# BINARY DIGITS EXPANSION OF NUMBERS: HAUSDORFF DIMENSIONS OF INTERSECTIONS OF LEVEL SETS OF AVERAGES' UPPER AND LOWER LIMITS 

L.Carbone*, G.Cardone ${ }^{\dagger}$ and A.Corbo Esposito ${ }^{\ddagger}$

Received December 16, 2003


#### Abstract

The problem of averaging of binary digits of numbers is considered and the sequence of the averages calculated on the first digits is taken into account for every $t \in[0,1]$. The Hausdorff dimensions of intersections of level sets of upper and lower limits of such sequences are computed.


1 Introduction In this paper we consider the classic problem of averaging the binary digits of numbers in $[0,1]$ and of studying the (Hausdorff) dimensions of some sets related to these averages.

Let us more precisely consider $t \in[0,1]$, the sequence $x(t)=\left(x_{n}(t)\right)_{n}$ of its binary digits (cf. (14) for the precise definition) and the sequence of their averages $y(t)=\left(y_{n}(t)\right)_{n}$ given by

$$
\begin{equation*}
y_{n}(t)=\frac{1}{n} \sum_{k=1}^{n} x_{k}(t), \forall n \in \mathbf{N} \tag{1}
\end{equation*}
$$

Then it is possible to consider the two (always existing) quantities

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} y_{n}(t), \quad \limsup _{n \rightarrow+\infty} y_{n}(t) \tag{2}
\end{equation*}
$$

and the quantity, when it exists:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} y_{n}(t) \tag{3}
\end{equation*}
$$

Let us set

$$
\begin{align*}
& F^{\alpha} \doteq\left\{t \in[0,1]: \lim _{n} y_{n}(t)=\alpha\right\} \\
& R^{\alpha} \doteq\left\{t \in[0,1]: \limsup _{n} y_{n}(t) \leq \alpha\right\}, R_{\alpha} \doteq\left\{t \in[0,1]: \liminf _{n} y_{n}(t) \geq \alpha\right\}  \tag{4}\\
& S^{\alpha} \doteq\left\{t \in[0,1]: \limsup _{n} y_{n}(t) \geq \alpha\right\}, S_{\alpha} \doteq\left\{t \in[0,1]: \liminf _{n} y_{n}(t) \leq \alpha\right\} .
\end{align*}
$$

There are some classic results about the Hausdorff dimension of these sets we will recall. To this aim let us define the function $d(t)$ as follows

$$
d(t) \doteq \begin{cases}-\left(t \log _{2}(t)+(1-t) \log _{2}(1-t)\right), & \forall t \in(0,1)  \tag{5}\\ 0, & \text { if } t=0,1 .\end{cases}
$$

and denote by $\operatorname{dim}_{H}$ the Hausdorff dimension (cf. (10) $\div$ (12) for the definition).

[^0]In [HL] was proved (very well known result) that $F^{1 / 2}$ contains almost every $t$ in $[0,1]$ (and therefore $\operatorname{dim}_{H}\left(F^{1 / 2}\right)=1$ ).

In [Bs] the Hausdorff dimensions of the sets $R^{\alpha}$ and $R_{\alpha}$ was computed; $d(\alpha)$ was proved to be equal to $\operatorname{dim}_{H}\left(R^{\alpha}\right)$ if $0 \leq \alpha<1 / 2$ and to $\operatorname{dim}_{H}\left(R_{\alpha}\right)$ if $1 / 2<\alpha \leq 1$ (in the other cases the sets trivially contains $F^{1 / 2}$ ).

In $[\mathrm{K}]$ the Hausdorff dimensions of the sets $S^{\alpha}$ and $S_{\alpha}$ was computed; $d(\alpha)$ was proved to be equal to $\operatorname{dim}_{H}\left(S_{\alpha}\right)$ if $0 \leq \alpha<1 / 2$ and to $\operatorname{dim}_{H}\left(S^{\alpha}\right)$ if $1 / 2<\alpha \leq 1$ (in the other cases the sets trivially contains $F^{1 / 2}$ ).

In $[\mathrm{E}]$ was proved that the Hausdorff dimension of the set $F^{\alpha}$ is equal to $d(\alpha)$ for every $0 \leq \alpha \leq 1$.

