BINARY DIGITS EXPANSION OF NUMBERS: HAUSDORFF DIMENSIONS OF INTERSECTIONS OF LEVEL SETS OF AVERAGES' UPPER AND LOWER LIMITS

L. CARBONE*, G. CARDONE† AND A. CORBO ESPOSITO‡

Abstract. The problem of averaging of binary digits of numbers is considered and the sequence of the averages calculated on the first digits is taken into account for every \(t \in [0,1] \). The Hausdorff dimensions of intersections of level sets of upper and lower limits of such sequences are computed.

1 Introduction

In this paper we consider the classic problem of averaging the binary digits of numbers in \([0,1]\) and of studying the (Hausdorff) dimensions of some sets related to these averages.

Let us more precisely consider \(t \in [0,1] \), the sequence \(x(t) = (x_n(t))_n \) of its binary digits (cf. (14) for the precise definition) and the sequence of their averages \(y(t) = (y_n(t))_n \) given by

\[
y_n(t) = \frac{1}{n} \sum_{k=1}^{n} x_k(t), \quad \forall n \in \mathbb{N}
\]

Then it is possible to consider the two (always existing) quantities

\[
\lim\inf_{n \to +\infty} y_n(t), \quad \lim\sup_{n \to +\infty} y_n(t)
\]

and the quantity, when it exists:

\[
\lim_{n \to +\infty} y_n(t).
\]

Let us set

\[
F^\alpha = \left\{ t \in [0,1] : \lim_{n\to+\infty} y_n(t) = \alpha \right\},
\]

\[
R^\alpha = \left\{ t \in [0,1] : \limsup_{n} y_n(t) \leq \alpha \right\}, \quad R_\alpha = \left\{ t \in [0,1] : \liminf_{n} y_n(t) \geq \alpha \right\},
\]

\[
S^\alpha = \left\{ t \in [0,1] : \limsup_{n} y_n(t) \geq \alpha \right\}, \quad S_\alpha = \left\{ t \in [0,1] : \liminf_{n} y_n(t) \leq \alpha \right\}.
\]

There are some classic results about the Hausdorff dimension of these sets we will recall. To this aim let us define the function \(d(t) \) as follows

\[
d(t) = \begin{cases}
-t \log_2(t) + (1-t) \log_2(1-t) & \forall t \in (0,1) \\
0 & \text{if } t = 0,1.
\end{cases}
\]

and denote by \(\dim_H \) the Hausdorff dimension (cf. (10) \(\div \) (12) for the definition).

2000 Mathematics Subject Classification. 40G05, 28A78.

Key words and phrases. averages, upper and lower limits, level sets, Hausdorff dimension.
In [HL] was proved (very well known result) that $F^{1/2}$ contains almost every t in $[0,1]$ (and therefore $\dim_H(F^{1/2}) = 1$).

In [Bs] the Hausdorff dimensions of the sets R^α and R_α was computed; $d(\alpha)$ was proved to be equal to $\dim_H(R^\alpha)$ if $0 \leq \alpha < 1/2$ and to $\dim_H(R_\alpha)$ if $1/2 < \alpha \leq 1$ (in the other cases the sets trivially contains $F^{1/2}$).

In [K] the Hausdorff dimensions of the sets S^α and S_α was computed; $d(\alpha)$ was proved to be equal to $\dim_H(S^\alpha)$ if $0 \leq \alpha < 1/2$ and to $\dim_H(S_\alpha)$ if $1/2 < \alpha \leq 1$ (in the other cases the sets trivially contains $F^{1/2}$).

In [E] was proved that the Hausdorff dimension of the set F^α is equal to $d(\alpha)$ for every $0 \leq \alpha \leq 1$.

Let us now define the sets

\[G^\alpha = \left\{ t \in [0,1] : \limsup_n y_n(t) = \alpha \right\}, \quad G_\alpha = \left\{ t \in [0,1] : \liminf_n y_n(t) = \alpha \right\}. \]

Taking into account the recalled results it easily follows (cf. Proposition 1) that

\[\dim_H(G^\alpha) = \dim_H(G_\alpha) = d(\alpha) \quad \forall \alpha \in [0,1]. \]

Then we analyze the Hausdorff dimension of

\[G_\beta \supseteq G^\alpha \cap G_\beta; \]

by (7) and (8) we obviously have

\[\dim_H(G_\beta) \leq \min\{d(\alpha), d(\beta)\}. \]

Our result consists of proving the reverse inequality in (9), so that the equality

\[\dim_H(G_\beta) = \min\{d(\alpha), d(\beta)\} \]

holds (cf. Theorem 6).

