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BINARY DIGITS EXPANSION OF NUMBERS: HAUSDORFF
DIMENSIONS OF INTERSECTIONS OF LEVEL SETS OF AVERAGES’

UPPER AND LOWER LIMITS

L.Carbone∗, G.Cardone† and A.Corbo Esposito‡

Received December 16, 2003

Abstract. The problem of averaging of binary digits of numbers is considered and
the sequence of the averages calculated on the first digits is taken into account for
every t ∈ [0, 1]. The Hausdorff dimensions of intersections of level sets of upper and
lower limits of such sequences are computed.

1 Introduction In this paper we consider the classic problem of averaging the binary
digits of numbers in [0, 1] and of studying the (Hausdorff) dimensions of some sets related
to these averages.

Let us more precisely consider t ∈ [0, 1] , the sequence x (t) = (xn (t))n of its binary
digits (cf. (14) for the precise definition) and the sequence of their averages y (t) = (yn (t))n

given by

yn (t) =
1
n

n∑
k=1

xk (t) , ∀n ∈ N(1)

Then it is possible to consider the two (always existing) quantities

lim inf
n→+∞ yn (t) , lim sup

n→+∞
yn (t)(2)

and the quantity, when it exists:

lim
n→+∞ yn (t) .(3)

Let us set

Fα .=
{
t ∈ [0, 1] : lim

n
yn(t) = α

}
,

Rα .= {t ∈ [0, 1] : limsupn yn(t) ≤ α} , Rα
.= {t ∈ [0, 1] : liminfn yn(t) ≥ α} ,

Sα .= {t ∈ [0, 1] : limsupn yn(t) ≥ α} , Sα
.= {t ∈ [0, 1] : liminfn yn(t) ≤ α} .

(4)

There are some classic results about the Hausdorff dimension of these sets we will recall.
To this aim let us define the function d (t) as follows

d(t) .=
{ − (t log2(t) + (1 − t) log2(1 − t)) , ∀t ∈ (0, 1)

0, if t = 0, 1.
(5)

and denote by dimH the Hausdorff dimension (cf. (10) ÷ (12) for the definition).
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In [HL] was proved (very well known result) that F 1/2 contains almost every t in [0, 1]
(and therefore dimH

(
F 1/2
)

= 1).
In [Bs] the Hausdorff dimensions of the sets Rα and Rα was computed; d (α) was proved

to be equal to dimH (Rα) if 0 ≤ α < 1/2 and to dimH (Rα) if 1/2 < α ≤ 1 (in the other
cases the sets trivially contains F 1/2).

In [K] the Hausdorff dimensions of the sets Sα and Sα was computed; d (α) was proved
to be equal to dimH (Sα) if 0 ≤ α < 1/2 and to dimH (Sα) if 1/2 < α ≤ 1 (in the other
cases the sets trivially contains F 1/2).

In [E] was proved that the Hausdorff dimension of the set Fα is equal to d (α) for every
0 ≤ α ≤ 1.

Let us now define the sets

Gα .=
{

t ∈ [0, 1] : limsup
n

yn(t) = α

}
, Gα

.=
{
t ∈ [0, 1] : liminf

n
yn(t) = α

}
.(6)

Taking into account the recalled results it easily follows (cf. Proposition 1) that

dimH (Gα) = dimH (Gα) = d (α) ∀α ∈ [0, 1] .(7)

Then we analyze the Hausdorff dimension of

Gα
β

.= Gα ∩ Gβ ;(8)

by (7) and (8) we obviously have

dimH

(
Gα

β

) ≤ min {d (α) , d (β)} .(9)

Our result consists of proving the reverse inequality in (9), so that the equality

dimH

(
Gα

β

)
= min {d (α) , d (β)}

holds (cf. Theorem 6).
As last remark we observe that our proof is inspired by some fractal techniques (see

[F2], p. 55).
Eventually we recall that the Hausdorff dimension is a very efficacious instrument to

treat problems of Diophantine approximations. For this subject in addition to the above
references see for example [S], [F1, section 8.5] and the more recent papers [DDY] and [DD] .

2 Notations and preliminary results Let us denote by N = {1, 2, 3, ...} and by N0 =
N∪{0}. Given a finite subset M ⊂ N we will denote by card (M) the number of its elements.
Given a subset E ⊆ R we will denote by diam (E) = sup {|x − y| : x, y ∈ E} its diameter
and if in addition E is Lebesgue measurable, we denote by |E| its Lebesgue measure.

