensional interval

$$
\operatorname{proj}_{x}\left(K_{l j t}\right) \times \operatorname{proj}_{y}\left(S_{l}\right)
$$

We denote the family of such two-dimensional intervals by

$$
R_{m}^{2}\left(m=1,2, \ldots, m_{2}\right)
$$

Since then $K_{l j t} \cap B_{h} \neq \emptyset$ and $\bar{M}_{h} \supset B_{h}$, we have

$$
R_{m}^{2} \cap \bar{M}_{h} \neq \emptyset \text { for } m=1,2, \ldots, m_{2}
$$

Next, consider
$(2,2):$ the family (possibly empty)
$\left\{K_{l j t}:\left|K_{l j t}\right| \geq 1 / h\right.$, where l, j is any pair belonging to the set of all indices (l, j)
for which $I_{l j}$ is chosen to be $\left(13^{\circ}\right)$, and $\left.t \in\left\{1,2, \ldots, t_{0}(l, j)\right\}\right\}$.

Corresponding to each $K_{l j t}$ of the family, take a finite sequence of non-overlapping onedimensional intervals $K_{l j t s}^{\prime}\left(s=1,2, \ldots, s_{0}(l, j, t)\right)$ whose union is $K_{l j t}$ and such that $1 / 2 h \leq\left|K_{l j t s}^{\prime}\right|<1 / h$. With each of such intervals $K_{l j t s}^{\prime}$ we associate a two-dimensional interval;

$$
\operatorname{proj}_{x}\left(K_{l j t s}^{\prime}\right) \times \operatorname{proj}_{y}\left(S_{l}\right)
$$

and denote the family of all such two-dimensional intervals by

$$
R_{m}^{3}\left(m=1,2, \ldots, m_{3}\right)
$$

Then, we have

$$
R_{m}^{3} \cap \bar{M}_{h} \neq \emptyset \text { for } m=1,2, \ldots, m_{3}
$$

Because, $K_{l j t s}^{\prime} \cap B_{h} \neq \emptyset$ holds for every $K_{l j t s}^{\prime}$. Indeed, suppose that $K_{l j t s}^{\prime} \cap\left(B_{h}\right)^{y_{l}}=\emptyset$. for some $K_{l j t s}^{\prime}$. Since then $K_{l j t s}^{\prime} \subset \cup_{r=r_{0}(l, j)+1}^{\infty} J_{l j r}$ by $\left(14^{\circ}\right)$ and $J_{l j r}(r=1,2, \ldots)$ are the intervals contiguous to the closed set consisting of the non-empty closed set $\left(B_{h}\right)^{y_{l}} \cap\left(I_{l j}\right)^{y_{l}}$ and the both end-points of $\left(I_{l j}\right)^{y_{l}}$, there exists an $r^{*} \geq r_{0}(l, j)+1$ for which $K_{l j t s}^{\prime} \subset J_{l j r^{*}}$. Hence, $\left|K_{l j t s}^{\prime}\right| \leq\left|J_{l j r^{*}}\right|<1 / 2 h$, which contradicts $\left|K_{l j t s}^{\prime}\right| \geq 1 / 2 h$. Thus, $K_{l j t s}^{\prime} \cap \bar{M}_{h} \neq \emptyset$ for every $K_{l j t s}^{\prime}$ by $\bar{M}_{h} \supset B_{h}$.

For simplicity, we put

$$
\begin{aligned}
& \left\{R_{m}\left(m=1,2, \ldots, m_{0}\right)\right\} \\
& =\left\{R_{m}^{1}\left(m=1,2, \ldots, m_{1}\right) ; R_{m}^{2}\left(m=1,2, \ldots, m_{2}\right) ; R_{m}^{3}\left(m=1,2, \ldots, m_{3}\right)\right\}
\end{aligned}
$$

As easily seen, $R_{m}\left(m=1,2, \ldots, m_{0}\right)$ are classified into two parts so that each part is an elementary system. In addition, we have $R_{m} \cap \bar{M}_{h} \neq \emptyset$ for $m=1,2, \ldots, m_{0} ; \sum_{m=1}^{m_{0}}\left|R_{m}\right|<$ $\delta\left(h, \varepsilon / 2^{7} h\right)$, because $\left|\operatorname{proj}_{y}(S)\right|<\rho^{*}(h, \varepsilon) \leq \delta\left(h, \varepsilon / 2^{7} h\right)$ by (b) and $\left(12^{\circ}\right)$ and $\left|\operatorname{proj}_{x}\left(R_{0}\right)\right|=$ 1 ; and $\operatorname{norm}\left(R_{m}\right)<1 / h$ for $m=1,2, \ldots, m_{0}$ by (c). Hence by Lemma 1, we have

$$
\left|\sum_{m=1}^{m_{0}} F\left(R_{m}\right)-\sum_{m=1}^{m_{0}}(L) \int_{R_{m} \cap F_{h}} f\right|<4\left(\varepsilon / 2^{7} h\right) \times 2=\varepsilon / 16 h
$$

Further, since $\sum_{m=1}^{m_{0}}\left|R_{m}\right|<\rho^{*}(h, \varepsilon) \leq \eta\left(h, \varepsilon / 2^{4} h\right),\left|\sum_{m=1}^{m_{0}}(L) \int_{R_{m} \cap F_{h}} f\right|<\varepsilon / 16 h$. Therefore

$$
\left|\sum_{m=1}^{m_{0}} F\left(R_{m}\right)\right|<\varepsilon / 16 h+\varepsilon / 16 h=\varepsilon / 8 h
$$

Next, consider
(2.3) the family of one-dimensional intervals $J_{l j r}\left(l=1,2, \ldots, l_{0}, j=1,2, \ldots j_{0}(l), r=\right.$ $\left.1,2, \ldots, r_{0}(l, j)\right)$. Then we have $\left|J_{l j r}\right| \geq 1 / 2 h$ for each such $J_{l j r}$. Corresponding to each such interval $J_{l j r}$, there exists uniquely a one-dimensional interval $H_{l j r}$ having thte following properties:
($\left.\mathrm{a}^{\circ}\right) H_{l j r}$ is contained in one of the intervals contiguous to the closed set consisting of $\left(B_{h}\right)^{y_{l}}$ and the both end-points of $\left(R_{0}\right)^{y_{l}}$, say $H_{l j r}^{\prime}$;
$\left(\mathrm{b}^{\circ}\right) H_{l j r} \supset J_{l j r} ;$
(c°) One end-point of the interval $H_{l j r}$ is an end-point of $J_{l j r}$;
$\left(\mathrm{d}^{\circ}\right)$ The other end-point of the interval $H_{l j r}$ is the characteristic point of the interval $H_{l j r}^{\prime}$ say $p_{l j r}$.
We denote the characteristic number of the characteristic point $p_{l j r}$ by $h_{l j r}$. Since then $n_{i(h)} \leq h_{l j r} \leq m_{i(h)}$ or $n_{i(y, h)}(y) \leq h_{l j r} \leq m_{i(y, h)}(y)$ for some $y \in Z$ by the definition of characteristic number, we have $1 \leq h_{l j r} \leq h$ by $\left(9^{\circ}\right)$ and $\left(10^{\circ}\right)$. In this case, by the assumption (d) and the definition of (*)-elementary system, $H_{l j r}\left(j=1,2, \ldots, j_{0}(l), r=\right.$ $\left.1,2, \ldots, r_{0}(l, j)\right)$ are non-overlapping for each $l \in\left\{1,2, \ldots, l_{0}\right\}$.

Next, for each triple l, j, r with $l \in\left\{1,2, \ldots, l_{0}\right\}, j \in\left\{1,2, \ldots, j_{0}(l)\right\}$, and $r \in\{1,2, \ldots$, $\left.r_{0}(l, j)\right\}$, put

$$
\begin{aligned}
& Q_{l j r}=\operatorname{proj}_{x}\left(J_{l j r}\right) \times \operatorname{proj}_{y}\left(S_{l}\right) \\
& Q_{l j r}^{*}=\operatorname{proj}_{x}\left(H_{l j r}\right) \times \operatorname{proj}_{y}\left(S_{l}\right)
\end{aligned}
$$

First, corresponding to each k with $1 \leq k \leq h$, consider the family of two-dimensional intervals $Q_{l j r}^{*}$ for which $h_{l j r}=k$, where $l=1,2, \ldots, l_{0}, j=1,2, \ldots, j_{0}(l)$ and $r=$ $1,2, \ldots, r_{0}(l, j)$, and denote the family by $R_{k m}^{*}\left(m=1,2, \ldots, m_{0}(k)\right)$. When $Q_{l j r}^{*}$ is denoted by $R_{k m}^{*}$, we denote $Q_{l j r}$ by $R_{k m}$. Then for each k with $1 \leq k \leq h$:
$R_{k m}^{*}\left(m=1,2, \ldots, m_{0}(k)\right)$ are non-overlapping;
$R_{k m}^{*} \cap \bar{M}_{k} \neq \emptyset$ for $m=1,2, \ldots, m_{0}(k)$;
$\mu_{2}\left(\cup_{m=1}^{m_{0}(k)} R_{k m}^{*}\right) \leq \mu_{2}(S)<\rho^{*}(h, \varepsilon) \leq \delta\left(h, \varepsilon / 2^{7} h\right) \leq \delta\left(k, \varepsilon / 2^{7} h\right)$ by $(\mathrm{b}),\left(12^{\circ}\right)$ and
(2°); and
$\operatorname{norm}\left(R_{k m}^{*}\right)<\max \left\{\varepsilon_{k}^{* *}, 1 / h\right\} \leq \max \{1 / k, 1 / h\}=1 / k$ for $m=1,2, \ldots, m_{0}(k)$ by
virtue of 1) of (2) of the property $\left(\mathbf{B}_{1}\right),(c)$ and $\left(6^{\circ}\right)$.
In addition, $R_{k m}^{*}\left(m=1,2, \ldots, m_{0}(k)\right)$ are classified into two elementary systems. Hence, by Lemma 5 we have

$$
\left|\sum_{m=1}^{m_{0}(k)} F\left(R_{k m}^{*}\right)-\sum_{m=1}^{m_{0}(k)}(L) \int_{R_{k m}^{*} \cap F_{k}} f\right|<4\left(\varepsilon / 2^{7} h\right) \times 2=\varepsilon / 16 h .
$$