Let us now define the sets

$$
\begin{equation*}
G^{\alpha} \doteq\left\{t \in[0,1]: \limsup _{n} y_{n}(t)=\alpha\right\}, \quad G_{\alpha} \doteq\left\{t \in[0,1]: \liminf _{n} y_{n}(t)=\alpha\right\} \tag{6}
\end{equation*}
$$

Taking into account the recalled results it easily follows (cf. Proposition 1) that

$$
\begin{equation*}
\operatorname{dim}_{H}\left(G^{\alpha}\right)=\operatorname{dim}_{H}\left(G_{\alpha}\right)=d(\alpha) \quad \forall \alpha \in[0,1] \tag{7}
\end{equation*}
$$

Then we analyze the Hausdorff dimension of

$$
\begin{equation*}
G_{\beta}^{\alpha} \doteq G^{\alpha} \cap G_{\beta} \tag{8}
\end{equation*}
$$

by (7) and (8) we obviously have

$$
\begin{equation*}
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right) \leq \min \{d(\alpha), d(\beta)\} \tag{9}
\end{equation*}
$$

Our result consists of proving the reverse inequality in (9), so that the equality

$$
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right)=\min \{d(\alpha), d(\beta)\}
$$

holds (cf. Theorem 6).
As last remark we observe that our proof is inspired by some fractal techniques (see [F2], p. 55).

Eventually we recall that the Hausdorff dimension is a very efficacious instrument to treat problems of Diophantine approximations. For this subject in addition to the above references see for example $[\mathrm{S}]$, $[\mathrm{F} 1$, section 8.5$]$ and the more recent papers [DDY] and [DD].

2 Notations and preliminary results Let us denote by $\mathbf{N}=\{1,2,3, \ldots\}$ and by $\mathbf{N}_{0}=$ $\mathbf{N} \cup\{0\}$. Given a finite subset $M \subset \mathbf{N}$ we will denote by card $(M)$ the number of its elements. Given a subset $E \subseteq \mathbf{R}$ we will denote by $\operatorname{diam}(E)=\sup \{|x-y|: x, y \in E\}$ its diameter and if in addition $E$ is Lebesgue measurable, we denote by $|E|$ its Lebesgue measure.

Let $\delta>0$ and $s>0$ real numbers and let us pose, for every $E \subset \mathbf{R}$,

$$
\begin{equation*}
\mathcal{H}_{\delta}^{s}(E)=\inf \sum_{n=1}^{\infty} \operatorname{diam}^{s}\left(B_{n}\right) \tag{10}
\end{equation*}
$$

where the family $\left\{B_{n}\right\}_{n \in \mathbf{N}}$ is a countable covering of $E$ with open balls such that $\operatorname{diam}\left(B_{n}\right)<$ $\delta, \forall n \in \mathbf{N}$ and the infimum is taken on this kind of families. The $s$-dimensional Hausdorff outer measure of $E$ is given as usual by

$$
\begin{equation*}
\mathcal{H}^{s}(E)=\sup _{\delta>0} \mathcal{H}_{\delta}^{s}(E)=\lim _{\delta \rightarrow 0^{+}} \mathcal{H}_{\delta}^{s}(E) \tag{11}
\end{equation*}
$$

while Hausdorff dimension of $E$ is given by

$$
\begin{equation*}
\operatorname{dim}_{H}(E)=\inf \left\{s \in \mathbf{R}: \mathcal{H}^{s}(E)=0\right\} . \tag{12}
\end{equation*}
$$

Moreover it can be easily proved that (see [F1, p.7])

$$
\begin{equation*}
\mathcal{H}^{s}(E)=0 \text { if } s>\operatorname{dim}_{H}(E) ; \quad \mathcal{H}^{s}(E)=+\infty \text { if } s<\operatorname{dim}_{H}(E) \tag{13}
\end{equation*}
$$

Let us observe that slightly different definitions of $s$-dimensional Hausdorff outer measure can be given, all of them leading to the same result in the definition (12).

Given $t \in \mathbf{R}$, we will denote by $[t]$ the integer part of $t$, i.e. $[t]=\max \{m \in \mathbf{Z}: m \leq t\}$ and by $I$ the interval $[0,1]$.

Let $t \in I$. We define the sequence $x(t)=\left\{x_{n}(t)\right\}_{n}$ in the following way

$$
\begin{equation*}
x_{n}(t)=\left[2^{n} t\right]-2\left[2^{n-1} t\right] \quad \forall n \in \mathbf{N} . \tag{14}
\end{equation*}
$$

Such sequence is the one of the binary digits of $t$ (the rational numbers of the form $\frac{p}{2^{m}}$ can be expressed in two ways as binary numbers: e.g. $\frac{1}{2}=0,1_{2}$ and also $\frac{1}{2}=0,0 \overline{1}_{2}$; the sequence defined corresponds in this case to the representation with a finite number of digits equal to 1 ).

For a fixed $n \in \mathbf{N}, x_{n}(t)$ is a step function assuming only values 0 and 1 and it holds

$$
x_{n}(t)=\frac{1}{2}\left(\chi_{[0,1)}+\sum_{j=0}^{2^{n}-1}(-1)^{j+1} \chi_{\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right)}(t)\right) \quad \forall t \in I
$$

where for a set $A$, the function $\chi_{A}$ is the characteristic function of $A$.
Now let $y(t)=\left(y_{n}(t)\right)_{n}$ the sequence defined by (1); $y_{n}(t)$ is a step function constant on every interval $\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right), j=0,1, \ldots, 2^{n}-1$, and takes only values $\frac{k}{n}, k=0,1, \ldots, n$.