Let δ > 0 and s > 0 real numbers and let us pose, for every E ⊂ R,

Hs
δ (E) = inf

∞∑
n=1

diams (Bn)(10)

where the family {Bn}n∈N is a countable covering of E with open balls such that diam (Bn) <
δ, ∀n ∈ N and the infimum is taken on this kind of families. The s-dimensional Hausdorff
outer measure of E is given as usual by

Hs (E) = sup
δ>0

Hs
δ (E) = lim

δ→0+
Hs

δ (E) ,(11)
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while Hausdorff dimension of E is given by

dimH(E) = inf {s ∈ R :Hs (E) = 0} .(12)

Moreover it can be easily proved that (see [F1, p.7])

Hs (E) = 0 if s > dimH(E); Hs (E) = +∞ if s < dimH(E)(13)

Let us observe that slightly different definitions of s-dimensional Hausdorff outer measure
can be given, all of them leading to the same result in the definition (12).

Given t ∈ R, we will denote by [t] the integer part of t, i.e. [t] = max {m ∈ Z : m ≤ t}
and by I the interval [0, 1].

Let t ∈ I. We define the sequence x (t) = {xn(t)}n in the following way

xn(t) = [2nt] − 2
[
2n−1t

] ∀n ∈ N.(14)

Such sequence is the one of the binary digits of t (the rational numbers of the form
p

2m can be expressed in two ways as binary numbers: e.g. 1
2 = 0, 12 and also 1

2 = 0, 01̄2;
the sequence defined corresponds in this case to the representation with a finite number of
digits equal to 1).

For a fixed n ∈ N, xn(t) is a step function assuming only values 0 and 1 and it holds

xn(t) =
1
2

⎛
⎝χ[0,1) +

2n−1∑
j=0

(−1)j+1χ[ j
2n , j+1

2n )(t)

⎞
⎠ ∀t ∈ I,

where for a set A, the function χA is the characteristic function of A.
Now let y (t) = (yn (t))n the sequence defined by (1); yn (t) is a step function constant

on every interval [ j
2n , j+1

2n ), j = 0, 1, ..., 2n − 1, and takes only values
k

n
, k = 0, 1, ..., n.

Moreover ∣∣∣∣
{

t : yn (t) =
k

n

}∣∣∣∣ =
(

n

k

)
2−n,(15)

where
(
n
k

)
is the binomial coefficient of n over k.

Obvious relations among the sets defined in the introduction are

Fα = Gα
α, Gα

β = Gα ∩ Gβ , Gα = ∪0≤β≤αGα
β , Gα = ∪α≤β≤1G

β
α,(16)

Rα = ∪0≤β≤αGβ , Rα = ∪α≤β≤1Gβ , Sα = ∪α≤β≤1G
β , Sα = ∪0≤β≤αGβ

for every α and β in [0, 1].
Therefore obvious relations among the Hausdorff dimensions of such sets are

dimH(Fα) ≤ dimH (Gα) ≤ min {dimH (Sα) , dimH (Rα)} ,

dimH(Fα) ≤ dimH(Gα) ≤ min {dimH (Sα) , dimH (Rα)} ,(17)
dimH(Gα

β) ≤ min {dimH(Gα),dimH(Gβ)}

for every α and β in I.
Then, using the results recalled in the introduction, we obtain
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Proposition 1 Let α, β ∈ [0, 1] and let Fα, Gα, Gα, Rα, Rα, Sα, Sα, Gα
β be defined by

(4), (6) and (8). Then

d (α) = dimH(Fα) = dimH (Gα) = min {dimH (Sα) , dimH (Rα)} ,

d (α) = dimH(Fα) = dimH(Gα) = min {dimH (Sα) , dimH (Rα)} ,(18)
dimH(Gα

β ) ≤ min {dimH(Gα),dimH(Gβ)} = min {d (α) , d (β)} .

For sake of completeness we give the proof of the following technical lemma.

Lemma 2 Let m, n be natural numbers such that n ≥ 1, 0 ≤ m ≤ n; let d the function
defined by (5). Then

n d(
m

n
) − 1

2
log2(n) − 1 ≤ log2

(
n

m

)
≤ n d(

m

n
).