On the other hand, since $(1 \leq) k \leq h$, by $(\mathrm{b}),\left(12^{\circ}\right)$ and $\left(4^{\circ}\right)$

$$
\sum_{m=1}^{m_{0}(k)}\left|R_{k m}^{*}\right| \leq \mu_{2}(S)<\rho^{*}(h, \varepsilon) \leq \eta\left(h, \varepsilon / 2^{4} h\right) \leq \eta\left(k, \varepsilon / 2^{4} h\right)
$$

Hence, by (3°)

$$
\left|\sum_{m=1}^{m_{0}(k)}(L) \int_{R_{k m}^{*} \cap F_{k}} f\right|<\varepsilon / 16 h
$$

Therefore

$$
\left|\sum_{m=1}^{m_{0}(k)} F\left(R_{k m}^{*}\right)\right|<\varepsilon / 16 h+\varepsilon / 16 h=\varepsilon / 8 h
$$

Thus, we obtain

$$
\left|\sum_{k=1}^{h} \sum_{m=1}^{m_{0}(k)} F\left(R_{k m}^{*}\right)\right|<\varepsilon / 8
$$

Similarly, we obtain

$$
\left|\sum_{k=1}^{h} \sum_{m=1}^{m_{0}(k)} F\left(R_{k m}^{*}-R_{k m}\right)\right|<\varepsilon / 8
$$

Therefore

$$
\left|\sum_{k=1}^{h} \sum_{m=1}^{m_{0}(k)} F\left(R_{k m}\right)\right|<\varepsilon / 4
$$

By $\left(15^{\circ}\right)$ and $\left(16^{\circ}\right)$

$$
|F(S)| \leq\left|\sum_{m=1}^{m_{0}} F\left(R_{m}\right)\right|+\left|\sum_{k=1}^{h} \sum_{m=1}^{m_{0}(k)} F\left(R_{k m}\right)\right|<\varepsilon / 8 h+\varepsilon / 4<\varepsilon / 2
$$

because $S=\cup_{m=1}^{m_{0}} R_{m} \cup \cup_{k=1}^{h} \cup_{m=1}^{m_{0}(k)} R_{k m}$.
In general, the intervals constructing S classified into two parts so that each part satisfies the condition (d). Hence, $|F(S)|<\varepsilon$ holds.

As an application of Lemma 7, we obtain:
Proposition 13. Let f be (D) integrable on an interval R_{0} in the two-dimensional Euclidean space, then if $I_{i}(i=1,2, \ldots)$ is a sequence of intervals in R_{0} such that:

$$
I_{1} \supset I_{2} \supset \ldots \text { and }\left|\operatorname{proj}_{y}\left(I_{i}\right)\right| \rightarrow 0
$$

we have $\lim _{i \rightarrow \infty} F\left(I_{i}\right)=0$.
Proof. There exists a point $q \in \cap_{i=1}^{\infty} I_{i}$. Since $B_{h} \uparrow R_{0}$ by (1) of Lemma 7, there exists an h_{0} such that $q \in B_{h_{0}}$. Hence, $I_{i} \cap B_{h_{0}} \neq \emptyset$ for every $i \in N$. For $\varepsilon>0$, take an $i_{0}=i_{0}(\varepsilon)$ so that $\left|\operatorname{proj}_{y}\left(I_{i}\right)\right|<\min \left\{\rho^{*}\left(h_{0}, \varepsilon\right), 1 / h_{0}\right\}$ for every $i \geq i_{0}\left(\rho^{*}\left(h_{0}, \varepsilon\right)\right.$ is the number indicated
 $\left|F\left(I_{i}\right)\right|<\varepsilon$ holds for every $i \geq i_{0}$.

For an interval $I=\left[a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right]$ in E_{n}, we denote by $\boldsymbol{R}_{m}(I)$ the family of all intervals which are written; $\left[a_{1}+\left(k_{1}\left(b_{1}-a_{1}\right)\right) / m, a_{1}+\left(\left(k_{1}+1\right)\left(b_{1}-a_{1}\right)\right) / m ; a_{2}+\left(k_{2}\left(b_{2}-\right.\right.\right.$ $\left.\left.\left.a_{2}\right)\right) / m, a_{2}+\left(\left(k_{2}+1\right)\left(b_{2}-a_{2}\right)\right) / m ; \ldots ; a_{n}+\left(k_{n}\left(b_{n}-a_{n}\right)\right) / m, a_{n}+\left(\left(k_{n}+1\right)\left(b_{n}-a_{n}\right)\right) / m\right]$, where k_{i} is an integer with $0 \leq k_{i} \leq m-1$ for $i=1,2, \ldots, n$.

Lemma 8. Let f be (D) integrable on an interval R_{0} in $E_{n_{0}}\left(n_{0} \geq 2\right)$. Given a sequence of positive numbers $\varepsilon_{n}(n=1,2, \ldots)$ such that $\varepsilon_{n} \downarrow 0$ and $\sum_{m=n+1}^{\infty} \varepsilon_{m}<\varepsilon_{n}$ for every $n \in N$, there exist:
nondecreasing sequences of closed sets $A_{i}(i=1,2, \ldots)$ and $D_{i}(i=1,2, \ldots)$ such that
(1) $\mu_{n_{0}}\left(R_{0}-\cup_{i=1}^{\infty} A_{i}\right)=0$ and $\mu_{n_{0}}\left(R_{0}-\cup_{i=1}^{\infty} D_{i}\right)=0$;
(2) $A_{i} \supset D_{i}$ for every $i \in N$;
(3) f is Lebesgue integrable on D_{i} for every $i \in N$,
and a nonincreasing sequence of positive numbers $\tau_{i}^{*}(i=1,2, \ldots)$ with $\tau_{i}^{*} \downarrow 0$, in such a way that the following statement (4) holds:
(4) For each $i \in N$ the following holds: If S is a (**)-elementary system consisting of $(*)$-elementary systems $S_{l}\left(l=1,2, \ldots, l_{0}\right)$, where for each l
S_{l} is a $(*)$-elementary system consisting of intervals written

$$
I_{l j}\left(j=1,2, \ldots, j_{0}(l)\right)
$$

such that
(4.0) $\operatorname{norm}\left(\operatorname{proj}_{E_{n_{0}-1}}\left(S_{l}\right)\right)<\tau_{i}^{*}$ for $l=1,2, \ldots, l_{0}$,
and for which there exists a non-empty measurable set Y in $\operatorname{proj}_{E_{n_{0}-1}}\left(R_{0}\right)$ such that:
(4.1) $Y \subset \operatorname{proj}_{E_{n_{0}-1}}\left(S^{\circ}\right) \cap \operatorname{proj}_{E_{n_{0}-1}}\left(A_{i}\right) ;$
(4.2) $\mu_{n_{0}-1}\left(\operatorname{proj}_{E_{n_{0}-1}}(S)-Y\right)<\tau_{i}^{*}$;
(4.3) $Y \cap \operatorname{proj}_{E_{n_{0}-1}}\left(\left(S_{l}\right)^{\circ}\right) \neq \emptyset$ for every $l \in\left\{1,2, \ldots, l_{0}\right\}$;
(4.4) for each $l \in\left\{1,2, \ldots, l_{0}\right\}$ if $q \in Y \cap \operatorname{proj}_{E_{n_{0}-1}}\left(\left(S_{l}\right)^{\circ}\right)$, then

$$
\left(I_{l j}\right)^{q} \cap\left(A_{i}\right)^{q} \neq \emptyset \text { for every } j \in\left\{1,2, \ldots, j_{0}(l)\right\}
$$

then the following inequality holds:

$$
\left|F(S)-(L) \int_{S \cap D_{i}} f\right|<\varepsilon_{i} .
$$

We emphasize that, in the two-dimensional case, we can remove the assumption (4.0) in the statement (4) of Lemma 8 above. In detail:

Lemma 9. When $n_{0}=2$, for the $\left\{A_{i}\right\}_{i=1}^{\infty},\left\{D_{i}\right\}_{i=1}^{\infty}$ and $\left\{\tau_{i}^{*}\right\}_{i=1}^{\infty}$ indicated in Lemma 8 the following statement (4^{*}) holds:
$\left(4^{*}\right)$ For every $i \in N$, the following holds: Let S be a $(* *)$-elementary system with the form indicated in (4) of Lemma 8 (without the assumption of (4.0)). If, for such an S, there exists a non-empty measurable set Y in $\operatorname{proj}_{E_{n_{0}-1}}\left(R_{0}\right)$ satisfying the conditions (4.1), (4.2), (4.3) and (4.4) in Lemma 8, then $\left|F(S)-(L) \int_{S \cap D_{i}} f\right|<\varepsilon_{i}$ holds.