As last remark we observe that our proof is inspired by some fractal techniques (see [F2], p. 55).

Eventually we recall that the Hausdorff dimension is a very efficacious instrument to treat problems of Diophantine approximations. For this subject in addition to the above references see for example [S], [F1, section 8.5] and the more recent papers [DDY] and [DD].

2 Notations and preliminary results Let us denote by $\mathbb{N} = \{1,2,3,...\}$ and by $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Given a finite subset $M \subset \mathbb{N}$ we will denote by card (M) the number of its elements. Given a subset $E \subseteq \mathbb{R}$ we will denote by diam (E) = sup $\{|x-y| : x,y \in E\}$ its diameter and if in addition E is Lebesgue measurable, we denote by $|E|$ its Lebesgue measure.

Let $\delta > 0$ and $s > 0$ real numbers and let us pose, for every $E \subset \mathbb{R}$,

\[\mathcal{H}^s_\delta (E) = \inf \sum_{n=1}^{\infty} \text{diam}^s(B_n) \]

where the family $\{B_n\}_{n \in \mathbb{N}}$ is a countable covering of E with open balls such that $\text{diam}(B_n) < \delta$, $\forall n \in \mathbb{N}$ and the infimum is taken on this kind of families. The s-dimensional Hausdorff outer measure of E is given as usual by

\[\mathcal{H}^s(E) = \sup_{\delta > 0} \mathcal{H}^s_\delta (E) = \lim_{\delta \to 0^+} \mathcal{H}^s_\delta (E), \]
while Hausdorff dimension of E is given by

$$\dim_H(E) = \inf \{ s \in \mathbb{R} : \mathcal{H}^s(E) = 0 \}.$$

Moreover it can be easily proved that (see [F1, p. 7])

$$\mathcal{H}^s(E) = 0 \text{ if } s > \dim_H(E); \quad \mathcal{H}^s(E) = +\infty \text{ if } s < \dim_H(E)$$

Let us observe that slightly different definitions of s-dimensional Hausdorff outer measure can be given, all of them leading to the same result in the definition (12).

Given $t \in \mathbb{R}$, we will denote by $[t]$ the integer part of t, i.e. $[t] = \max \{ m \in \mathbb{Z} : m \leq t \}$ and by I the interval $[0, 1]$.

Let $t \in I$. We define the sequence $x(t) = \{ x_n(t) \}_n$ in the following way

$$x_n(t) = 2^n t - 2^{n-1} t \quad \forall n \in \mathbb{N}.$$

Such sequence is the one of the binary digits of t (the rational numbers of the form $t = \frac{k}{2^m}$ can be expressed in two ways as binary numbers: e.g. $\frac{1}{7} = 0.12$ and also $\frac{1}{7} = 0.012\ldots$; the sequence defined corresponds in this case to the representation with a finite number of digits equal to 1).

For a fixed $n \in \mathbb{N}$, $x_n(t)$ is a step function assuming only values 0 and 1 and it holds

$$x_n(t) = \frac{1}{2} \left(\chi_{[0,1)} + \sum_{j=0}^{2^n-1} (-1)^{j+1} \chi_{[2^{-j}, 2^{-j+1})}(t) \right) \quad \forall t \in I,$$

where for a set A, the function χ_A is the characteristic function of A.

Now let $y(t) = (y_n(t))_n$ the sequence defined by (1); $y_n(t)$ is a step function constant on every interval $[\frac{j}{2^n}, \frac{j+1}{2^n})$, $j = 0, 1, ..., 2^n - 1$, and takes only values $\frac{k}{n}$, $k = 0, 1, ..., n$.

Moreover

$$\left| \left\{ t : y_n(t) = \frac{k}{n} \right\} \right| = \binom{n}{k} 2^{-n},$$

where $\binom{n}{k}$ is the binomial coefficient of n over k.