Moreover

$$
\begin{equation*}
\left|\left\{t: y_{n}(t)=\frac{k}{n}\right\}\right|=\binom{n}{k} 2^{-n} \tag{15}
\end{equation*}
$$

where $\binom{n}{k}$ is the binomial coefficient of $n$ over $k$.
Obvious relations among the sets defined in the introduction are

$$
\begin{align*}
& F^{\alpha}=G_{\alpha}^{\alpha}, \quad G_{\beta}^{\alpha}=G^{\alpha} \cap G_{\beta}, \quad G^{\alpha}=\cup_{0 \leq \beta \leq \alpha} G_{\beta}^{\alpha}, \quad G_{\alpha}=\cup_{\alpha \leq \beta \leq 1} G_{\alpha}^{\beta}  \tag{16}\\
& R^{\alpha}=\cup_{0 \leq \beta \leq \alpha} G^{\beta}, \quad R_{\alpha}=\cup_{\alpha \leq \beta \leq 1} G_{\beta}, \quad S^{\alpha}=\cup_{\alpha \leq \beta \leq 1} G^{\beta}, \quad S_{\alpha}=\cup_{0 \leq \beta \leq \alpha} G_{\beta}
\end{align*}
$$

for every $\alpha$ and $\beta$ in $[0,1]$.
Therefore obvious relations among the Hausdorff dimensions of such sets are

$$
\begin{align*}
\operatorname{dim}_{H}\left(F^{\alpha}\right) & \leq \operatorname{dim}_{H}\left(G^{\alpha}\right) \leq \min \left\{\operatorname{dim}_{H}\left(S^{\alpha}\right), \operatorname{dim}_{H}\left(R^{\alpha}\right)\right\}, \\
\operatorname{dim}_{H}\left(F^{\alpha}\right) & \leq \operatorname{dim}_{H}\left(G_{\alpha}\right) \leq \min \left\{\operatorname{dim}_{H}\left(S_{\alpha}\right), \operatorname{dim}_{H}\left(R_{\alpha}\right)\right\},  \tag{17}\\
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right) & \leq \min \left\{\operatorname{dim}_{H}\left(G^{\alpha}\right), \operatorname{dim}_{H}\left(G_{\beta}\right)\right\}
\end{align*}
$$

for every $\alpha$ and $\beta$ in $I$.
Then, using the results recalled in the introduction, we obtain

Proposition 1 Let $\alpha, \beta \in[0,1]$ and let $F^{\alpha}, G_{\alpha}, G^{\alpha}, R_{\alpha}, R^{\alpha}, S_{\alpha}, S^{\alpha}, G_{\beta}^{\alpha}$ be defined by (4), (6) and (8). Then

$$
\begin{align*}
d(\alpha) & =\operatorname{dim}_{H}\left(F^{\alpha}\right)=\operatorname{dim}_{H}\left(G^{\alpha}\right)=\min \left\{\operatorname{dim}_{H}\left(S^{\alpha}\right), \operatorname{dim}_{H}\left(R^{\alpha}\right)\right\} \\
d(\alpha) & =\operatorname{dim}_{H}\left(F^{\alpha}\right)=\operatorname{dim}_{H}\left(G_{\alpha}\right)=\min \left\{\operatorname{dim}_{H}\left(S_{\alpha}\right), \operatorname{dim}_{H}\left(R_{\alpha}\right)\right\}  \tag{18}\\
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right) & \leq \min \left\{\operatorname{dim}_{H}\left(G^{\alpha}\right), \operatorname{dim}_{H}\left(G_{\beta}\right)\right\}=\min \{d(\alpha), d(\beta)\}
\end{align*}
$$

For sake of completeness we give the proof of the following technical lemma.
Lemma 2 Let $m, n$ be natural numbers such that $n \geq 1,0 \leq m \leq n$; let $d$ the function defined by (5). Then

$$
n d\left(\frac{m}{n}\right)-\frac{1}{2} \log _{2}(n)-1 \leq \log _{2}\binom{n}{m} \leq n d\left(\frac{m}{n}\right)
$$