Proof of Lemma 8. For simplicity, we prove only for the case when $n_{0}=2$ and $R_{0}=$ $[0,1 ; 0,1]$. For the $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ given in the lemma, we define $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$ as in $\left(6^{\circ}\right)$. Let n_{i}, m_{i} and $F_{n_{i} m_{i}}(i=1,2, \ldots)$ be the sequences of integers and the sequence of closed sets obtained as in (I), associating with $R_{0},\left\{\bar{M}_{n}\right\}_{n=1}^{\infty}$ and $\left\{\varepsilon_{n}^{* *}\right\}_{n=1}^{\infty}$. Put

$$
\tau_{i}=(1 / 2) \min \left\{1 / m_{i}, \rho^{*}\left(m_{i}, \varepsilon_{i} / 2^{4}\right)\right\} \text { for each } i \in N
$$

where $\rho^{*}(h, \varepsilon)$ is the number defined in $\left(12^{\circ}\right)$. Then, $\tau_{i}(i=1,2, \ldots)$ is a nonincreasing sequence with $\tau_{i} \downarrow 0$.

For each $i \in N$, take an $h(i) \in N$ so that

$$
h(i)>i, h(j)>h(i) \text { for } j>i \text { and } \mu_{2}\left(F_{n_{i} m_{i}}-F_{m_{h(i)}}\right)<\tau_{i} .
$$

Put

$$
A_{i}=F_{n_{i} m_{i}} \text { and } D_{i}=F_{n_{i} m_{i}} \cap F_{m_{h(i)}} \text { for each } i \in N
$$

Then

$$
A_{i} \supset D_{i} \text { and } \mu_{2}\left(A_{i}-D_{i}\right)<\tau_{i} \text { for each } i \in N
$$

Put

$$
\tau_{i}^{*}=(1 / 2) \min \left\{\tau_{i}, \eta\left(m_{h(i)}, \varepsilon_{h(i)} / 2^{5}\right)\right\} \text { for each } i \in N
$$

Then, $\left\{A_{i}\right\}_{i=1}^{\infty}$ and $\left\{D_{i}\right\}_{i=1}^{\infty}$ are nondecreasing sequences of closed sets satisfying (1), (2) and (3) of the lemma, and $\left\{\tau_{i}^{*}\right\}_{i=1}^{\infty}$ is a nonincreasing sequence with $\tau_{i}^{*} \downarrow 0$ by (4°). Next, we shall prove that the statement (4) holds for them. The proof requires three steps.

Take an $i \in N$ and fix. Under the assumption of (4) of the lemma:
(i) The case when $\mu_{1}\left(Y \cap \operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)\right)>0$ for $l=1,2, \ldots, l_{0}$: There exists an $m_{0}(i)$ with

$$
m_{0}(i)>m_{i}
$$

such that: for each pair l, j with $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $j \in\left\{1,2, \ldots, j_{0}(l)\right\}$, there exists a non-empty family of cells belonging to $\boldsymbol{R}_{m_{0}(i)}\left(I_{l j}\right)$, denoted by

$$
R_{l j s}\left(s=1,2, \ldots, s_{0}(l, j)\right)
$$

such that:

1) $R_{l j s} \cap A_{i} \neq \emptyset$ for $s=1,2, \ldots, s_{0}(l, j)$;
2) $R \cap A_{i}=\emptyset$ for the other cells R belonging to $\boldsymbol{R}_{m_{0}(i)}\left(I_{l j}\right)$;
3) $\mu_{2}\left(\cup_{s=1}^{s_{0}(l, j)} R_{l j s}-A_{i}\right)<\tau_{h(i)} / \sum_{l=1}^{l_{0}} j_{0}(l)$;
and, further, when we denote the family of $R_{l j s}$ for which

$$
R_{l j s} \cap D_{i} \neq \emptyset, \text { where } s \in\left\{1,2, \ldots, s_{0}(l, j)\right\}
$$

by $R_{l j s}\left(s=1,2, \ldots, s_{1}(l, j)\right)$ (possibly empty), where $s_{1}(l, j) \leq s_{0}(l, j)$ (without loss of generality, such expression is possible), we have
4) $\mu_{2}\left(\cup_{s=1}^{s_{1}(l, j)} R_{l j s}-D_{i}\right)<\tau_{h(i)} / \sum_{l=1}^{l_{0}} j_{0}(l)$.

Denote, for each pair l, j, the set $\cup\left(\operatorname{proj}_{y}(R)-\operatorname{proj}_{y}\left((R)^{\circ}\right)\right)$, where the union \cup is over all cells R belonging to $\boldsymbol{R}_{m_{0}(i)}\left(I_{l j}\right)$, by $E_{l j}$. Then, $E_{l j}=E_{l j^{\prime}}$ for $j, j^{\prime} \in\left\{1,2, \ldots, j_{0}(l)\right\}$. Denote the common set by E_{l}.

Now put $Y_{l}=\left(Y-E_{l}\right) \cap \operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)$ for $l=1,2, \ldots, l_{0}$. Then, we have

$$
\begin{gathered}
Y_{l} \cap Y_{l^{\prime}}=\emptyset \text { for } l, l^{\prime} \in\left\{1,2, \ldots, l_{0}\right\} \text { with } l \neq l^{\prime} ; \\
\cup_{l=1}^{l_{0}} Y_{l} \subset Y \text { and } \mu_{1}\left(Y-\cup_{l=1}^{l_{0}} Y_{l}\right)=0 .
\end{gathered}
$$

In this case, as seen in [9 , proof of Lemma 3], for each $l \in\left\{1,2, \ldots, l_{0}\right\}$ there exists a finite sequence of intervals in $\operatorname{proj}_{y}\left(R_{0}\right)$ written

$$
J\left(y_{v}^{l}\right)\left(v=1,2, \ldots, v_{0}(l)\right)
$$

having the following properties:
$\left.1^{*}\right) y_{v}^{l} \in Y_{l}$ for $v=1,2, \ldots, v_{0}(l)$;
$\left.2^{*}\right) y_{v}^{l} \in\left(J\left(y_{v}^{l}\right)\right)^{\circ}$ for $v=1,2, \ldots, v_{0}(l)$;
$\left.3^{*}\right) \cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right) \subset \operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right) ;$
$\left.4^{*}\right) \mu_{1}\left(Y_{l}-\cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right)<\tau_{i}^{*} / l_{0}$;
$\left.5^{*}\right) \operatorname{norm}\left(J\left(y_{v}^{l}\right)\right)<1 / m_{i}$ for $v=1,2, \ldots, v_{0}(l)$;
$\left.6^{*}\right) J\left(y_{v}^{l}\right) \cap J\left(y_{v^{\prime}}^{l}\right)=\emptyset$ for $v \neq v^{\prime}$;
$\left.7^{*}\right)$ The both end-points of $J\left(y_{v}^{l}\right)$ belong to Y_{l}.
(Refore to [9, Remark 1, (1)] for the case $n_{0}-1 \geq 2$.)
By $\left.3^{*}\right), 4^{*}$) and (4.2), we have:
$\left.8^{*}\right) \mu_{1}\left(\operatorname{proj}_{y}(S)-\cup_{l=1}^{l_{0}} \cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right)<2 \tau_{i}^{*}$.
Because, $\mu_{1}\left(\operatorname{proj}_{y}(S)-\cup_{l=1}^{l_{0}} \cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right)=\sum_{l=1}^{l_{0}} \mu_{1}\left(\operatorname{proj}_{y}\left(S_{l}\right)-\cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right) \leq$ $\sum_{l=1}^{l_{0}} \mu_{1}\left(\operatorname{proj}_{y}\left(S_{l}\right)-Y_{l}\right)+\sum_{l=1}^{l_{0}} \mu_{1}\left(Y_{l}-\cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right)<\mu_{1}\left(\operatorname{proj}_{y}(S)-\cup_{l=1}^{l_{0}} Y_{l}\right)+$ $\tau_{i}^{*} \leq \mu_{1}\left(\operatorname{proj}_{y}(S)-Y\right)+\mu_{1}\left(Y-\cup_{l=1}^{l_{0}} Y_{l}\right)+\tau_{i}^{*}<2 \tau_{i}^{*}$.
In this case, as seen in [9, proof of Lemma 3], $J\left(y_{v}^{l}\right)\left(v=1,2, \ldots, v_{0}(l)\right)$ can be chosen to have the following properties (α) and (β) in addition to the properties $\left.\left.1^{*}\right)-7^{*}\right)$ above:
(α) For each $l \in\left\{1,2, \ldots, l_{0}\right\}$, put

$$
I_{v}^{l}=\operatorname{proj}_{x}\left(R_{0}\right) \times J\left(y_{v}^{l}\right) \text { for } v=1,2, \ldots, v_{0}(l)
$$

Then, for every interval $I_{v}^{l} \cap R_{l j s}$ belonging to the family:

$$
\begin{align*}
& \left\{I_{v}^{l} \cap R_{l j s}:\left(R_{l j s}\right)^{y_{v}^{l}} \cap\left(A_{i}\right)^{y_{v}^{l}} \neq \emptyset\right. \\
& \left.\quad \text { where } j \in\left\{1,2, \ldots, j_{0}(l)\right\} \text { and } s \in\left\{1,2, \ldots, s_{0}(l, j)\right\}\right\}
\end{align*}
$$

which is non-empty, we have

$$
\operatorname{proj}_{y}\left(I_{v}^{l} \cap R_{l j s}\right)=J\left(y_{v}^{l}\right) \text { for every } v \in\left\{1,2, \ldots, v_{0}(l)\right\}
$$