Obvious relations among the sets defined in the introduction are

$$F^\alpha = G^\alpha_\alpha, \quad G^\alpha_\beta = G^\alpha \cap G_\beta, \quad G^\alpha = \cup_{0 \leq \beta \leq \alpha} G^\alpha_\beta, \quad G_\alpha = \cup_{0 \leq \beta \leq 1} G^\alpha_\beta,$$

$$R^\alpha = \cup_{0 \leq \beta \leq \alpha} G^\beta, \quad R_\alpha = \cup_{0 \leq \beta \leq 1} G_\beta, \quad S^\alpha = \cup_{0 \leq \beta \leq 1} G^\beta, \quad S_\alpha = \cup_{0 \leq \beta \leq \alpha} G_\beta$$

for every α and β in $[0, 1]$.

Therefore obvious relations among the Hausdorff dimensions of such sets are

$$\dim_H(F^\alpha) \leq \dim_H(G^\alpha) \leq \min \{ \dim_H(S^\alpha) \text{,} \dim_H(R^\alpha) \},$$

$$\dim_H(F^\alpha) \leq \dim_H(G_\alpha) \leq \min \{ \dim_H(S_\alpha) \text{,} \dim_H(R_\alpha) \},$$

$$\dim_H(G^\alpha_\beta) \leq \min \{ \dim_H(G^\alpha) \text{,} \dim_H(G_\beta) \}$$

for every α and β in I.

Then, using the results recalled in the introduction, we obtain
Proposition 1 Let $\alpha, \beta \in [0,1]$ and let F^α, G_α, G^α, R_α, R^α, S_α, S^α, G_β^α be defined by (4), (6) and (8). Then

$$
d(\alpha) = \dim_H(F^\alpha) = \dim_H(G^\alpha) = \min \{\dim_H(S^\alpha), \dim_H(R^\alpha)\},$$

(18)

$$
d(\alpha) = \dim_H(F^\alpha) = \dim_H(G_\alpha) = \min \{\dim_H(S_\alpha), \dim_H(R_\alpha)\},$$

$$
dim_H(G_\beta^\alpha) \leq \min \{\dim_H(G^\alpha), \dim_H(G_\beta)\} = \min \{d(\alpha), d(\beta)\}.
$$

For sake of completeness we give the proof of the following technical lemma.

Lemma 2 Let m, n be natural numbers such that $n \geq 1$, $0 \leq m \leq n$; let d the function defined by (5). Then

$$
n d \left(\frac{m}{n} \right) - \frac{1}{2} \log_2(n) - 1 \leq \log_2 \left(\frac{n}{m} \right) \leq n d \left(\frac{m}{n} \right).
$$

Proof. The thesis is trivial if $m = 0$ or $m = n$; then we can assume $0 < m < n$.

By the inequalities (cf. [Bu])

$$
n^n \sqrt{2\pi n e^{-n + \frac{1}{12n}}} < n! < n^n \sqrt{2\pi n e^{-n + \frac{1}{12n}}},
$$

we have

$$\binom{n}{m} \leq \frac{n^n \sqrt{2\pi n e^{-n + \frac{1}{12n}}}}{m^n \sqrt{2\pi (n-m)e^{-(n-m)}} \sqrt{2\pi (n-m)}} = \frac{n^n e^{\frac{n}{12n}}}{m^n (n-m)^{n-m} e^{-(n-m)}} \leq \frac{n^n}{m^n (n-m)^{n-m} e^{-(n-m)}} = \frac{(\frac{m}{n})^m n^m (1 - \frac{m}{n})^{n-m}}{n^n} = \left(\frac{m}{n} \right)^m (1 - \frac{m}{n})^{n-m};
$$

and

$$\binom{n}{m} \geq \frac{n^n \sqrt{2\pi n e^{-n}}}{m^n \sqrt{2\pi (n-m)e^{-(n-m)}} \sqrt{2\pi (n-m)}} = \frac{n^n e^{\frac{n}{12n}}}{m^n (n-m)^{n-m} e^{-(n-m)}} \geq \frac{n^n}{m^n (n-m)^{n-m} e^{-(n-m)}} = \left(\frac{m}{n} \right)^m (1 - \frac{m}{n})^{n-m} e^{-(n-m)}}
$$

taking the log$_2$ in (20) and (21) we obtain

$$
n d \left(\frac{m}{n} \right) - \frac{1}{2} \log_2(n) - 1 \leq \log_2 \left(\frac{n}{m} \right) \leq n d \left(\frac{m}{n} \right)
$$

and the thesis is proved. \square

3 Main result. We firstly give a simple construction of a generalization of Cantor like subsets of $[0,1]$ (see also on this subject the bibliographical remarks contained in [F1, section 1.5]).
Definition 3 Let us consider a sequence \(\{k_h\} \subseteq \mathbb{N} \) and \(r \in \mathbb{N} \) such that

\[
1 \leq k_h < r \quad \forall h \in \mathbb{N}.
\]