Proof. The thesis is trivial if $m=0$ or $m=n$; then we can assume $0<m<n$.
By the inequalities (cf. [Bu])

$$
\begin{equation*}
n^{n} \sqrt{2 \pi n} e^{-n+\frac{1}{12 n+\frac{1}{4}}}<n!<n^{n} \sqrt{2 \pi n} e^{-n+\frac{1}{12 n}} \tag{19}
\end{equation*}
$$

we have

$$
\begin{align*}
\binom{n}{m} & \leq \frac{n^{n} \sqrt{2 \pi n} e^{-n+\frac{1}{12 n}}}{m^{m} \sqrt{2 \pi m} e^{-m}(n-m)^{n-m} e^{-(n-m)} \sqrt{2 \pi(n-m)}}=  \tag{20}\\
& =\frac{n^{n}}{m^{m}(n-m)^{n-m}} \frac{e^{\frac{1}{12 n}}}{\sqrt{2 \pi}} \sqrt{\frac{n}{m(n-m)}} \leq \frac{n^{n}}{m^{m}(n-m)^{n-m}}= \\
& =\frac{n^{n}}{\left(\frac{m}{n}\right)^{m} n^{m}\left(1-\frac{m}{n}\right)^{n-m} n^{n-m}}=\frac{1}{\left(\frac{m}{n}\right)^{m}\left(1-\frac{m}{n}\right)^{n-m}}
\end{align*}
$$

and

$$
\begin{align*}
\binom{n}{m} & \geq \frac{n^{n} \sqrt{2 \pi n} e^{-n}}{m^{m} \sqrt{2 \pi m} e^{-m}(n-m)^{n-m} e^{-(n-m)} e^{\frac{1}{12 m}+\frac{1}{12(n-m)}}}=  \tag{21}\\
& =\frac{n^{n}}{m^{m}(n-m)^{n-m}} \frac{1}{\sqrt{2 \pi}} \sqrt{\frac{n}{m(n-m)}} \frac{1}{e^{\frac{1}{12 m}+\frac{1}{12(n-m)}}} \geq \\
& \geq \frac{n^{n}}{m^{m}(n-m)^{n-m}} \frac{\sqrt{2}}{\sqrt{\pi n}} e^{-\frac{1}{6}} \geq \frac{n^{n}}{m^{m}(n-m)^{n-m}} \frac{1}{2 \sqrt{n}}
\end{align*}
$$

taking the $\log _{2}$ in (20) and (21) we obtain

$$
n d\left(\frac{m}{n}\right)-\frac{1}{2} \log _{2}(n)-1 \leq \log _{2}\binom{n}{m} \leq n d\left(\frac{m}{n}\right)
$$

and the thesis is proved.
3 Main result. We firstly give a simple construction of a generalization of Cantor like subsets of $[0,1]$ (see also on this subject the bibliographical remarks contained in [F1, section 1.5]).

Definition 3 Let us consider a sequence $\left\{k_{h}\right\}_{h} \subseteq \mathbf{N}$ and $r \in \mathbf{N}$ such that

$$
1 \leq k_{h}<r \quad \forall h \in \mathbf{N}
$$

Furthermore, for every $h \in k_{h}$ we consider a $k_{h}$-tuple of integers between 0 and $r-1$

$$
0 \leq p_{h}^{1}<p_{h}^{2}<\ldots<p_{h}^{k_{h}}<r
$$

Let us denote

$$
P_{h}=\left(p_{h}^{1}, p_{h}^{2}, \ldots, p_{h}^{k_{h}}\right) \quad \text { and } \quad \mathcal{P}_{r}=\left(P_{h}\right)_{h}
$$

Let us, for short, denote $[0,1]$ by $I$ and build the following sequence of sets $\left\{C_{h}\right\}_{h}$

$$
\begin{align*}
& C_{0}=I, \quad C_{1}=\cup_{i_{1}=1}^{k_{1}}\left[\frac{p_{1}^{i_{1}}}{r}+\frac{1}{r} I\right], \quad C_{2}=\cup_{i_{1}=1}^{k_{1}} \cup_{i_{2}=1}^{k_{2}}\left[\frac{p_{1}^{i_{1}}}{r}+\frac{1}{r}\left[\frac{p_{2}^{i_{2}}}{r}+\frac{1}{r} I\right]\right], \\
& \quad C_{h}=\cup_{i_{1}=1}^{k_{1}} \cup_{i_{2}=1}^{k_{2}} \ldots \cup_{i_{h}=1}^{k_{h}}\left[\frac{p_{1}^{i_{1}}}{r}+\frac{1}{r}\left[\frac{p_{2}^{i_{2}}}{r}+\frac{1}{r}\left[\cdots\left[\frac{p_{h}^{i_{h}}}{r}+\frac{1}{r} I\right] \cdots\right]\right]\right], \quad \cdots \tag{22}
\end{align*}
$$

and define

$$
\begin{equation*}
C=C\left(\mathcal{P}_{r}\right)=\cap_{h=0}^{+\infty} C_{h} \tag{23}
\end{equation*}
$$

In other words $C$ is a set obtained in a way similar to the Cantor set.
Every $C_{h}$ is an essential disjoint union of $k_{1} k_{2} \cdots k_{h}$ intervals of length $r^{-h}$; you obtain $C_{h+1}$ from $C_{h}$ performing the following steps:
a) divide $I$ in $r$ intervals;
b) choose $k_{h+1}$ intervals among them according to (order) numbers $p_{h+1}^{1}, \ldots, p_{h+1}^{k_{h+1}}$;
c) scale down the set obtained in b) to the length of the intervals of $C_{h}$;
d) replace every interval of $C_{h}$ with the set obtained in c), translated by the left endpoint of the interval.

