REPRESENTATION THEOREM ON FINITE DIMENSIONAL PROBABILISTIC NORMED SPACES

MIN-XIAN ZHANG

Received April 16, 2002; revised September 24, 2002

Abstract. In this paper, we gives the Riesz theorem on probabilistic normed spaces, studies the relations between convergence in probabilistic norm and convergence in coordinate, proves necessary and sufficient condition of the probabilistic normed spaces which are finite dimensional.

1 Introduction

In 1942, Menger (1) published the first paper in which was called statistical metrics. This paper introduced the idea of replacing the distance \(d(p, q)\) between two point in a metric space by a probabilistic distribution function \(F_{p,q}\). Serstnev (3) introduced the idea of probabilistic normed spaces. In this space the norm of an element is replaced by a distribution of norm.

In this paper, we introduces the concept of unit sphere, discusses the Riesz theorem on probabilistic normed spaces, studies the relations between convergence in probabilistic norm and convergence in coordinate, proves characteristic theorem of finite dimensional probabilistic normed spaces.

Throughout this paper, we denote by \(D\) the set of distribution functions defined on \(\mathbb{R}\), i.e., \(F \in D\) if \(F\) is nondecreasing left-continuous with \(\sup_{t \in \mathbb{R}} F(t) = 1\) and \(\inf_{t \in \mathbb{R}} F(t) = 0\).

Definition 1.1. A probabilistic normed space (shortly, PN-space) is an ordered pair \((E, F)\), where \(E\) is a real linear space and \(F\) is a mapping from \(E\) into \(D\) (we denote \(F(x)\) by \(F_x\)) satisfying the following conditions:

1. \((PN-1)\) \(F_x(t) = 1\) for all \(t > 0\) if and only if \(x = 0\)
2. \((PN-2)\) \(F_x(0) = 0\);
3. \((PN-3)\) \(F_{\alpha x}(t) = F_x(\frac{t}{|\alpha|})\) for any \(\alpha \in \mathbb{R}, \alpha \neq 0\)
4. \((PN-4)\) if \(F_x(t_1) = 1, F_y(t_2) = 1\), then \(F_{x+y}(t_1 + t_2) = 1\).

Definition 1.2. A Menger PN space is a PN-space that satisfies \((PN-5)\),

\((PN-5)\) \(F_{x+y}(t_1 + t_2) \geq \triangle(F_x(t_1), F_y(t_2))\) for all \(x, y \in E, t_1, t_2 \in \mathbb{R}^+ = [0, +\infty)\) where \(\triangle\) is a 2-place function on the unit square satisfying:

1. \(T(0, 0) = 0\) and \(T(a, 1) = a\)
2. \(T(a, b) = T(b, a)\)
3. if \(a \leq c\) and \(b \leq d\), then \(T(a, b) \leq T(c, d)\)
4. \(T(T(a, b), c) = T(a, T(b, c))\)

\(T\) is called a \(t\)-norm.

2000 Mathematics Subject Classification. 46S50.

Key words and phrases. Probabilistic normed spaces; Riesz theorem; Finite dimensional; Unit sphere.
2 Riesz theorem on PN-space

In this section, we shall discuss Riesz theorem on PN-space.

Lemma 2.1. Let \((E, F)\) be a PN-space and \(A\) be a genuine subset of \(E\). By the definition of \(\sup_{y \in A} F_{x_1-y}(t)\), there exists \(y_1 \in A\) such that for any \(\epsilon > 0\) and \(x_1 \in E \setminus A\)

\[
\sup_{y \in A} F_{x_1-y}(t) - \epsilon < F_{x_1-y_1}(t) \leq \sup_{y \in A} F_{x_1-y}(t) \tag{2.1}
\]

Suppose \(p = \inf\{t > 0; F_{x_1-y_1}(t) > 1-\lambda\}\)

\[
p_1 = \inf\{t > 0; \sup_{y \in A} F_{x_1-y}(t) > 1-\lambda\} \tag{2.2}
\]

\[
p_2 = \inf\{t > 0; \sup_{y \in A} F_{x_1-y}(t) - \epsilon > 1-\lambda\} \tag{2.3}
\]

where \(\epsilon > 0\) and \(\lambda \in (0,1)\). Then \(p_2 \geq p \geq p_1\).

Proof. Suppose \(t_0 \in \{t > 0; F_{x_1-y_1}(t) > 1-\lambda\}\), by (2.1) we have \(t_0 \in \{t > 0; \sup_{y \in A} F_{x_1-y}(t) > 1-\lambda\}\), then \(p \geq p_1\), similarly have \(p_2 \geq p\).