Furthermore, for every \(h \in k_h \) we consider a \(k_h \)-tuple of integers between 0 and \(r - 1 \)

\[
0 \leq p_h^1 < p_h^2 < \ldots < p_h^{k_h} < r.
\]

Let us denote

\[
P_h = \left(p_h^1, p_h^2, \ldots, p_h^{k_h}\right) \quad \text{and} \quad P_r = (P_h)_h.
\]

Let us, for short, denote \([0, 1]\) by \(I \) and build the following sequence of sets \(\{C_h\}_h \)

\[
C_0 = I, \quad C_1 = \bigcup_{i_1=1}^{k_1} \left[\frac{p_{i_1}^1}{r} + \frac{1}{r} \right], \quad C_2 = \bigcup_{i_1=1}^{k_1} \bigcup_{i_2=1}^{k_2} \left[\frac{p_{i_1}^1}{r} + \frac{1}{r} \left(\frac{p_{i_2}^2}{r} + \frac{1}{r} I \right) \right], \quad \ldots
\]

(22) \[C_h = \bigcup_{i_1=1}^{k_1} \bigcup_{i_2=1}^{k_2} \ldots \bigcup_{i_h=1}^{k_h} \left[\frac{p_{i_1}^1}{r} + \frac{1}{r} \left(\frac{p_{i_2}^2}{r} + \frac{1}{r} \left(\ldots \left(\frac{p_{i_h}^h}{r} + \frac{1}{r} I \right) \right) \right) \right], \quad \ldots
\]

and define

(23) \[C = C(P_r) = \cap_{h=0}^{+\infty} C_h. \]

In other words \(C \) is a set obtained in a way similar to the Cantor set.

Every \(C_h \) is an essential disjoint union of \(k_1 k_2 \ldots k_h \) intervals of length \(r^{-h} \); you obtain \(C_{h+1} \) from \(C_h \) performing the following steps:

a) divide \(I \) in \(r \) intervals;

b) choose \(k_{h+1} \) intervals among them according to (order) numbers \(p_{h+1}^1, \ldots, p_{h+1}^{k_{h+1}} \);

c) scale down the set obtained in b) to the length of the intervals of \(C_h \);

d) replace every interval of \(C_h \) with the set obtained in c), translated by the left endpoint of the interval.

Lemma 4 Let \(C \) be the set given in definition 3. Then

(24) \[\dim_H(C) = \liminf_h \frac{\log(k_1 k_2 \ldots k_h)}{h \log r}. \]

Proof. We first prove the inequality

(25) \[\dim_H(C) \leq \liminf_h \frac{\log(k_1 k_2 \ldots k_h)}{h \log r}. \]

Let us pose \(\lambda = \liminf_h \frac{\log(k_1 k_2 \ldots k_h)}{h \log r} \). Let \(\varepsilon > 0; \) let \(\{h_j\}_j \) an indexes subsequence and \(j_0 \)

such that \(\frac{\log(k_1 k_2 \ldots k_{h_j})}{h_j \log r} < \lambda + \varepsilon \) for every \(j > j_0 \).

Being \(k_1 k_2 \ldots k_{h_j} \left(r^{h_j} \right)^{-\frac{\log(k_1 k_2 \ldots k_{h_j})}{h_j \log r}} = 1 \) we get \(k_1 k_2 \ldots k_{h_j} \left(r^{h_j} \right)^{-(\lambda+\varepsilon)} < 1 \) for every \(j > j_0 \).
Since C_{h_j} is an essential disjoint union of $k_1 k_2 \cdots k_{h_j}$ intervals of length r^{-h_j}, fixed $\delta_j > r^{-h_j}$, C_{h_j} can be covered with open intervals $B^1_{h_j}, B^2_{h_j}, \ldots, B^{h_j}_{h_j}$ of diameter δ_j such that

\begin{equation}
\mathcal{H}^{\lambda+\varepsilon}(C) \leq 1 \quad \forall j > j_0.
\end{equation}

By (26), taking the sequence δ_j decreasing to 0, we obtain $\mathcal{H}^{\lambda+\varepsilon}(C) \leq 1$. By (13) we get $\dim_H(C) \leq \lambda + \varepsilon$ and, by the arbitrarity of $\varepsilon > 0$, the inequality (25).