Lemma 4 Let $C$ be the set given in definition 3. Then

$$
\begin{equation*}
\operatorname{dim}_{H}(C)=\liminf _{h} \frac{\log \left(k_{1} k_{2} \cdots k_{h}\right)}{h \log r} \tag{24}
\end{equation*}
$$

Proof. We first prove the inequality

$$
\begin{equation*}
\operatorname{dim}_{H}(C) \leq \liminf _{h} \frac{\log \left(k_{1} k_{2} \cdots k_{h}\right)}{h \log r} \tag{25}
\end{equation*}
$$

Let us pose $\lambda=\liminf _{h} \frac{\log \left(k_{1} k_{2} \cdots k_{h}\right)}{h \log r}$. Let $\varepsilon>0$; let $\left\{h_{j}\right\}_{j}$ an indexes subsequence and $j_{0}$ such that $\frac{\log \left(k_{1} k_{2} \cdots k_{h_{j}}\right)}{h_{j} \log r}<\lambda+\varepsilon$ for every $j>j_{0}$.

Being $k_{1} k_{2} \cdots k_{h_{j}}\left(r^{h_{j}}\right)^{-\frac{\log \left(k_{1} k_{2} \cdots k_{h_{j}}\right)}{h_{j} \log r}}=1$ we get $k_{1} k_{2} \cdots k_{h_{j}}\left(r^{h_{j}}\right)^{-(\lambda+\varepsilon)}<1$ for every $j>j_{0}$.

Since $C_{h_{j}}$ is an essential disjoint union of $k_{1} k_{2} \cdots k_{h_{j}}$ intervals of length $r^{-h_{j}}$, fixed $\delta_{j}>r^{-h_{j}}, C_{h_{j}}$ can be covered with open intervals $B_{1}^{\delta_{j}}, B_{2}^{\delta_{j}}, \ldots, B_{n_{j}}^{\delta_{j}}$ of diameter $\delta_{j}$ such that

$$
\begin{equation*}
\mathcal{H}_{\delta_{j}}^{\lambda+\varepsilon}(C) \leq 1 \quad \forall j>j_{0} \tag{26}
\end{equation*}
$$

By (26), taking the sequence $\delta_{j}$ decreasing to 0 , we obtain $\mathcal{H}^{\lambda+\varepsilon}(C) \leq 1$. By (13) we get $\operatorname{dim}_{H}(C) \leq \lambda+\varepsilon$ and, by the arbitrariness of $\varepsilon>0$, the inequality (25).

Let now prove the opposite inequality.
If $\lambda=0$ the thesis is obvious being non negative the Hausdorff dimension.
Otherwise, let $\varepsilon>0$, then there exists $h_{\varepsilon} \in \mathbf{N}$ such that

$$
\begin{equation*}
h \geq h_{\varepsilon} \Longrightarrow \frac{\log \left(k_{1} k_{2} \cdots k_{h}\right)}{h \log r}>\lambda-\varepsilon \tag{27}
\end{equation*}
$$

Let $\delta>0$ be such that

$$
\delta<\frac{1}{r^{h_{\varepsilon}}}
$$

let $\left\{B_{j}\right\}_{j}$ a countable covering of $C$ with open balls such that $\operatorname{diam}\left(B_{j}\right)<\delta$ for every $j \in \mathbf{N}$. By the compactness of $C$ we can assume that exists $\nu \in \mathbf{N}$ such that $\left\{B_{j}\right\}_{1 \leq j \leq \nu}$ is still a covering of $C$. For every $1 \leq j \leq \nu$ there exists $h_{j} \geq h_{\varepsilon}$ such that

$$
\frac{1}{r^{h_{j}}} \leq \operatorname{diam}\left(B_{j}\right)<\frac{1}{r^{h_{j}-1}}
$$

Let $m=\max \left\{h_{j}: 1 \leq j \leq \nu\right\}$ and observe that $C$ is contained in $C_{m}$ that in turn is the essential disjoint union of $k_{1} k_{2} \cdots k_{m}$ intervals of length $r^{-m}, C_{m}=C_{m}^{1} \cup C_{m}^{2} \cup \ldots \cup C_{m}^{k_{1} k_{2} \cdots k_{m}}$.