(β) For each $l \in\left\{1,2, \ldots, l_{0}\right\}$, put

$$
I_{v j}^{l}=\operatorname{proj}_{x}\left(I_{l j}\right) \times J\left(y_{v}^{l}\right) \text { for } v=1,2, \ldots, v_{0}(l) \text { and } j \in 1,2, \ldots, j_{0}(l)
$$

and, in each $I_{v j}^{l}$, consider the family of all two-dimensional intervals I contained in $I_{v j}^{l}$, such that the both sides of I parallel to y-axis, say $s s(I)$, belong to $K,(I-s s(I)) \subset I_{v j}^{l}-K$ and $\operatorname{proj}_{y}(I)=\operatorname{proj}_{y}\left(I_{v j}^{l}\right)$, where K is the closed set consisting of the set $\cup\left(R_{l j s} \cap I_{v j}^{l}\right)$, \cup is over all $R_{l j s}, s=1,2, \ldots, s_{0}(l, j)$ with $\left(R_{l j s}\right)^{y_{v}^{l}} \cap\left(A_{i}\right)^{y_{v}^{l}} \neq \emptyset$, and the both sides of $I_{v j}^{l}$ parallel to y-axis. Denote the family by

$$
L_{v j z}^{l}\left(z=1,2, \ldots, z_{0}(l, v, j)\right)
$$

For simplicity, for each pair l, v with $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $v \in\left\{1,2, \ldots, v_{0}(l)\right\}$, denote the family

$$
L_{v j z}^{l}\left(j=1,2, \ldots, j_{0}(l), z=1,2, \ldots, z_{0}(l, v, j)\right)
$$

by

$$
L_{v w}^{l}\left(w=1,2, \ldots, w_{0}(l, v)\right)
$$

Then we have

$$
L_{v w}^{l} \cap A_{i}=\emptyset \text { for } w=1,2, \ldots, w_{0}(l, v)
$$

and $L_{v w}^{l}\left(l=1,2, \ldots, l_{0}, v=1,2, \ldots, v_{0}(l), w=1,2, \ldots, w_{0}(l, v)\right)$ are mutually disjoint.
Next, for each $l \in\left\{1,2, \ldots, l_{0}\right\}$, denote the family of intervals contiguous to the closed set consisting of $\cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)$ and the both end-points of $\operatorname{proj}_{y}\left(S_{l}\right)$ by

$$
J_{u}^{* l}\left(u=1,2, \ldots, u_{0}(l)\right)
$$

(Refer to [9, Remark 1, (2)] for the case of $n_{0}-1 \geq 2$.)
Put

$$
\begin{gather*}
I_{u}^{* l}=\operatorname{proj}_{x}\left(R_{0}\right) \times J_{u}^{* l} \text { for } u=1,2, \ldots, u_{0}(l) \\
I_{u j}^{* l}=I_{u}^{* l} \cap I_{l j} \text { for } u=1,2, \ldots, u_{0}(l) \text { and } j=1,2, \ldots, j_{0}(l) .
\end{gather*}
$$

$(i, 1)$ Denote the family of intervals indicated in (α) (defined in $\left(22^{\circ}\right)$):

$$
\begin{gathered}
\left\{I_{v}^{l} \cap R_{l j s}:\left(R_{l j s}\right)^{y_{v}^{l}} \cap\left(A_{i}\right)^{y_{v}^{l}} \neq \emptyset, l \in\left\{1,2, \ldots, l_{0}\right\}, v \in\left\{1,2, \ldots, v_{0}(l)\right\},\right. \\
\left.j \in\left\{1,2, \ldots, j_{0}(l)\right\} \text { and } s \in\left\{1,2, \ldots, s_{0}(l, j)\right\}\right\}
\end{gathered}
$$

by

$$
R_{s}\left(s=1,2, \ldots, s_{0}\right)
$$

In this case without loss of generality, we can suppose that

$$
R_{s} \cap D_{i} \neq \emptyset \text { for } s \in\left\{1,2, \ldots, s_{1}\right\} \text { and } R_{s} \cap D_{i}=\emptyset \text { for } s \in\left\{s_{1}+1, \ldots, s_{0}\right\}
$$

where $0 \leq s_{1} \leq s_{0}$ (if $s_{1}=0$, then the former is empty; if $s_{1}=s_{0}$, then the latter is empty).
First, for $R_{s}\left(s=1,2, \ldots, s_{1}\right)$, we have, as seen in [9, proof of Lemm 3, (i,2)],

1) $R_{s} \cap M_{m_{h(i)}} \neq \emptyset$ for $s=1,2, \ldots, s_{1}$;
2) $\mu_{2}\left(\cup_{s=1}^{s_{1}} R_{s}-M_{m_{h(i}}\right) \leq \mu_{2}\left(\cup_{s=1}^{s_{1}} R_{s}-D_{i}\right)$

$$
\begin{aligned}
& \leq \sum_{l=1}^{l_{0}} \sum_{j=1}^{j_{0}(l)} \mu_{2}\left(\cup_{s=1}^{s_{1}(l, j)} R_{l j s}-D_{i}\right) \\
& <\sum_{l=1}^{l_{0}}\left(\left(\tau_{h(i)} / \sum_{l=1}^{l_{0}} j_{0}(l)\right) \times\left(j_{0}(l)\right)\right) \\
& \left.=\tau_{h(i)}<\delta\left(m_{h(i)}, \varepsilon_{h(i)} / 2^{11}\right) \text { by } 4\right) \text { above. }
\end{aligned}
$$

Further
3) $\operatorname{norm}\left(R_{s}\right)<1 / m_{0}(i)<1 / m_{i}<1 / m_{h(i)}$, since $m_{0}(i)>m_{i}$ and $i<h(i)$ by $\left(21^{\circ}\right)$ and (18 ${ }^{\circ}$.

Hence, by the definition of (D) integrability we have

$$
\left|\sum_{s=1}^{s_{1}} F\left(R_{s}\right)-\sum_{s=1}^{s_{1}}(L) \int_{R_{s} \cap F_{m_{h(i)}}} f\right|<\varepsilon_{h(i)} / 2^{11}
$$

On the other hand, as in [9, proof of Lemma 3, (i,2)]

$$
\left|\sum_{s=1}^{s_{1}}(L) \int_{R_{s} \cap\left(F_{m_{h(i)}}-D_{i}\right)} f\right|<\varepsilon_{h(i)} / 2^{8}
$$

Hence

$$
\left|\sum_{s=1}^{s_{1}} F\left(R_{s}\right)-\sum_{s=1}^{s_{1}}(L) \int_{R_{s} \cap D_{i}} f\right|<\varepsilon_{i} / 2^{11}+\varepsilon_{h(i)} / 2^{8}
$$

Next, consider for $R_{s}\left(s=s_{1}+1, \ldots, s_{0}\right)$. Then, as seen in [9, proof of Lemma 3, (i,2)] we have
(1) $R_{s} \cap \bar{M}_{m_{i}} \neq \emptyset$ for $s=s_{1}+1, \ldots, s_{0}$;
(2) $\mu_{2}\left(\cup_{s=s_{1}+1}^{s_{0}} R_{s}\right)<\delta\left(m_{i}, \varepsilon_{i} / 2^{7}\right)$.

Further, we have
(3) $\operatorname{norm}\left(R_{s}\right)<1 / m_{i}$ for $s=s_{1}+1, \ldots, s_{0}$.

Hence, by Lemma 6

$$
\left|\sum_{s=s_{1}+1}^{s_{0}} F\left(R_{s}\right)-\sum_{s=s_{1}+1}^{s_{0}}(L) \int_{R_{s} \cap F_{m_{i}}} f\right|<4 \varepsilon_{i} / 2^{7}=\varepsilon_{i} / 2^{5} .
$$

Therefore, as in [9, proof of Lemma 3, (i,2)], we obtain

$$
\left|\sum_{s=1}^{s_{0}} F\left(R_{s}\right)-\sum_{s=1}^{s_{0}}(L) \int_{R_{s} \cap D_{i}} f\right|<\varepsilon_{i} / 2^{7}+3 \varepsilon_{i} / 2^{5}
$$

$(\mathrm{i}, 2)$ For the family indicated in (β) (defined in $\left(23^{\circ}\right)$):

$$
L_{v w}^{l}\left(v=1,2, \ldots, v_{0}(l), w=1,2, \ldots, w_{0}(l, v)\right):
$$

Corresponding to each two-dimensional interval $L_{v w}^{l}$, consider the one-dimensional interval, say $J_{v w}^{l}$, determined uniquely by the following four conditions, by virtue of the assumption of (4.4) of the lemma:
1°) $J_{v w}^{l}$ is contained in an interval, say $J_{v w}^{* l}$, which is one of the intervals contiguous to the closed set consisting of the set $\left(A_{i}\right)^{y_{v}^{l}}$, i.e., $\left(F_{n_{i} m_{i}}\right)^{y_{v}^{l}}$ and the both end-points of the interval $\left(R_{0}\right)^{y_{v}^{l}}$;
2°) One end-point of $J_{v w}^{l}$ is one of the end-points of $\left(L_{v w}^{l}\right)^{y_{v}^{l}}$;
3°) The other end-point of $J_{v w}^{l}$ is the characteristic point of the interval $J_{v w}^{* l}$ taken in 1°) above, say $p_{v w}^{l}$;
$\left.4^{\circ}\right) J_{v w}^{l} \supset\left(L_{v w}^{l}\right)^{y_{v}^{l}}$.
In this case, $J_{v w}^{l}\left(w=1,2, \ldots, w_{0}(l, v)\right)$ are classified into two parts: $J_{v w}^{l 1}(w=$ $\left.1,2, \ldots, w_{1}(l, v)\right)$ and $J_{v w}^{l 2}\left(w=1,2, \ldots, w_{2}(l, v)\right)$ so that each part consists of mutually disjoint intervals. Denote the interval associated with $J_{v w}^{l 1}$ in 1°) by $J_{v w}^{* l 1}$. Similarly, we
define $J_{v w}^{* 22}$. We denote the characteristic point of $J_{v w}^{* 11}$ by $p_{v w}^{l 1}$. Similarly, we define $p_{v w}^{l 2}$. We denote the characteristic numbers of $p_{v w}^{l 1}$ and $p_{v w}^{l 2}$ by $h_{v w}^{l 1}$ and $h_{v w}^{l 2}$, respectively. We have $n_{i} \leq h_{v w}^{l 1} \leq m_{i}$ and $n_{i} \leq h_{v w}^{l 2} \leq m_{i}$.