Let now prove the opposite inequality.

If $\lambda = 0$ the thesis is obvious being non negative the Hausdorff dimension.

Otherwise, let $\varepsilon > 0$, then there exists $h_\varepsilon \in \mathbb{N}$ such that

\begin{equation}
h \geq h_\varepsilon \implies \frac{\log(k_1 k_2 \cdots k_{h_\varepsilon})}{h \log r} > \lambda - \varepsilon.
\end{equation}

Let $\delta > 0$ be such that

\begin{equation}
\delta < \frac{1}{r^{h_\varepsilon}};
\end{equation}

let $\{B_j\}_j$ a countable covering of C with open balls such that $\text{diam} (B_j) < \delta$ for every $j \in \mathbb{N}$. By the compactness of C we can assume that exists $\nu \in \mathbb{N}$ such that $\{B_j\}_{1 \leq j \leq \nu}$ is still a covering of C. For every $1 \leq j \leq \nu$ there exists $h_j \geq h_\varepsilon$ such that

\begin{equation}
\frac{1}{r^{h_j}} \leq \text{diam} (B_j) < \frac{1}{r^{h_j-1}}.
\end{equation}

Let $m = \max \{ h_j : 1 \leq j \leq \nu \}$ and observe that C is contained in C_m that in turn is the essential disjoint union of $k_1 k_2 \cdots k_m$ intervals of length r^{-m}, $C_m = C_1^m \cup C_2^m \cup \cdots C_m^m$.

Let us define

\begin{equation}
\mu_j = \frac{\text{card} \{ i = 1, \ldots, k_1 k_2 \cdots k_m : B_j \cap C_i^m \} }{k_1 k_2 \cdots k_m}.
\end{equation}

Since for every $i = 1, \ldots, k_1 k_2 \cdots k_m$ the interval C_i^m contains points of C and $\{B_j\}_{1 \leq j \leq \nu}$ is a covering of C we have

\begin{equation}
\sum_{j=1}^{\nu} \mu_j \geq 1.
\end{equation}

If we divide $[0,1]$ in r^{h_j-1} intervals, B_j can have nonempty intersection with at most two such intervals, and each of these intervals contains $k_{h_j}, k_{h_j+1} \cdots k_m$ intervals of C_m.

By (28) and (27) we have

\begin{equation}
\mu_j \leq \frac{2k_{h_j} k_{h_j+1} \cdots k_m}{k_1 k_2 \cdots k_m} \leq \frac{2}{k_1 k_2 \cdots k_{h_j-1}} \leq \frac{2r}{k_1 k_2 \cdots k_{h_j}} = 2r \left(\frac{1}{r^{h_j}} \right)^{\lambda \log \frac{k_1 k_2 \cdots k_{h_j}}{h_j \log r}} \leq 2r (\text{diam}(B_j))^{\lambda-\varepsilon}.
\end{equation}

Then (30) and (29) give

\begin{equation}
\sum_{j=1}^{\nu} (\text{diam}(B_j))^{\lambda-\varepsilon} \geq \frac{1}{2r} \sum_{j=1}^{\nu} \mu_j = \frac{1}{2r} > 0;
\end{equation}
then we obtain $H^{\lambda - \varepsilon}(C) \geq \frac{1}{2^r} > 0$ for every $\delta > 0$, so by (13), $\dim_H(C) \geq \lambda - \varepsilon$ and, since $\varepsilon > 0$ is arbitrary

$$\dim_H(C) \geq \liminf_h \frac{\log(k_1 k_2 \ldots k_h)}{h \log r}.$$

By inequalities (25) and (31) we have the thesis. □

Lemma 5 Let $q, p_1, p_2 \in \mathbb{N}$, $p_1 < q$, $p_2 < q$, consider a strictly increasing sequence of numbers $\{m_i\} \subset \mathbb{N}_0$ such that $m_0 = 0$ and let us define

$$t \in C \iff \begin{cases} \sum_{j=1}^{q} x_{hq+j}(t) = p_1 & m_{2i} \leq h < m_{2i+1} \\ \sum_{j=1}^{q} x_{hq+j}(t) = p_2 & m_{2i+1} \leq h < m_{2i+2} \end{cases} \quad \forall i \in \mathbb{N}_0.$$

Then

$$\dim_H(C) \geq \min \left\{ d\left(\frac{p_1}{q}\right), d\left(\frac{p_2}{q}\right) \right\} - \frac{1}{2q} \log_2(q) - \frac{1}{q}.$$

Proof. Let $t_0 \in C$ and let us observe that, taking $C_0 = [0, 1]$ and

$$C_h = \left\{ t \in [0, 1] : \sum_{j=1}^{q} x_{hq+j}(t) = \sum_{j=1}^{q} x_{hq+j}(t_0), \quad 0 \leq l \leq h - 1 \right\}$$

for every $h \in \mathbb{N}$.