Let us define

$$
\begin{equation*}
\mu_{j} \doteq \frac{\operatorname{card}\left\{i=1, \ldots, k_{1} k_{2} \cdots k_{m}: B_{j} \cap C_{m}^{i}\right\}}{k_{1} k_{2} \cdots k_{m}} \tag{28}
\end{equation*}
$$

Since for every $i=1, \ldots, k_{1} k_{2} \cdots k_{m}$ the interval $C_{m}^{i}$ contains points of $C$ and $\left\{B_{j}\right\}_{1 \leq j \leq \nu}$ is a covering of $C$ we have

$$
\begin{equation*}
\sum_{j=1}^{\nu} \mu_{j} \geq 1 \tag{29}
\end{equation*}
$$

If we divide $[0,1]$ in $r^{h_{j}-1}$ intervals, $B_{j}$ can have nonempty intersection with at most two such intervals, and each of these intervals contains $k_{h_{j}} k_{h_{j+1}} \cdots k_{m}$ intervals of $C_{m}$.

By (28) and (27) we have

$$
\begin{align*}
\mu_{j} \leq & \frac{2 k_{h_{j}} k_{h_{j+1}} \cdots k_{m}}{k_{1} k_{2} \cdots k_{m}} \leq \frac{2}{k_{1} k_{2} \cdots k_{h_{j}-1}} \leq  \tag{30}\\
& \leq \frac{2 r}{k_{1} k_{2} \cdots k_{h_{j}}}=2 r\left(\frac{1}{r^{h_{j}}}\right)^{\frac{\log \left(k_{1} k_{2} \cdots k_{h_{j}}\right)}{h_{j} \log r}} \leq 2 r\left(\operatorname{diam}\left(B_{j}\right)\right)^{\lambda-\varepsilon}
\end{align*}
$$

Then (30) and (29) give

$$
\sum_{j=1}^{\nu} \operatorname{diam}\left(B_{j}\right)^{\lambda-\varepsilon} \geq \frac{1}{2 r} \sum_{j=1}^{\nu} \mu_{j}=\frac{1}{2 r}>0
$$

then we obtain $H_{\delta}^{\lambda-\varepsilon}(C) \geq \frac{1}{2 r}>0$ for every $\delta>0$, so by (13), $\operatorname{dim}_{H}(C) \geq \lambda-\varepsilon$ and, since $\varepsilon>0$ is arbitrary

$$
\begin{equation*}
\operatorname{dim}_{H}(C) \geq \liminf _{h} \frac{\log \left(k_{1} k_{2} \cdots k_{h}\right)}{h \log r} \tag{31}
\end{equation*}
$$

By inequalities (25) and (31) we have the thesis.
Lemma 5 Let $q, p_{1}, p_{2} \in \mathbf{N}, p_{1}<q, p_{2}<q$, consider a strictly increasing sequence of numbers $\left\{m_{i}\right\}_{i} \subset \mathbf{N}_{0}$ such that $m_{0}=0$ and let us define

$$
t \in C \Longleftrightarrow\left\{\begin{array}{ll}
\sum_{j=1}^{q} x_{h q+j}(t)=p_{1} & m_{2 i} \leq h<m_{2 i+1}  \tag{32}\\
\sum_{j=1}^{q} x_{h q+j}(t)=p_{2}
\end{array} \quad m_{2 i+1} \leq h<m_{2 i+2} \quad \forall i \in \mathbf{N}_{0}\right.
$$

Then

$$
\begin{equation*}
\operatorname{dim}_{H}(C) \geq \min \left\{d\left(\frac{p_{1}}{q}\right), d\left(\frac{p_{2}}{q}\right)\right\}-\frac{1}{2 q} \log _{2}(q)-\frac{1}{q} \tag{33}
\end{equation*}
$$

Proof. Let $t_{0} \in C$ and let us observe that, taking $C_{0}=[0,1]$ and
(34) $\quad C_{h} \doteq\left\{t \in[0,1]: \sum_{j=1}^{q} x_{l q+j}(t)=\sum_{j=1}^{q} x_{l q+j}\left(t_{0}\right), \quad 0 \leq l \leq h-1\right\} \quad$ for every $h \in \mathbf{N}$.

The sets $C_{h}$ are constructed as in (22) and $C=\cap_{h=1}^{\infty} C_{h}$ like in (23), where $r=2^{q}$ and $k_{h}$ assume only the values $\binom{q}{p_{1}}$ or $\binom{q}{p_{2}}$. Obviously $k_{h} \geq \min \left\{\binom{q}{p_{1}},\binom{q}{p_{2}}\right\}$ for every $h \in \mathbf{N}$.