Put

$$
H_{v w}^{l 1}=J_{v w}^{l 1} \times J\left(y_{v}^{l}\right) \text { for } v=1,2, \ldots, v_{0}(l) \text { and } w=1,2, \ldots, w_{1}(l, v)
$$

For each $k \in N$ with $n_{i} \leq k \leq m_{i}$, denote the families of all intervals $J_{v w}^{l 1}$ and $H_{v w}^{l 1}$ for which $h_{v w}^{l 1}=k$ by

$$
J_{v w}^{l 1 k}\left(w=1,2, \ldots, w_{1}(l, v, k)\right) \text { and } H_{v w}^{l 1 k}\left(w=1,2, \ldots, w_{1}(l, v, k)\right),
$$

respectively. Then, $H_{v w}^{l 1 k}\left(l=1,2, \ldots, l_{0}, v=1,2, \ldots, v_{0}(l), w=1,2, \ldots, w_{1}(l, v, k)\right)$ is an elemetary system in R_{0} such that:
(1) $H_{v w}^{l 11} \cap \bar{M}_{k} \neq \emptyset$;
(2) $\mu_{2}\left(\cup_{l=1}^{l_{0}} \cup_{v=1}^{v_{0}(l)} \cup_{w=1}^{w_{1}(l, v, k)} H_{v w}^{l 1 k}\right)<\varepsilon_{k}^{* *} \leq \delta\left(k, \varepsilon_{k} / 2^{k+5}\right)$ as seen in [9, proof of Lemma $3,(\mathrm{i}, 1)]$;
(3) $\operatorname{norm}\left(H_{v w}^{l 1 k}\right)=\max \left\{\left|J_{v w}^{l 1 k}\right|, \operatorname{norm}\left(J\left(y_{v}^{l}\right)\right)\right\}$

$$
\begin{aligned}
& \left.\leq \max \left\{\varepsilon_{k}^{* *}, 1 / m_{i}\right\}\left(\text { by } h_{v w}^{l 1}=k \text { and } 5^{*}\right)\right) \\
& \leq 1 / k\left(\operatorname{by}\left(6^{\circ}\right) \text { and } k \leq m_{i}\right)
\end{aligned}
$$

Hence, by Lemma 6

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v, k)} F\left(H_{v w}^{l 1 k}\right)-\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v, k)}(L) \int_{H_{v w}^{l 1 k} \cap F_{k}} f\right|<4\left(\varepsilon_{k} / 2^{k+5}\right)=\varepsilon_{k} / 2^{k+3}
$$

Further, as in [9, proof of Lemma 3, (i, 1)]

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v, k)}(L) \int_{H_{v w}^{l 1 k} \cap F_{k}} f\right|<\varepsilon_{k} / 2^{k+5}
$$

Therefore

$$
\left|\sum_{k=n_{i}}^{m_{i}} \sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v, k)} F\left(H_{v w}^{l 1 k}\right)\right|<\varepsilon_{i} / 8
$$

Consequently

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v)} F\left(H_{v w}^{l 1}\right)\right|<\varepsilon_{i} / 8
$$

Similarly

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v)} F\left(H_{v w}^{l 1}-L_{v w}^{l 1}\right)\right|<\varepsilon_{i} / 8
$$

Hence

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v)} F\left(L_{v w}^{l 1}\right)\right|<\varepsilon_{i} / 4
$$

Thus, since $L_{v w}^{l 1} \cap D_{i}=\emptyset$,

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{1}(l, v)}\left(F\left(L_{v w}^{l 1}\right)-(L) \int_{L_{v w}^{l 1} \cap D_{i}} f\right)\right|<\varepsilon_{i} / 4
$$

Similarly

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{2}(l, v)}\left(F\left(L_{v w}^{l 2}\right)-(L) \int_{L_{v w}^{l 2} \cap D_{i}} f\right)\right|<\varepsilon_{i} / 4
$$

Therefore

$$
\left|\sum_{l=1}^{l_{0}} \sum_{v=1}^{v_{0}(l)} \sum_{w=1}^{w_{0}(l, v)}\left(F\left(L_{v w}^{l}\right)-(L) \int_{L_{v w}^{l} \cap D_{i}} f\right)\right|<\varepsilon_{i} / 2
$$

(i,3): For $I_{u j}^{* l}\left(l=1,2, \ldots, l_{0}, u=1,2, \ldots, u_{0}(l), j=1,2, \ldots, j_{0}(l)\right)$ defined in $\left(24^{\circ}\right)$: For each pair l, u with $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $u \in\left\{1,2, \ldots, u_{0}(l)\right\}$, denote the (*)-elementary system:

$$
I_{u j}^{* l}\left(j=1,2, \ldots, j_{0}(l)\right)
$$

by S_{u}^{l} and consider the $(* *)$-elementary system consisting of $(*)$-elementary systems

$$
S_{u}^{l}\left(l=1,2, \ldots, l_{0}, u=1,2, \ldots, u_{0}(l)\right)
$$

(Refer to [9, Remark 1, (3)] for the case of $n_{0}-1 \geq 2$.)
Then, as seen in [9, proof of Lemma 3]
there exists a $y_{l u} \in \operatorname{proj}_{y}\left(S_{u}^{l}\right) \cap \operatorname{proj}_{y}\left(B_{m_{i}}\right)$ for which $\left(I_{u j}^{* l}\right)^{y_{l u}} \cap\left(B_{m_{i}}\right)^{y_{l u}} \neq \emptyset$ for $j=$ $1,2, \ldots, j_{0}(l)$, for each pair l, u with $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $u \in\left\{1,2, \ldots, u_{0}(l)\right\}$;
$\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)}\left|\operatorname{proj}_{y}\left(S_{u}^{l}\right)\right| \leq \mu_{1}\left(\operatorname{proj}_{y}(S)-Y\right)+\mu_{1}\left(\cup_{l=1}^{l_{0}} Y_{l}-\cup_{l=1}^{l_{0}} \cup_{v=1}^{v_{0}(l)} J\left(y_{v}^{l}\right)\right)$
$<\tau_{i}^{*}+\tau_{i}^{*} \leq \tau_{i}<\rho^{*}\left(m_{i}, \varepsilon_{i} / 2^{4}\right)$ by (4.2) and $\left.4^{*}\right) ;$
and further, by (4.0)
$\operatorname{norm}\left(\operatorname{proj}_{y}\left(S_{u}^{l}\right)\right) \leq \operatorname{norm}\left(\operatorname{proj}_{y}\left(S_{l}\right)\right)<\tau_{i}^{*}<\tau_{i}<1 / m_{i}$ for every pair l, u with $l \in$ $\left\{1,2, \ldots, l_{0}\right\}$ and $u \in\left\{1,2, \ldots, u_{0}(l)\right\}$.
(Remark A: When $n_{0}=2$, the assumption (4.0) is not needed. Because, by $\left.8^{*}\right),\left(20^{\circ}\right)$ and $\left(17^{\circ}\right)$ we have $\mu_{1}\left(\operatorname{proj}_{y}\left(I_{u j}^{* l}\right)\right)=\mu_{1}\left(J_{u}^{* l}\right)<2 \tau_{i}^{*} \leq \tau_{i}<1 / m_{i}$.

Therefore, by Lemma 7

$$
\left|\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)} F\left(S_{u}^{l}\right)\right|<\varepsilon_{i} / 2^{4}
$$

On the other hand, since $\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)}\left|S_{u}^{l}\right| \leq \sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)}\left|\operatorname{proj}_{y}\left(S_{u}^{l}\right)\right|<2 \tau_{i}^{*} \leq \eta\left(m_{h(i)}, \varepsilon_{h(i)} / 2^{5}\right)$ and $D_{i} \subset F_{m_{h(i)}}$,

$$
\left|\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)}(L) \int_{S_{u}^{l} \cap D_{i}} f\right|<\varepsilon_{h(i)} / 2^{5} \leq \varepsilon_{i} / 2^{5}
$$

Therefore

$$
\left|\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)} F\left(S_{u}^{l}\right)-\sum_{l=1}^{l_{0}} \sum_{u=1}^{u_{0}(l)}(L) \int_{S_{u}^{l} \cap D_{i}} f\right|<\varepsilon_{i} / 2^{4}+\varepsilon_{i} / 2^{5}
$$

Consequently, by(i,1), (i,2) and (i,3)

$$
\left|F(S)-(L) \int_{s \cap D_{i}} f\right|<\varepsilon_{i} / 2^{7}+3 \varepsilon_{i} / 2^{5}+\varepsilon_{i} / 2+\varepsilon_{i} / 2^{4}+\varepsilon_{i} / 2^{5}
$$