The sets C_h are constructed as in (22) and $C = \cap_{h=1}^{\infty} C_h$ like in (23), where $r = 2^q$ and k_h assume only the values $\left(\frac{q}{p_1}\right)$ or $\left(\frac{q}{p_2}\right)$. Obviously $k_h \geq \min \left\{ \left(\frac{q}{p_1}\right), \left(\frac{q}{p_2}\right) \right\}$ for every $h \in \mathbb{N}$.

Therefore, by Lemma 4, we have

$$\dim_H(C) \geq \liminfty_h \frac{\log(k_1 k_2 \ldots k_h)}{h \log 2^q} \geq \log_2 \left(\min \left\{ \left(\frac{q}{p_1}\right), \left(\frac{q}{p_2}\right) \right\} \right).$$

By Lemma 2 we get

$$q d\left(\frac{p_i}{q}\right) - \frac{1}{2} \log_2(q) - 1 \leq \log_2 \left(\frac{q}{p_i}\right) \leq q d\left(\frac{p_i}{q}\right) \quad i = 1, 2.$$

Then (35) and (36) give the thesis. □

Theorem 6 Let G^α_β be the set defined in (8). Then

$$\dim_H(G^\alpha_\beta) = \min \left\{ d(\alpha), d(\beta) \right\}.$$

Proof. By Proposition 1 we only have to prove

$$\dim_H(G^\alpha_\beta) \geq \min \left\{ d(\alpha), d(\beta) \right\}.$$
If \(\alpha = \beta \), (37) becomes

\[
\dim_H (F^\alpha) \geq d (\alpha),
\]

and it holds true (cf. again Proposition 1), while if \(\alpha = 1 \) or \(\beta = 0 \) the thesis is trivial.

Assume now that \(0 < \beta < \alpha < 1 \).

Let \(0 < \varepsilon < \min \{ \beta, 1 - \alpha \} \). Then there exists \(\eta \in \mathbb{N} \) such that for every \(q \geq \eta \) we have

\[
\frac{1}{2} \log_{\frac{1}{q}} + \frac{1}{q} < \varepsilon.
\]

Let us observe that there exist \(p_1, p_2, q \in \mathbb{N} \), with \(q \geq \eta \), such that

\[
0 < \beta - \varepsilon < \frac{p_1}{q} < \beta < \frac{p_1 + 1}{q} < \frac{p_2 - 1}{q} < \alpha < \frac{p_2}{q} < \alpha + \varepsilon < 1
\]

Let us observe that for every choice of the sequence \((39) \)

\[
\{ j : j < m \text{ and } d(p_j) > d(\beta) - \varepsilon, \quad d(p_{j+1}) > d(\alpha) - \varepsilon \}
\]

Let us take \(C \) defined as in Lemma (5). By (38), (33) becomes

(39) \[
\dim_H (C) \geq \min \left\{ d \left(\frac{p_1}{q} \right), d \left(\frac{p_2}{q} \right) \right\} - \varepsilon \geq \min \{ d(\alpha), d(\beta) \} - 2\varepsilon
\]

for every choice of the sequence \(\{ m_i \} \) in (32).

Let us now show that, for a suitable choice of the sequence \(\{ m_i \} \) in (32) we have

(40) \[
C \subseteq G^{\alpha}_{\beta}.
\]

We take \(m_0 = 0 \) and, for every \(i \in \mathbb{N} \), by induction we assume to already have defined \(m_1, \ldots, m_{2i} \).