Therefore, by Lemma 4, we have

$$
\begin{equation*}
\operatorname{dim}_{H}(C) \geq \liminf _{h} \frac{\log \left(k_{1} k_{2} \ldots k_{h}\right)}{h \log 2^{q}} \geq \frac{\log _{2}\left(\min \left\{\binom{q}{p_{1}},\binom{q}{p_{2}}\right\}\right)}{q} \tag{35}
\end{equation*}
$$

By Lemma 2 we get

$$
\begin{equation*}
q d\left(\frac{p_{i}}{q}\right)-\frac{1}{2} \log _{2}(q)-1 \leq \log _{2}\binom{q}{p_{i}} \leq q d\left(\frac{p_{i}}{q}\right) \quad i=1,2 . \tag{36}
\end{equation*}
$$

Then (35) and (36) give the thesis.
Theorem 6 Let $G_{\beta}^{\alpha}$ be the set defined in (8). Then

$$
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right)=\min \{d(\alpha), d(\beta)\}
$$

Proof. By Proposition 1 we only have to prove

$$
\begin{equation*}
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right) \geq \min \{d(\alpha), d(\beta)\} \tag{37}
\end{equation*}
$$

If $\alpha=\beta$, (37) becomes

$$
\operatorname{dim}_{H}\left(F^{\alpha}\right) \geq d(\alpha),
$$

and it holds true (cf. again Proposition 1), while if $\alpha=1$ or $\beta=0$ the thesis is trivial.
Assume now that $0<\beta<\alpha<1$.
Let $0<\varepsilon<\min \{\beta, 1-\alpha\}$. Then there exists $\bar{q} \in \mathbf{N}$ such that for every $q \geq \bar{q}$ we have $\frac{1}{2} \frac{\log _{2} q}{q}+\frac{1}{q}<\varepsilon$.

Let us observe that there exist $p_{1}, p_{2}, q \in \mathbf{N}$, with $q \geq \bar{q}$, such that

$$
\begin{align*}
& 0<\beta-\varepsilon<\frac{p_{1}}{q}<\beta<\frac{p_{1}+1}{q}<\frac{p_{2}-1}{q}<\alpha<\frac{p_{2}}{q}<\alpha+\varepsilon<1  \tag{38}\\
& d\left(\frac{p_{1}}{q}\right)>d(\beta)-\varepsilon, \quad d\left(\frac{p_{2}}{q}\right)>d(\alpha)-\varepsilon .
\end{align*}
$$

Let us take $C$ defined as in Lemma (5). By (38), (33) becomes

$$
\begin{equation*}
\operatorname{dim}_{H}(C) \geq \min \left\{d\left(\frac{p_{1}}{q}\right), d\left(\frac{p_{2}}{q}\right)\right\}-\varepsilon \geq \min \{d(\alpha), d(\beta)\}-2 \varepsilon \tag{39}
\end{equation*}
$$

for every choice of the sequence $\left\{m_{i}\right\}_{i}$ in (32).
Let us now show that, for a suitable choice of the sequence $\left\{m_{i}\right\}_{i}$ in (32) we have

$$
\begin{equation*}
C \subseteq G_{\beta}^{\alpha} \tag{40}
\end{equation*}
$$

We take $m_{0}=0$ and, for every $i \in \mathbf{N}$, by induction we assume to already have defined $m_{1}, \ldots, m_{2 i}$.

Then we denote by $r_{i}=\sum_{h=1}^{i}\left(m_{2 h-1}-m_{2 h-2}\right)$ and $s_{i}=\sum_{h=1}^{i}\left(m_{2 h}-m_{2 h-1}\right)$ and define

$$
\left\{\begin{array}{l}
m_{2 i+1}=\min \left\{j: j>m_{2 i} \text { and } \frac{p_{1} r_{i}+p_{2} s_{i}+p_{1}\left(j-m_{2 i}\right)}{j q}<\beta\right\}  \tag{41}\\
m_{2 i+2}=\min \left\{j: j>m_{2 i+1} \text { and } \frac{p_{1} r_{i+1}+p_{2} s_{i}+p_{2}\left(j-m_{2 i+1}\right)}{j q}>\alpha\right\}
\end{array} .\right.
$$

Let us observe that

$$
y_{(j+1) q}=\frac{y_{j q}(j q)+p_{s}}{(j+1) q}=\frac{j q}{(j+1) q} y_{j q}+\frac{q}{(j+1) q} \frac{p_{s}}{q}
$$

where

$$
\begin{array}{ll}
s=1, & \text { if } m_{2 i} \leq j<m_{2 i+1} \\
s=2, & \text { if } m_{2 i+1} \leq j<m_{2 i+2}
\end{array}
$$

So $y_{(j+1) q}$ is a convex combination of $y_{j q}$ and $\frac{p_{1}}{q}$ if $m_{2 i} \leq j<m_{2 i+1}$, and of $y_{j q}$ and $\frac{p_{2}}{q}$ if $m_{2 i+1} \leq j<m_{2 i+2}$.