Lemma 2.2: Let \((E, F)\) be a PN-space and \(A\) be a genuine subset of \(E\). Then we have the following:

1) \(\sup_{y \in A} F_{x_1-y}(t)\) is a left-continuous function at \(t\) for any \(x_1 \in E \setminus A\).
2) Assume \(\bar{P} = \inf\{t > 0; \sup_{y \in A} F_{x_1-y}(t-\delta) > 1-\lambda\}\) and \(P_1, P_2\) be defined by (2.2)(2.3), then \(P_2 \geq \bar{P} = P_1 + \delta\).

Proof. (1) Since \(F_{x_1-y}(t)\) is left-continuous at \(t(t > 0)\), thus for any \(\epsilon > 0\) there exists \(\delta \in (0, t)\) such that \(F_{x_1-y}(t-\delta) > F_{x_1-y}(t) - \epsilon\), by continuous of real number, for every \(t > \delta\) there exists \(I(t)\) such that

\[F_{x_1-y}(t-\delta) > I(t) > F_{x_1-y}(t) - \epsilon\]

we have

\[
\sup_{y \in A} F_{x_1-y}(t-\delta) \geq F_{x_1-y}(t-\delta) > I(t) \geq \sup_{y \in A} F_{x_1-y}(t) - \epsilon
\]

Then

\[
\sup_{y \in A} F_{x_1-y}(t-\delta) > \sup_{y \in A} F_{x_1-y}(t) - \epsilon
\]

(2) Obviously \(P_2 \geq \bar{P}\). By the definition of \(\bar{P}\), we have

\[
\bar{P} = \inf\{t > 0; \sup_{y \in A} F_{x_1-y}(t-\delta) > 1-\lambda, t > \delta\}
\]

\[
= \inf\{t + \delta; \sup_{y \in A} F_{x_1-y}(t) > 1-\lambda, t > 0\}
\]

\[
= \inf\{t > 0; \sup_{y \in A} F_{x_1-y}(t) > 1-\lambda\} + \delta
\]

\[
= p_1 + \delta,
\]

This completes the proof.

Definition 2.1. Let \((E, F)\) be a PN-space and \(A\) be a genuine subset of \(E\).

1) We define a unit sphere \(N(1, \lambda)\) of \(E\) by

\[
N(1, \lambda) = \{y \in E; F_y(1) > 1-\lambda, \lambda \in (0,1)\} \tag{2.4}
\]
(2) We define $P_\lambda : E \rightarrow R^+$ by

$$ P_\lambda(y) = \inf \{ t > 0 ; F_y(t) > 1 - \lambda \} \quad (2.5) $$

for each $\lambda \in (0,1)$. We say that $P_\lambda(y)$ is the quasi-norm of y.

(3) We define $F_{x-A}(t)$ by

$$ F_{x-A}(t) = \sup_{y \in A} F_{x-y}(t) \quad (2.6) $$

for all $t \in R$. We say that $F_{x-A}(t)$ is the probabilistic distance from the point x to the set A.

(4) The set A in E is said sequentially compact, if any infinite set of A must there exists a convergence subsequence. The set A in E is said self-sequentially compact, if limit of every convergence sequence in A belong to A.

Corollary 2.1: Let A be a nonempty closed set of E, then

$$ F_{x-A}(t) = 1, \text{ for all } t > 0 \text{ if and only if } x \in A. $$

Theorem 1: Let (E,F) be a PN-space and A be a nonempty closed genuine subset of E. Then for any $y \in A$ there exists $x_0 \in E \setminus A$, and $\lambda_0 \in [0,1]$ such that $x_0 \in N(1,\lambda)$ and $P_\lambda(x_0-y) \geq 1$ for each $\lambda \in (\lambda_0,1]$.