(ii) The case when $\mu_{1}\left(Y \cap \operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)\right)=0$ for $l=1,2, \ldots, l_{0}:$ As in [9, proof of Lemma 3], for every $l \in\left\{1,2, \ldots, l_{0}\right\}$, there exists a $y_{l} \in \operatorname{proj}_{y}\left(S_{l}\right) \cap \operatorname{proj}_{y}\left(B_{m_{i}}\right)$ for which $\left(I_{l j}\right)^{y_{l}} \cap\left(B_{m_{i}}\right)^{y_{l}} \neq \emptyset$ for $j=1,2, \ldots, j_{0}(l) ;\left|\operatorname{proj}_{y}(S)\right|<\tau_{i}^{*}<\tau_{i}<\rho^{*}\left(m_{i}, \varepsilon_{i} / 2^{4}\right)$; and by (4.0) $\operatorname{norm}\left(\operatorname{proj}_{y}\left(S_{l}\right)\right)<\tau_{i}^{*}<\tau_{i}<1 / m_{i}$ for $l=1,2, \ldots, l_{0}$.
(Remark B: When $n_{0}=2$, the condition (4.0) is not needed. Because, we have $\mu_{1}(Y \cap$ $\left.\operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)\right)=0$, and so $\mu_{1}\left(Y \cap \operatorname{proj}_{y}\left(S_{l}\right)\right)=0$. Hence, by $(4.2) \mu_{1}\left(\operatorname{proj}_{y}\left(S_{l}\right)\right)<\tau_{i}^{*}<1 / m_{i}$. So $\operatorname{norm}\left(\operatorname{proj}_{y}\left(S_{l}\right)\right)<1 / m_{i}$ for $l=1,2, \ldots, l_{0}$.)
Hence, by Lemma 7

$$
|F(S)|<\varepsilon_{i} / 2^{4}
$$

Further, since $\mu_{2}(S) \leq \mu_{1}\left(\operatorname{proj}_{y}(S)\right)<\tau_{i}^{*}<\eta\left(m_{h(i)}, \varepsilon_{h(i)} / 2^{5}\right)$ and $D_{i} \subset F_{m_{h(i)}}$,

$$
\left|(L) \int_{S \cap D_{i}} f\right|<\varepsilon_{h(i)} / 2^{5} \leq \varepsilon_{i} / 2^{5}
$$

Consequently

$$
\left|F(S)-(L) \int_{S \cap D_{i}} f\right|<\varepsilon_{i} / 2^{4}+\varepsilon_{i} / 2^{5}
$$

(iii) The case when $\mu_{1}\left(Y \cap \operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)\right)>0$ for some $l \in\left\{1,2, \ldots, l_{0}\right\}$ and $\mu_{1}(Y \cap$ $\left.\operatorname{proj}_{y}\left(\left(S_{l}\right)^{\circ}\right)\right)=0$ for some $l \in\left\{1,2, \ldots, l_{0}\right\}$: This case follows from the results of (i) and (ii).

By (i), (ii) and (iii) the proof is complete.
Proof of Lemma 9. The proof of Lemma 9 is complete by Remarks A and B with the proof of Lemma 8.

Theorem 4. Let $f\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right)$ be (D) integrable on the interval $R_{0}=\left[a_{1}, b_{1} ; a_{2}, b_{2}\right.$; $\left.\ldots ; a_{n_{0}}, b_{n_{0}}\right]$ in the n_{0}-dimensional Euclidean space $E_{n_{0}}\left(n_{0} \geq 2\right)$. Then, the following two statements hold.
(1) Given any $n \in\left\{1,2, \ldots, n_{0}\right\}$, for almost all $q=\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n+1}, \ldots, x_{n_{0}}\right)$ in the ($n_{0}-1$)-dimensional interval $\left[a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n-1}, b_{n-1} ; a_{n+1}, b_{n+1} ; \ldots ; a_{n_{0}}, b_{n_{0}}\right]$ the function $f\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right)$ considered as a function of x_{n} in the one-dimensional interval [a_{n}, b_{n}] is (D) integrable on $\left[a_{n}, b_{n}\right]$.
(2) Corresponding to each $n \in\left\{1,2, \ldots, n_{0}\right\}$, there exists a nondecreasing sequence of closed sets $D_{i}(i=1,2, \ldots)$ in R_{0} such that $\mu_{n_{0}}\left(R_{0}-\cup_{i=1}^{\infty} D_{i}\right)=0$ and

$$
(D) \int_{a_{n}}^{b_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots, x_{n_{0}}\right) d x_{n}=\lim _{i \rightarrow \infty}(L) \int_{\left(D_{i}\right)^{q}} f\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots, x_{n_{0}}\right) d x_{n}
$$

for almost all $q=\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n+1} \ldots, x_{n_{0}}\right)$ in the ($n_{0}-1$)-dimensional interval $\left[a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n-1}, b_{n-1} ; a_{n+1}, b_{n+1} ; \ldots ; a_{n_{0}}, b_{n_{0}}\right]$.

Proof. For simplicity, we prove only for the case when $n_{0}=2$ and $R_{0}=[0,1 ; 0,1]$. Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be the sequence of positive numbers given in $\left(5^{\circ}\right)$ such that $\varepsilon_{n} \downarrow 0$ and $\sum_{m=n+1}^{\infty} \varepsilon_{m}<\varepsilon_{n}$ for every $n \in N$. Let

$$
\begin{gathered}
A_{i}=F_{n_{i} m_{i}}(i=1,2, \ldots) \text { and } D_{i}=F_{n_{i} m_{i}} \cap F_{m_{h(i)}}(i=1,2, \ldots) \\
\tau_{i}^{*}(i=1,2, \ldots)
\end{gathered}
$$

be the nondecreasing sequences of closed sets and the sequence of positive numbers defined as seen in the proof of Lemma 8 for the sequence $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$. Let $Z=\operatorname{proj}_{y}\left(R_{0}\right)-$ $\cup_{i=1}^{\infty} \operatorname{proj}_{y}\left(F_{n_{i} m_{i}}\right)$ (defined in ($\left.8^{\circ}\right)$) as in (I).

As seen in [9, proof of Theorem 1], there exists a set X_{0} of μ_{1}-measure zero with $X_{0} \supset Z$ such that for every $y \in \operatorname{proj}_{y}\left(R_{0}\right)-X_{0}$, we have:
(a) $\left(A_{i}\right)^{y}(i=1,2, \ldots)$ is a nondecreasing sequence of closed sets whose union is $\left(R_{0}\right)^{y}$; and
(b) $\left(D_{i}\right)^{y}(i=1,2, \ldots)$ is a nondecreasing sequence of closed sets such that $\left(D_{i}\right)^{y} \subset$ $\left(A_{i}\right)^{y}, \mu_{1}\left(\left(R_{0}\right)^{y}-\cup_{i=1}^{\infty}\left(D_{i}\right)^{y}\right)=0$ and $f(x, y)$ is Lebesgue integrable on $\left(D_{i}\right)^{y}$ as a function of x for every $i \in N$.

Hence, by [9, Remark 2], in order that the function $f(x, y)$ is (D) integrable on $[0,1]$ as a function of x for almost all $y \in \operatorname{proj}_{y}\left(R_{0}\right)-X_{0}$, it is sufficient to prove that, when we denote the set of all $y \in \operatorname{proj}_{y}\left(R_{0}\right)-X_{0}$ for which one at least of the statements of (1) and (2) in [9, Lemma 5] is not true by Y^{*}, we have $\mu_{1}\left(Y^{*}\right)=0$. In order to prove it, supposing $\mu_{1}\left(Y^{*}\right)>0$, we lead a contradiction. For the proof, we can proceed in the same way as in the case of [9, Theorem 1], making the following alterations:
(1) We employ τ_{i}^{*} defined in $\left(20^{\circ}\right)$ of this paper instead of κ_{i}^{*} defined in $\left[9,\left(14^{\circ}\right)\right.$;
(2) We employ Lemma 8 of this paper instead of [9, Lemma 3];
(3) For each $s \in^{*}\left\{1,2, \ldots, s_{0}\right\}$ with $\mu_{1}\left(Z_{s}\right) \neq \emptyset$, we choose the one-dimensional elementary system $K_{l}^{s}\left(l=1,2, \ldots, l_{0}(s)\right)$ indicated in [9, proof of Theorem 1] so that it satisfies the condition

$$
\operatorname{norm}\left(K_{l}^{s}\right)<\tau_{i^{\prime}(s)}^{*} \text { for } l=1,2, \ldots, l_{0}(s)
$$

in addition to the following conditions indicated in $\left[9,\left(23^{\circ}\right)\right.$ and $\left.\left(24^{\circ}\right)\right]$:

$$
\begin{aligned}
& \left(K_{l}^{s}\right)^{\circ} \cap Z_{s} \neq \emptyset \text { for } l=1,2, \ldots, l_{0}(s) \\
& \mu_{1}\left(Z_{s}-\cup_{l=1}^{l_{0}(s)} K_{l}^{s}\right)<k_{0} / 2 s_{0} ; \text { and } \\
& \mu_{1}\left(\cup_{l=1}^{l_{0}(s)} K_{l}^{s}-Z_{s}\right)<\left(1 / s_{0}\right)\left(\min \left\{\delta, \tau_{i^{\prime}(s)}^{*}\right\}\right) .
\end{aligned}
$$

From this fact, each of the following two-dimensional $(* *)$-elementary systems:

$$
S_{l}^{s}\left(s \in \triangle_{i}, l \in\left\{1,2, \ldots, l_{0}(s)\right\}\right) \text { and } S_{l}^{s}\left(s \in \Lambda_{i}, l \in\left\{1,2, \ldots, l_{0}(s)\right\}\right)
$$

considered in (A) and (B) as in [9, proof of Theorem 1], respectively, has the following property:
(4.0) $\operatorname{norm}\left(\operatorname{proj}_{y}\left(S_{l}^{s}\right)\right)=\operatorname{norm}\left(K_{l}^{s}\right)<\tau_{i}^{*}$.