Then we denote by \(r_i = \sum_{h=1}^{i} (m_{2h-1} - m_{2h-2}) \) and \(s_i = \sum_{h=1}^{i} (m_{2h} - m_{2h-1}) \) and define

\[
\begin{cases}
 m_{2i+1} = \min \left\{ j : j > m_{2i} \text{ and } \frac{pr_1 + ps_1 + p_j (j - m_{2i})}{j} < \beta \right\} \\
 m_{2i+2} = \min \left\{ j : j > m_{2i+1} \text{ and } \frac{pr_1 + ps_2 + p_j (j - m_{2i+1})}{j} > \alpha \right\}
\end{cases}
\]

Let us observe that

\[
y_{(j+1)q} = \frac{y_{jq} (jq) + ps}{(j + 1)q} = \frac{jq}{(j+1)q} y_{jq} + \frac{q}{(j+1)q} \frac{ps}{q}
\]

where

\[
\begin{align*}
 s &= 1, \quad \text{if } m_{2i} \leq j < m_{2i+1}, \\
 s &= 2, \quad \text{if } m_{2i+1} \leq j < m_{2i+2}.
\end{align*}
\]

So \(y_{(j+1)q} \) is a convex combination of \(y_{jq} \) and \(\frac{p_1}{q} \) if \(m_{2i} \leq j < m_{2i+1} \), and of \(y_{jq} \) and \(\frac{p_2}{q} \) if \(m_{2i+1} \leq j < m_{2i+2} \).

By recalling that \(\frac{p_1}{q} < \beta \) and \(\frac{p_2}{q} > \alpha \), \(y_{m_{2i}q} > \alpha \) and \(y_{m_{2i+1}q} < \beta \), respectively beginning from \(j = m_{2i} \) and \(j = m_{2i+1} \), we obtain

(42) \[
\begin{align*}
 y_{jq} (t) &> y_{(j+1)q} (t) \quad \text{if } m_{2i} \leq j < m_{2i+1} \\
 y_{jq} (t) &< y_{(j+1)q} (t) \quad \text{if } m_{2i+1} \leq j \leq m_{2i+2},
\end{align*}
\]
so we have

\begin{align}
\text{(43)} \quad y_{m_{2i+1}q}(t) & \leq y_{jq}(t) \leq y_{m_{2i}q}(t) \quad m_{2i} \leq j \leq m_{2i+1} \\
& \text{and } y_{m_{2i+1}q}(t) \leq y_{jq}(t) \leq y_{m_{2i+2}q}(t) \quad m_{2i+1} \leq j \leq m_{2i+2}.
\end{align}

On the other side, by the definition of the sequence \(\{m_i\}_i\) (cf. (41)), we have

\[y_{m_{2i-1}q}(t) \leq \alpha < y_{m_{2i}q}(t).\]

But

\[y_{m_{2i}q}(t) \leq \frac{y_{(m_{2i-1})q}(t) \cdot (m_{2i} - 1)q + q}{m_{2i}q}\]

and so

\begin{align}
\text{(44)} \quad \alpha < y_{m_{2i}q}(t) \leq \frac{\alpha (m_{2i} - 1) + 1}{m_{2i}}.
\end{align}

In a similar way we obtain

\begin{align}
\text{(45)} \quad \beta \frac{(m_{2i+1} - 1)}{m_{2i+1}} \leq y_{m_{2i+1}q}(t) < \beta.
\end{align}

By (43), (44) and (45), we easily obtain

\begin{align}
\text{(46)} \quad \limsup_j y_{jq}(t) = \alpha \\
& \liminf_j y_{jq}(t) = \beta
\end{align}

Eventually

\begin{align}
\text{(47)} \quad \frac{[n/q]q \ y_{[n/q]q}(t)}{n} \leq y_n(t) \leq \frac{[n/q]q \ y_{[n/q]q}(t) + (n - [n/q]q)q}{n}.
\end{align}

By (46) and (47) we have (40).

By (40) and (39) we get

\[\dim_H(G^\alpha) \geq \min \{d(\alpha), d(\beta)\} - \varepsilon\]

and, by the arbitrariness of \(\varepsilon\), we obtain the thesis. \(\square\)

References

* Università di Napoli "Federico II" - Dipartimento di Matematica e Applicazioni "R.Caccioppoli" - Compl. di Monte S. Angelo, via Cintia, 80126 Napoli, Italy - e-mail: carbone@biol.dgbm.unina.it,

† Seconda Università di Napoli- Dipartimento di Ingegneria Civile - Via Roma, 29 - 81031 Aversa (CE), Italy - e-mail: giuseppe.cardone@unina2.it,

‡ Università di Cassino - Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’Informazione e Matematica Industriale - Via G.Di Biasio, 43 - 03043 Cassino (FR), Italy - e-mail: corbo@unicas.it