Proof. Since A is a nonempty closed genuine subset of E, by corollary 2.1 there exist $x_1 \in E \setminus A$, such that

$$ F_{x_1-A}(t) < 1 $$

for all $t > 0$. Suppose $\sup_{t > 0} F_{x_1-A}(t) = \sup_{t > 0} \sup_{y \in A} F_{x_1-y}(t) = \delta, \delta \leq 1$. Let $\lambda_0 = 1 - \delta$, for each $\lambda \in (\lambda_0,1]$, we have

$$ \sup_{t > 0} \sup_{y \in A} F_{x_1-y}(t) > 1 - \lambda $$

By the definition of sup, there exist $t_0 > 0$, such that

$$ \sup_{y \in A} F_{x_1-y}(t) > 1 - \lambda $$

for any $t \geq t_0$. By Lemma 2.1 and definition of sup there exist $y_1 \in A$ such that

$$ F_{x_1-y_1}(t) > \sup_{y \in A} F_{x_1-y}(t) - \epsilon. $$

for any $\epsilon > 0$, and all $t \geq t_0$. Taking $x_0 = \frac{x_1 - y_1}{p_2}$, by Lemma 2.1 and 2.2, we have

$$ F_{x_0}(1) = F_{x_0(x_1-y_1)}(1) = F_{x_1-y_1}(p_2) > \sup_{y \in A} F_{x_1-y}(p_2) - \epsilon $$

$$ \geq \sup_{y \in A} F_{x_1-y}(p_1 + \delta) - \epsilon > 1 - \lambda - \epsilon. $$

by the left-continuity of $F_{x_0}(t)$ at $t = 1$, there exists $\delta_1 > 0$ such that

$$ F_{x_0}(1-\delta_1) > 1 - \lambda. $$

Thus $F_{x_0}(1) \geq F_{x_0}(1-\delta_1) > 1 - \lambda$, therefore $x_0 \in N(1,\lambda)$, for any $\lambda \in (\lambda_0,1]$.

Taking $\delta_2 = \frac{\delta}{p^2}$, by (2.3) we have
\[
F_{x_0 \cdot y}(1 - \delta_2) = F_{x_1 \cdot (y_1 + p_2 \cdot y)}(1 - \frac{\delta}{p^2}) = F_{x_1 \cdot (y_1 + p_2 \cdot y)}(p_2 - p_2 \delta_2) \leq \sup_{y \in A} F_{x_1 \cdot y}(p_2 - \delta) \leq 1 - \lambda + \epsilon.
\]

Letting $\epsilon \to 0$, by the left-continuity of $F_{x_0 \cdot y}(t)$ at $t = 1$, we have
\[
F_{x_0 \cdot y}(1) \leq 1 - \lambda,
\]

therefore $P_\lambda(x_0 - y) \geq 1$, for any $y \in A$, and $x_0 \in N(1, \lambda)$. This completes the proof.

3 Finite dimensional characterization on PN-spaces.

Throughout this section, we always assume that (E, F, Δ) is a Menger PN-space, where the t-norm Δ satisfy
\[
\sup_{0 < t < 1} \Delta(t, t) = 1
\]

Definition 3.1. Let (E, F) be a PN-space

(1) The element x_1, x_2, \cdots, x_n of E is linearly dependent, if there exists k_1, k_2, \cdots, k_n not all zero, such that
\[
F_{k_1 \cdot x_1 + k_2 \cdot x_2 + \cdots + k_n \cdot x_n}(t) = H(t),
\]

if finite set x_1, x_2, \cdots, x_n is not linearly dependent, it is called linearly independent.

(2) The element x_1, x_2, \cdots, x_n of E is called a basis of E, if x_1, x_2, \cdots, x_n are linearly independent and if any element of E is a linear combination of the element x_1, x_2, \cdots, x_n.

The E is called n-dimensional, if E has a basis of n elements.

Lemma 3.1. Let (E, F, Δ) be a Menger PN-space, and the t-norm Δ satisfy
\[
\sup_{t < 1} \Delta(t, t) = 1
\]

Then we have the following

(1) For any $x \in E$ and $k \in R$,
\[
P_\lambda(k x) = |k|P_\lambda(x)
\]

(2) For any $\mu \in (0, 1)$, there exists $\lambda \in (0, 1)$ such that for any $x, y \in E$:
\[
P_\mu(x + y) \leq P_\lambda(x) + P_\lambda(y) \tag{3.1}
\]

(3) For any $\mu \in (0, 1)$, there exists $\lambda \in (0, 1)$, and $k_1, k_2 \in R$, such that for any $x_1, x_2 \in E$:
\[
P_\mu(k_1 \cdot x_1 + k_2 \cdot x_2) \leq |k_1|P_\lambda(x_1) + |k_2|P_\lambda(x_2) \tag{3.2}
\]

(4) For any $\mu \in (0, 1)$, there exists $\lambda \in (0, 1)$ such that for any $x_1, x_2, \cdots, x_n \in E$ and $k_1, k_2, \cdots, k_n \in R$.
\[
P_\mu(\sum_{i=1}^{n} k_i \cdot x_i) \leq \sum_{i=1}^{n} |k_i|P_\lambda(x_i) \leq \max_{1 \leq i \leq n} P_\lambda(x_i) \sum_{i=1}^{n} |k_i| \tag{3.3}
\]
Proof. (1) By the definition of \(P_\lambda(x) \), it is easy to prove.