By virtue of this fact, we can employ Lemma 8 of this paper instead of [9, Lemma 3].
Now, put

$$
W_{0}=X_{0} \cup Y^{*}
$$

Then, $\mu_{1}\left(W_{0}\right)=0$, and for every $y \in \operatorname{proj}_{y}\left(R_{0}\right)-W_{0}, f(x, y)$ is (D) integrable as a function of x on $[0,1], \lim _{i \rightarrow \infty}(L) \int_{\left(D_{i}\right)^{y}} f(x, y) d x$ exists, and the limit value coincides with (D) $\int_{0}^{1} f(x, y) d x$.

§2 Two-dimensional integration

Theorem 5 (Fubini's Theorem). Let $f(x, y)$ be (D) integrable on an interval $R_{0}=$ $[a, b ; c, d]$ in the two-dimensional Euclidean space E_{2}. Then:
(1) For almost all $y \in[c, d]$, the function $f(x, y)$ considered as a function of x is (D) integrable on $[a, b]$;
$\left(1^{\prime}\right)$ For almost all $x \in[a, b]$, the function $f(x, y)$ considered as a function of y is (D) integrable on $[c, d]$;
(2) $(D) \int_{a}^{b} f(x, y) d x$ is (D) integrable on $[c, d]$;
$\left(2^{\prime}\right)(D) \int_{c}^{d} f(x, y) d y$ is (D) integrable on $[a, b]$;
(3) $(D) \int_{c}^{d}\left((D) \int_{a}^{b} f(x, y) d x\right) d y=(D) \int_{a}^{b}\left((D) \int_{c}^{d} f(x, y) d y\right) d x=F([a, b ; c, d])$.

Proof. (1) and (1') are already proved in Theorem 4. Next, we prove only (2) and the first equality of (3) for the case of $R_{0}=[0,1 ; 0,1]$. We omit the proof of the others, because the proof is similar. Put

$$
\begin{aligned}
f_{i}(y) & =(L) \int_{\left(D_{i}\right)^{y}} f(x, y) d x \text { for every } y \in \operatorname{proj}_{y}\left(R_{0}\right)-W_{0}, \text { and } \\
& =0 \text { for every } y \in W_{0} \\
f(y) & =(D) \int_{0}^{1} f(x, y) d x \text { for every } y \in \operatorname{proj}_{y}\left(R_{0}\right)-W_{0}, \text { and } \\
& =0 \text { for every } y \in W_{0}
\end{aligned}
$$

where $\left\{D_{i}\right\}_{i=1}^{\infty}$ is the sequence of closed sets and W_{0} is the set of μ_{1}-measure zero, indicated in the proof of Theorem 4.

Since then $f(y)=\lim _{i \rightarrow \infty} f_{i}(y)$ on $\operatorname{proj}_{y}\left(R_{0}\right)$ and $f_{i}(y)$ is measurable for each $i \in$ N, there exists a sequence of measurable sete $M_{k}^{*}(k=0,1, \ldots)$ such that: $\cup_{k=0}^{\infty} M_{k}^{*}=$ $\operatorname{proj}_{y}\left(R_{0}\right) ; \mu_{1}\left(M_{0}^{*}\right)=0$; and for each $k \in N, M_{k}^{*} \cap M_{0}^{*}=\emptyset, M_{k+1}^{*} \supset M_{k}^{*}, M_{k}^{*}$ is a closed set, $f_{i}(y)$ converges uniformly to $f(y)$ on M_{k}^{*}, and $f(y)$ is Lebesgue integrable on M_{k}^{*}.

Let $\left\{B_{k}\right\}_{k=1}^{\infty}$ be the sequence of measurable sets indicated in Lemma 7 (defined in $\left(11^{\circ}\right)$). Put

$$
\begin{aligned}
& Z_{0}=\operatorname{proj}_{y}\left(R_{0}\right)-\cup_{k=1}^{\infty} \operatorname{proj}_{y}\left(D_{k}\right) \\
& L_{k}=\left(\left(\operatorname{proj}_{y}\left(B_{k}\right) \cap Z_{0}\right) \cup \operatorname{proj}_{y}\left(D_{k}\right)\right) \cap\left(M_{0}^{*} \cup M_{k}^{*}\right) \text { for } k=1,2, \ldots \\
& N_{k}=\operatorname{proj}_{y}\left(D_{k}\right) \cap M_{k}^{*} \text { for } k=1,2, \ldots
\end{aligned}
$$

Then, $\mu_{1}\left(Z_{0}\right)=0, L_{k}(k=1,2, \ldots)$ is a nondecreasing sequence of measurable sets whose union is $\operatorname{proj}_{y}\left(R_{0}\right)$ and $N_{k}(k=1,2, \ldots)$ is a nondecreasing sequence of closed sets such that $N_{k} \subset L_{k}$ and $\mu_{1}\left(\operatorname{proj}_{y}\left(R_{0}\right)-\cup_{k=1}^{\infty} N_{k}\right)=0$. Further $f(y)$ is Lebesgue integrable on N_{k} for each $k \in N$.

For $k \in N$ and $\varepsilon>0$, take an $i_{0}(k, \varepsilon)$ so that $i_{0}(k, \varepsilon) \geq k, \varepsilon_{i_{0}(k, \varepsilon)}<\varepsilon / 7$ and $\mid f(y)-$ $f_{i_{0}(k, \varepsilon)}(y) \mid<\varepsilon / 7$ for every $y \in M_{k}^{*}$. Let $\lambda(k, \varepsilon)$ be a positive number such that if $\mu_{2}(E)<$ $\lambda(k, \varepsilon)$, then $\left|(L) \int_{E \cap D_{i_{0}(k, \varepsilon)}} f(x, y) d(x, y)\right|<\varepsilon / 7$. Let $\lambda^{*}(k, \varepsilon)$ be a positive number such that if $\mu_{1}(E)<\lambda^{*}(k, \varepsilon)$, then $\left|(L) \int_{E \cap N_{k}} f(y) d y\right|<\varepsilon$. Put

$$
\delta^{*}(k, \varepsilon)=(1 / 2) \min \left\{\tau_{i_{0}(k, \varepsilon)}^{*}, \rho^{*}(k, \varepsilon / 7), \lambda(k, \varepsilon), \lambda^{*}(k, \varepsilon / 7)\right\}
$$

We denote, for any set $E \subset \operatorname{proj}_{y}\left(R_{0}\right)$, the set $\operatorname{proj}_{x}\left(R_{0}\right) \times E$ by E^{*}, and let $G(I)$ be the interval function in $\operatorname{proj}_{y}\left(R_{0}\right)$ defined by $G(I)=F\left((I)^{*}\right)$ for any interval $I \subset \operatorname{proj}_{y}\left(R_{0}\right)$, where F is the interval function indicated in the definition of (D) integrability.

Next, we prove that:
For $k \in N$ and $\varepsilon>0$, if $I_{t}\left(t=1,2, \ldots, t_{0}\right)$ is an elementary system in $\operatorname{proj}_{y}\left(R_{0}\right)$ such that

$$
I_{t} \cap L_{k} \neq \emptyset \text { for } t=1,2, \ldots, t_{0} \text { and } \mu_{1}\left(\cup_{t=1}^{t_{0}} I_{t}-L_{k}\right)<\delta^{*}(k, \varepsilon)
$$

then

$$
\left|\sum_{t=1}^{t_{0}} G\left(I_{t}\right)-\sum_{t=1}^{t_{0}}(L) \int_{I_{t} \cap N_{k}} f(y) d y\right|<\varepsilon
$$

For $I_{t}\left(t=1,2, \ldots, t_{0}\right)$, denote by $I_{1 t}\left(t=1,2, \ldots, t_{1}\right)$ the family of all intervals I_{t} for which $I_{t} \cap \operatorname{proj}_{y}\left(D_{k}\right) \neq \emptyset$, where $t \in\left\{1,2, \ldots, t_{0}\right\}$; and by $I_{2 t}\left(t=1,2, \ldots, t_{2}\right)$ the others. Let $\left\{A_{k}\right\}_{k=1}^{\infty}(k=1,2, \ldots)$ be the sequence of closed sets indicated in the proof of Theorem 4.
(i) For $I_{1 t}\left(t=1,2, \ldots, t_{1}\right)$: By Proposition 13, there exists an elementary system $H_{1 t}\left(t=1,2, \ldots, t_{1}\right)$ in $\operatorname{proj}_{y}\left(R_{0}\right)$ such that $\left(H_{1 t}\right)^{\circ} \supset I_{1 t}$ for $t=1,2, \ldots, t_{1}, \mu_{1}\left(\cup_{t=1}^{t_{1}} H_{1 t}-\right.$ $\left.\cup_{t=1}^{t_{1}} I_{1 t}\right)<\delta^{*}(k, \varepsilon)$, and

$$
\left|\sum_{t=1}^{t_{1}} G\left(H_{1 t}\right)-\sum_{t=1}^{t_{1}} G\left(I_{1 t}\right)\right|<\varepsilon / 7
$$