By recalling that $\frac{p_{1}}{q}<\beta$ and $\frac{p_{2}}{q}>\alpha, y_{m_{2 i} q}>\alpha$ and $y_{m_{2 i+1} q}<\beta$, respectively beginning from $j=m_{2 i}$ and $j=m_{2 i+1}$, we obtain

$$
\begin{array}{ll}
y_{j q}(t)>y_{(j+1) q}(t) & m_{2 i} \leq j<m_{2 i+1}  \tag{42}\\
y_{j q}(t)<y_{(j+1) q}(t) & m_{2 i+1} \leq j \leq m_{2 i+2}
\end{array}
$$

so we have

$$
\begin{array}{lrl}
y_{m_{2 i+1} q}(t) & \leq y_{j q}(t) \leq y_{m_{2 i} q}(t) & m_{2 i} \leq j \leq m_{2 i+1}  \tag{43}\\
y_{m_{2 i+1} q}(t) & \leq y_{j q}(t) \leq y_{m_{2 i+2} q}(t) & m_{2 i+1} \leq j \leq m_{2 i+2}
\end{array}
$$

On the other side, by the definition of the sequence $\left\{m_{i}\right\}_{i}$ (cf. (41)), we have

$$
y_{\left(m_{2 i}-1\right) q}(t) \leq \alpha<y_{m_{2 i} q}(t)
$$

But

$$
y_{m_{2 i} q}(t) \leq \frac{y_{\left(m_{2 i}-1\right) q}(t) \cdot\left(m_{2 i}-1\right) q+q}{m_{2 i} q}
$$

and so

$$
\begin{equation*}
\alpha<y_{m_{2 i} q}(t) \leq \frac{\alpha\left(m_{2 i}-1\right)+1}{m_{2 i}} \tag{44}
\end{equation*}
$$

In a similar way we obtain

$$
\begin{equation*}
\frac{\beta\left(m_{2 i+1}-1\right)}{m_{2 i+1}} \leq y_{m_{2 i+1} q}(t)<\beta \tag{45}
\end{equation*}
$$

By (43), (44) and (45), we easily obtain

$$
\begin{align*}
& \limsup _{j} y_{j q}(t)=\alpha  \tag{46}\\
& \liminf _{j} y_{j q}(t)=\beta
\end{align*}
$$

Eventually

$$
\begin{equation*}
\frac{[n / q] q y_{[n / q] q}(t)}{n} \leq y_{n}(t) \leq \frac{[n / q] q y_{[n / q] q}(t)+(n-[n / q] q) q}{n} . \tag{47}
\end{equation*}
$$

By (46) and (47) we have (40).
By (40) and (39) we get

$$
\operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right) \geq \min \{d(\alpha), d(\beta)\}-\varepsilon
$$

and, by the arbitrariness of $\varepsilon$, we obtain the thesis.

## References

[Bu] Bullen P.S., A dictionary of inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Longman, Harlow, 1998.
[Bs] Besicovitch A.S., On the sum of digits of real numbers represented in the dyadic system (On sets of fractional dimensions II), Math. Annalen 110, 1934, pp. 321-330.
[DD] Dickinson H., Dodson M.M., Simultaneous Diophantine approximation on the circle and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc. 130, 2001, n. 3, pp. 515-522.
[DDY] Dickinson H., Dodson M.M., Yuan J., Hausdorff dimension and p-adic Diophantine approximation, Indag. Math. (N.S.), 10, 1999, n.3, pp. 337-347.
[E] Eggleston H.G.: Sets of Fractional Dimensions which occur in Some Problems of Number Theory; Proc. of the London Math. Soc., $2^{\text {nd }}$ series, vol. 54, 1951-52, pp. 42-93.
[F1] Falconer K.: The Geometry of Fractal Sets, Cambridge University Press, 1985.
[F2] Falconer K.: Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990.
[HL] Hardy G.H., Littlewood J.E., Some problems on Diophantine approximations, Acta Math. 37, 1914, pp. 155-190.
[K] Knichal V., Dyadische Entwicklungen und Hausdorffsches Mass, Mém. Soc. Roy. sci. Boheme, 14, 1934, pp. 1-18.
[S] Schimdt W.M., Diophantine Approximation, Lecture Notes In Mathematics 785, Springer Berlin 1980.

* Università di Napoli "Federico II" - Dipartimento di Matematica e Applicazioni "R.Caccioppoli" - Compl. di Monte S. Angelo, via Cintia, 80126 Napoli, Italy - e-mail: carbone@biol.dgbm.unina.it,
$\dagger$ Seconda Università di Napoli- Dipartimento di Ingegneria Civile - Via Roma, 29 81031 Aversa (CE), Italy - e-mail: giuseppe.cardone@unina2.it,
$\ddagger$ Università di Cassino - Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale - Via G.Di Biasio, 43 - 03043 Cassino (FR), Italy - e-mail: corbo@unicas.it


[^0]:    2000 Mathematics Subject Classification. 40G05, 28A78
    Key words and phrases. averages, upper and lower limits, level sets, Hausdorff dimension .