(2) Since \(\sup_{0<t<1} \Delta(t, t) = 1 \), for any \(\mu \in (0, 1) \) there exists \(\lambda > 0 \) such that

\[\Delta(1 - \lambda, 1 - \lambda) > 1 - \mu \]

By the Menger triangle inequality, we have

\[F_{x+y}(P_\lambda(x) + P_\lambda(y) + 2\epsilon) \geq \Delta(F_x(P_\lambda(x) + \epsilon), F_y(P_\lambda(y) + \epsilon)) \geq \Delta(1 - \lambda, 1 - \lambda) > 1 - \mu \]

for every \(\epsilon > 0 \), which implies that

\[P_\mu(x + y) \leq P_\lambda(x) + P_\lambda(y) + 2\epsilon \]

Letting \(\epsilon \to 0 \), we have

\[P_\mu(x + y) \leq P_\lambda(x) + P_\lambda(y) \] \hspace{1cm} (3.4)

The conclusions (3) and (4) follow from the (1) and (2). This completes the proof.

Lemma 3.2. Let \((E, F, \Delta)\) be a Menger PN-space, and the \(t \)-norm \(\Delta \) satisfy

\[\sup_{0<t<1} \Delta(t, t) = 1 \]

Then the following conclusions are equivalent:

1. \(x \) in \(E \) convergence in probabilistic norm to a point \(x_0 \). i.e., \(F_{x-x_0}(t) \to H(t) \) (as \(x \to x_0 \))
2. for each \(\lambda \in (0, 1) \), \(P_\lambda(x - x_0) \to 0 \) (as \(x \to x_0 \))

Proof: (1) and (2) are equivalent, it follows from the following

\[F_{x-x_0}(\epsilon) > 1 - \lambda \Leftrightarrow P_\lambda(x - x_0) < \epsilon \]

By the same way, we can prove the following:

Lemma 3.3. Let \((E, F, \Delta)\) be a Menger PN-space, and the \(t \)-norm \(\Delta \) satisfy

\[\sup_{0<t<1} \Delta(t, t) = 1 \]

Then the following conclusions are equivalent:

1. \(\{x_n\} \) is a Cauchy sequence of \(E \);
2. \(P_\lambda(x_n - x_m) \to 0 \) (as \(n, m \to \infty \))

Lemma 3.4. Let \((E, F, \Delta)\) be a Menger PN-space, and the \(t \)-norm \(\Delta \) satisfy

\[\sup_{0<t<1} \Delta(t, t) = 1 \]

For any \(x_1, x_2, \cdots, x_n \in E \), and \(k_1, k_2, \cdots, k_n \) not all zero, then there exists \(m > 0 \) such that

\[m \sum_{i=1}^{n} |k_i| \leq P_\mu(\sum_{i=1}^{n} k_ix_i) \] \hspace{1cm} (3.5)

where \(P_M(x) \) be defined by (2.5).
Proof. Let $P_\mu(\sum_{i=1}^n k_i x_i) = \overline{P}_\mu, \overline{P}_\mu > 0$ and $M = \max_{1 \leq i \leq n} P_\lambda(x_i)$, by Lemma 3.1 (1)(4), we have

$$1 = \frac{1}{\overline{P}_\mu} P_\mu(\sum_{i=1}^n k_i x_i) = P_\mu(\sum_{i=1}^n \frac{k_i}{\overline{P}_\mu} x_i) \leq \sum_{i=1}^n \frac{|k_i|}{\overline{P}_\mu} P_\lambda(x_i) \leq M \sum_{i=1}^n \frac{|k_i|}{\overline{P}_\mu}$$

Let $K = \max_{1 \leq i \leq n} \frac{|k_i|}{\overline{P}_\mu}, K > 0$, then we have

$$M \sum_{i=1}^n \frac{|k_i|}{\overline{P}_\mu} \leq MKn,$$

which shows that $\frac{1}{\overline{P}_\mu} \sum_{i=1}^n |k_i| = \overline{P}_\mu = P_\mu(\sum_{i=1}^n k_i x_i)$, taking $m = \frac{1}{\overline{P}_\mu}, m > 0$. This completes the proof of conclusion.