In this case, for the $(* *)$-elementary system $\left(H_{1 t}\right)^{*}\left(t=1,2, \ldots, t_{1}\right)$ in R_{0}, we have $\operatorname{proj}_{y}\left(\left(H_{1 t}\right)^{*}\right)=H_{1 t}$ and $\operatorname{proj}_{y}\left(\left(\left(H_{1 t}\right)^{*}\right)^{\circ}\right)=\left(H_{1 t}\right)^{\circ}$. Further, as seen in [9, proof of Theorem 2], putting $Y=\cup_{t=1}^{t_{1}}\left(H_{1 t}\right)^{\circ} \cap \operatorname{proj}_{y}\left(A_{i_{0}(k, \varepsilon)}\right)$, we have $\mu_{1}\left(\cup_{t=1}^{t_{1}} H_{1 t}-Y\right)<\tau_{i_{0}(k, \varepsilon)}^{*}$, and $Y \cap\left(H_{1 t}\right)^{\circ}=\left(H_{1 t}\right)^{\circ} \cap \operatorname{proj}_{y}\left(A_{i_{0}(k, \varepsilon)}\right) \neq \emptyset$ for $t=1,2, \ldots, t_{1}$. Hence, by Lemma 9

$$
\left|\sum_{t=1}^{t_{1}} F\left(\left(H_{1 t}\right)^{*}\right)-\sum_{t=1}^{t_{1}}(L) \int_{\left(H_{1 t}\right)^{*} \cap D_{i_{0}(k, \varepsilon)}} f(x, y) d(x, y)\right|<\varepsilon_{i_{0}(k, \varepsilon)}<\varepsilon / 7
$$

And so

$$
\left|\sum_{t=1}^{t_{1}} G\left(H_{1 t}\right)-\sum_{t=1}^{t_{1}}(L) \int_{H_{1 t}} f_{i_{0}(k, \varepsilon)}(y) d y\right|<\varepsilon / 7
$$

Thus, as seen in [9, proof of Theorem 2], the following holds:

$$
\left|\sum_{t=1}^{t_{1}} G\left(I_{1 t}\right)-\sum_{t=1}^{t_{1}}(L) \int_{I_{1 t} \cap N_{k}} f(y) d(y)\right|<5 \varepsilon / 7
$$

(ii) For $I_{2 t}\left(t=1,2, \ldots, t_{2}\right)$: For the $(* *)$-elementary system $\left(I_{2 t}\right)^{*}\left(t=1,2, \ldots, t_{2}\right)$, as seen in [9, proof of Theorem 2], we have $\left(I_{2 t}\right)^{*} \cap B_{k} \neq \emptyset$ for $t=1,2, \ldots, t_{2}$, and $\mu_{1}\left(\operatorname{proj}_{y}\left(\cup_{t=1}^{t_{2}}\left(I_{2 t}\right)^{*}\right)\right)<\delta^{*}(k, \varepsilon)<\rho^{*}(k, \varepsilon / 7)$. Further, norm $\left(\operatorname{proj}_{y}\left(\left(I_{2 t}\right)^{*}\right)\right)=\mu_{1}\left(I_{2 t}\right)<$ $\delta^{*}(k, \varepsilon)<\tau_{i_{0}(k, \varepsilon)}^{*} \leq \tau_{k}^{*}<\tau_{k}<1 / m_{k}$ and so $\operatorname{norm}\left(\operatorname{proj}_{y}\left(\left(I_{2 t}\right)^{*}\right)\right)<1 / k$ by $\left(7^{\circ}\right)$ for $t=$ $1,2, \ldots, t_{2}$. Hence, by Lemma 7

$$
\left|\sum_{t=1}^{t_{2}} F\left(\left(I_{2 t}\right)^{*}\right)\right|<\varepsilon / 7, \text { and so }\left|\sum_{t=1}^{t_{2}} G\left(I_{2 t}\right)\right|<\varepsilon / 7
$$

Therefore, as seen in [9, proof of Theorem 2] we obtain

$$
\left|\sum_{t=1}^{t_{2}} G\left(I_{2 t}\right)-\sum_{t=1}^{t_{2}}(L) \int_{I_{2 t} \cap N_{k}} f(y) d(y)\right|<2 \varepsilon / 7
$$

Thus, by (i) and (ii)

$$
\left|\sum_{t=1}^{t_{0}} G\left(I_{t}\right)-\sum_{t=1}^{t_{0}}(L) \int_{I_{t} \cap N_{k}} f(y) d(y)\right|<\varepsilon
$$

Consequently, $f(y)$ is $\left(D_{0}\right)$ integrable on $\operatorname{proj}_{y}\left(R_{0}\right)$ and so (D) integrable on $\operatorname{proj}_{y}\left(R_{0}\right)$, and the (D) integral of $f(y)$ on $\operatorname{proj}_{y}\left(R_{0}\right)$ coincides with $F\left(R_{0}\right)$.

By Proposition 11, (2) and Proposition 12, as a corollary of Theorem 5 we obtain:

Theorem 6 (Fubini's Theorem). Let $f(x, y)$ be strongly $(L A)$ integrable on an interval $R_{0}=[a, b ; c, d]$ in the two-dimensional Euclidean space E_{2}. Then:
(1) For almost all $y \in[c, d]$, the function $f(x, y)$ considered as a function of x is strongly ($L A$) integrable on $[a, b]$;
(1') For almost all $x \in[a, b]$, the function $f(x, y)$ considered as a function of y is strongly ($L A$) integrable on $[c, d]$;
(2) $(S L A) \int_{a}^{b} f(x, y) d x$ is strongly $(L A)$ integrable on $[c, d]$;
$\left(2^{\prime}\right)(S L A) \int_{c}^{d} f(x, y) d y$ is strongly $(L A)$ integrable on $[a, b]$;
(3) $(S L A) \int_{c}^{d}\left((S L A) \int_{a}^{b} f(x, y) d x\right) d y=(S L A) \int_{a}^{b}\left((S L A) \int_{c}^{d} f(x, y) d y\right) d x$

$$
=(S L A) \int_{R_{0}} f(x, y) d(x, y)
$$

As a corollary of Theorems 2 and 6 , by Proposition 6 we obtain:
Theorem 7. If a finitely additive interval function $F(I)$ in an interval $R_{0}=[a, b ; c, d]$ in the two-dimensional Euclidean space E_{2} is derivable in the strong sense at every point of R_{0}, then:
(1) For almost all $y \in[c, d]$, the function $F_{s}^{\prime}(x, y)$ considered as a function of x is special Denjoy integrable on $[a, b]$;
($\left.1^{\prime}\right)$ For almost all $x \in[a, b]$, the function $F_{s}^{\prime}(x, y)$ considered as a function of y is special Denjoy integrable on $[c, d]$;
(2) $(\mathcal{D}) \int_{a}^{b} F_{s}^{\prime}(x, y) d x$ is special Denjoy integrable on $[c, d]$;
$\left(2^{\prime}\right)(\mathcal{D}) \int_{c}^{d} F_{s}^{\prime}(x, y) d y$ is special Denjoy integrable on $[a, b]$;
(3) $F\left(R_{0}\right)\left(=(S L A) \int_{R_{0}} F_{s}^{\prime}(x, y) d(x, y)\right)=(\mathcal{D}) \int_{c}^{d}\left((\mathcal{D}) \int_{a}^{b} F_{s}^{\prime}(x, y) d x\right) d y$ $=(\mathcal{D}) \int_{a}^{b}\left((\mathcal{D}) \int_{c}^{d} F_{s}^{\prime}(x, y) d y\right) d x$,
where $(\mathcal{D}) \int$ denotes the special Denjoy integral.
Problem. Does Fubini's theorem hold for the strong $(L A)$ integral in the n_{0}-dimensional case when $n_{0} \geq 3$?

References

[1] J.C. Burkill: Functions of intervals, Proc. Lond. Math. Soc., (2) 22 (1924), 275-310.
[2] S. Kempisty: Fonctions d'Intervalle Non Additives, Actualités Sci. Indust. 824. Ensembles et Fonctions III, Paris (1939), 1-62.
[3] R.M.Mcleod: The Generalized Riemann Integral, Math. Carus Math. Monographs 20, Math. Association of America (1980).
[4] S. Nakanishi (formerly S. Enomoto): Sur une Totalisation dans les Espaces de Plusieurs Dimensions, I, II, Osaka Math. J., 7 (1955), 69-102, 157-178.
[5] S. Nakanishi: A new definition of the Denjoy's special integral by the method of successive approximation, Mathematica Japonica, 41 (1995), 217-230.
[6] S. Nakanishi: Multidimensional non-absolutely convergent integrals by the method of successive approximation, I, Mathematica Japonica, 42 (1995), 403-428.
[7] S. Nakanishi: Approach to non-absolute integration by successive approximations, Scientiae Mathematicae Japonicae, 54 (2001), 391-426.
[8] S. Nakanishi: A structure of an increasing sequence of closed sets whose union is a multidimensional interval, Scientiae Mathematicae Japonicae, 55 (2002), 1-15.
[9] S. Nakanishi: Non-absolute multiple integral defined constructively on the Euclidean space and iterated integral, Scientiae Mathematicae Japonicae, 58 (2003), 495-592.
[10] P. Romanovski: Intégrale de Denjoy dans I'espace à n dimensions, Recueil Math. Moscou, 9 (1941), 281-306.
[11] S. Saks: Theory of the Integral, Warsaw (1937).

4-15 Jonanteramachi, Tennoji-ku, Osaka, 543-0017 Japan
E-mail address: shizu.nakanishi@nifty.ne.jp

[^0]: 2000 Mathematics Subject Classification. 28A35, 28A15, 26A39.
 Key words and phrases. Multiple integral, Fubini's theorem, additive interval function, derivative, special Denjoy integral.