Theorem 2. Let (E_n, F, Δ) be a n-dimensional Menger PN-space, and the t-norm Δ satisfy

$$\sup_{0 < t < 1} \Delta(t, t) = 1$$

Let $\{e_1, e_2, \cdots, e_n\}$ be a basis of E_n. For any $x \in E_n$ and $x_0 \in E_n$, assume $x = \sum_{i=1}^n k_i e_i$ and $x_0 = \sum_{i=1}^n k_i^0 e_i$. Then x converges in probabilistic norm to x_0 if and only if $k_i \rightarrow k_i^0 (i = 1, 2, \cdots, n)$.

Proof. Since x converges in probabilistic norm to x_0, $F_{x-x_0}(t) \rightarrow H(t)$, by Lemma 3.2(2), for $\mu \in (0, 1)$ we have $P_\mu(x - x_0) \rightarrow 0$, and by Lemma 3.4 there exists $m > 0$ such that $P_\mu(\sum_{i=1}^n (k_i - k_i^0)e_i) \geq m \sum_{i=1}^n |k_i - k_i^0| > 0$, therefore for every $\iota: |k_i - k_i^0| \rightarrow 0$, i.e., $k_i \rightarrow k_i^0 (i = 1, 2, \cdots, n)$.

Conversely, if $k_i \rightarrow k_i^0 (i = 1, 2, \cdots, n)$ by Lemma 3.1(4), we have

$$0 \leq P_\mu(\sum_{i=1}^n (k_i - k_i^0)e_i) \leq \max_{1 \leq i \leq n} P_\lambda(e_i) \sum_{i=1}^n |k_i - k_i^0|$$

This implies that $P_\mu(\sum_{i=1}^n (k_i - k_i^0)e_i) \rightarrow 0$ or $P_\mu(x - x_0) \rightarrow 0$, and by Lemma 3.2, x converges in probabilistic norm to x_0.

Remark 1: In Menger PN-space (E, F, Δ), any finite dimensional linear subspace must are closed.

Theorem 3. Let (E, F, Δ) be a Menger PN-space and the t-norm Δ satisfy

$$\sup_{0 < t < 1} \Delta(t, t) = 1,$$

Then (E, F, Δ) is finite dimensional if and only if the unit sphere $N(1, \lambda) = \{x; F_x(1) > 1 - \lambda, x \in E\}$ of E is a self-sequentially compact.

Proof. Suppose (E, F, Δ) is finite dimensional, since bounded closed set of real number is a self-sequentially compact, by Theorem 2, for any a sequence $\{x_n\}$ in $N(1, \lambda)$ there exists convergent subsequence $\{x_{n_k}\}$ of which limit x_0 belong to $N(1, \lambda)$, then $N(1, \lambda)$ is a self-sequentially compact.

Conversely, suppose $N(1, \lambda)$ is a self-sequentially compact, but (E, F, Δ) is not finite dimensional. We choose x_1 in $N(1, \lambda), x_1 \neq \theta$, for any $k_1 \in R$, let $E_1 = \{k_1 x_1; x_1 \in \theta$.
Since $N(1, \lambda), k_1 \in R$, by Remark 1, E_1 is a linear closed genuine subset. By Theorem 1 for each $\lambda \in (\lambda_0, 1]$ there exist $x_2 \in E \setminus E_1$, and $x_2 \in N(1, \lambda)$, such that
\[P_\lambda(x_2 - x_1) \geq 1. \]

In this case, x_1 and x_2 are linear independent, in fact, if x_1 and x_2 are dependent, then there exists $k_1, k_2 \in R$, might as well assume $k_2 \neq 0$ such that $F_{k_1 x_1 + k_2 x_2}(t) = H(t)$.

Therefore, we have $k_1 x_1 + k_2 x_2 = \theta, x_2 = -\frac{k_1}{k_2} x_1 \in E_1$, which is a contradiction.

Let $E_2 = \{k_1 x_1 + k_2 x_2: x_2 \in E, x_2 \in E \setminus E_1, k_1, k_2 \in R\}$ by Theorem 1 there exists $x_3 \in E \setminus E_2, x_3 \in N(1, \lambda)$, such that
\[P_\lambda(x_3 - y) \geq 1 \]
where $y \in E_2$. In particular, we choose $y = x_1$ and x_2, we have $P_\lambda(x_3 - x_2) \geq 1$ and $P_\lambda(x_3 - x_2) \geq 1$. By the same way, we can choose $\{x_n\} \in N(1, \lambda)$ such that
\[P_\lambda(x_n - x_m) \geq 1 \]
where $n \neq m$. By Lemma 3.3, $\{x_n\}$ there exists no any convergent subsequence in E, which is a contradiction. This completes the proof.

Theorem 4. Let (E, F, Δ) be a finite dimensional Menger PN-space, where the t-norm Δ satisfy
\[\sup_{0 < t < 1} \Delta(t, t) = 1. \]

Let A be a closed genuine subset of E. Then for each $\lambda \in (\lambda_0, 1]$ there exists an element $x_0 \in N(1, \lambda)$ such that
\[\inf_{y \in A} P_\lambda(x_0 - y) = 1 \]

Proof. Let a sequence $z_n \in E \setminus A$. By corollary 2.1 there exists $y_n \in A$ and $t_0 > 0$ such that
\[1 > F_{z_n - y_n}(t) > F_{z_n - A}(t) - \epsilon \]
for any $\epsilon > 0$ and all $t \geq t_0$. By Theorem 1 for $y_n \in A$ there exists $x_n = \frac{z_n - y_n}{t_n} \in E \setminus A$ and $\lambda_0 \in [0, 1]$ such that
\[x_n \in N(1, \lambda) \text{ and } P_\lambda(x_n - y) \geq 1 \]
for each $\lambda \in (\lambda_0, 1]$ and any $y \in A, P_\lambda$ be defined by (2.3). Assume E is a finite dimensional, by Theorem 3 the $N(1, \lambda)$ is self-sequentially compact, then there exists $x_0 \in N(1, \lambda)$ such that
\[F_{x_n - x_0}(t) \to H(t) \quad (n \to \infty) \]
for all $t > 0$. By Lemma 3.2, we have
\[P_\lambda(x_n - x_0) \to 0 \quad (n \to \infty) \]

Since $x_0 \in N(1, \lambda): F_{x_0}(1) > 1 - \lambda$, hence $P_\lambda(x_0) \leq 1$. By null element $\theta \in A$, we have
\[1 \geq P_\lambda(x_0) = P_\lambda(x_0 - \theta) \geq \inf_{y \in A} P_\lambda(x_0 - y) \]

Next, we prove that $\inf_{y \in A} P_\lambda(x_0 - y) \geq 1$. By (3.6), we have
\[F_{x_n - y}(1) \leq 1 - \lambda. \]
Assume $F_{x_0-y}(1) > 1 - \lambda$, since t-norm Δ satisfy $\sup_{0<t<1} \Delta(t, t) = 1$, for $\lambda > 0$ there exists $\lambda_1 > 0, \lambda_1 \leq \lambda$ such that

$$\Delta(1 - \lambda_1, 1 - \lambda_1) > 1 - \lambda.$$

Since $F_{x_0-y}(t)$ is left-continuous at $t = 1$, there exists $\delta > 0$ such that

$$F_{x_0-y}(1 - \delta) > 1 - \lambda_1 \geq 1 - \lambda.$$

By (3.7) for (δ, λ_1) there exists $N > 0$ such that

$$F_{x_n-x_0}(\delta) > 1 - \lambda_1$$

for all $n > N$. By the Menger triangle inequality, we have

$$1 - \lambda \geq F_{x_0-y}(1) \geq \Delta(F_{x_n-x_0}(\delta), F_{x_0-y}(1 - \delta)) \geq \Delta(1 - \lambda_1, 1 - \lambda_1) > 1 - \lambda$$

which is a contradiction. Then for any $y \in A$ we have

$$F_{x_0-y}(1) \leq 1 - \lambda$$

which implies $\inf_{y \in A} P_{\lambda}(x_0 - y) \geq 1$. This completes the proof.

By Theorem 1,2,3, easily prove the following corollary.

Corollary 4.1. Let (E, F, Δ) be a Menger PN-space, where the t-norm Δ satisfy

$$\sup_{0<t<1} \Delta(t, t) = 1$$

if (E, F, Δ) be finite dimensional, then any bounded closed subset of (E, F, Δ) is self-sequentially compact. Conversely, only if some sphere $N(t, \lambda) = \{x \in E; F_x(t) > 1 - \lambda\}$ be self-sequentially compact, then E is finite dimensional.

References