Proof. The thesis is trivial if m = 0 or m = n; then we can assume 0 < m < n.
By the inequalities (cf. [Bu])

nn
√

2πne
−n+ 1

12n+1
4 < n! < nn

√
2πne−n+ 1

12n ;(19)

we have (
n

m

)
≤ nn

√
2πne−n+ 1

12n

mm
√

2πme−m(n − m)n−me−(n−m)
√

2π (n − m)
=(20)

=
nn

mm(n − m)n−m

e
1

12n√
2π

√
n

m (n − m)
≤ nn

mm(n − m)n−m
=

=
nn(

m
n

)m
nm
(
1 − m

n

)n−m
nn−m

=
1(

m
n

)m (1 − m
n

)n−m ;

and (
n

m

)
≥ nn

√
2πne−n

mm
√

2πme−m(n − m)n−me−(n−m)e
1

12m + 1
12(n−m)

=(21)

=
nn

mm(n − m)n−m

1√
2π

√
n

m (n − m)
1

e
1

12m + 1
12(n−m)

≥

≥ nn

mm(n − m)n−m

√
2√

πn
e−

1
6 ≥ nn

mm(n − m)n−m

1
2
√

n
;

taking the log2 in (20) and (21) we obtain

n d(
m

n
) − 1

2
log2(n) − 1 ≤ log2

(
n

m

)
≤ n d(

m

n
)

and the thesis is proved.�

3 Main result. We firstly give a simple construction of a generalization of Cantor
like subsets of [0, 1] (see also on this subject the bibliographical remarks contained in
[F1, section 1.5]).
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Definition 3 Let us consider a sequence {kh}h ⊆ N and r ∈ N such that

1 ≤ kh < r ∀h ∈ N.

Furthermore, for every h ∈ kh we consider a kh-tuple of integers between 0 and r − 1

0 ≤ p1
h < p2

h < ... < pkh

h < r.

Let us denote

Ph =
(
p1

h, p2
h, ..., pkh

h

)
and Pr = (Ph)h .

Let us, for short, denote [0, 1] by I and build the following sequence of sets {Ch}h

C0 = I, C1 = ∪k1
i1=1

[
pi1
1

r
+

1
r
I

]
, C2 = ∪k1

i1=1 ∪k2
i2=1

[
pi1
1

r
+

1
r

[
pi2
2

r
+

1
r
I

]]
, ...

Ch = ∪k1
i1=1 ∪k2

i2=1 ... ∪kh

ih=1

[
pi1
1

r
+

1
r

[
pi2
2

r
+

1
r

[
...

[
pih

h

r
+

1
r
I

]
...

]]]
, ...(22)

and define

C = C (Pr) = ∩+∞
h=0Ch.(23)

In other words C is a set obtained in a way similar to the Cantor set.
Every Ch is an essential disjoint union of k1k2 · · · kh intervals of length r−h; you obtain

Ch+1 from Ch performing the following steps:
a) divide I in r intervals;
b) choose kh+1 intervals among them according to (order) numbers p1

h+1, ..., p
kh+1
h+1 ;

c) scale down the set obtained in b) to the length of the intervals of Ch;
d) replace every interval of Ch with the set obtained in c), translated by the left endpoint

of the interval.

Lemma 4 Let C be the set given in definition 3. Then

dimH(C) = lim inf
h

log(k1k2 · · · kh)
h log r

.(24)

Proof. We first prove the inequality

dimH(C) ≤ lim inf
h

log(k1k2 · · · kh)
h log r

.(25)

Let us pose λ = lim inf
h

log(k1k2 · · · kh)
h log r

. Let ε > 0; let {hj}j an indexes subsequence and j0

such that
log(k1k2 · · · khj )

hj log r
< λ + ε for every j > j0.

Being k1k2 · · · khj

(
rhj
)− log(k1k2···khj

)

hj log r = 1 we get k1k2 · · · khj

(
rhj
)−(λ+ε)

< 1 for every
j > j0.
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Since Chj is an essential disjoint union of k1k2 · · · khj intervals of length r−hj , fixed
δj > r−hj , Chj can be covered with open intervals B

δj

1 , B
δj

2 , ..., B
δj
nj of diameter δj such that

Hλ+ε
δj

(C) ≤ 1 ∀j > j0.(26)

By (26), taking the sequence δj decreasing to 0, we obtain Hλ+ε (C) ≤ 1. By (13) we get
dimH(C) ≤ λ + ε and, by the arbitrariness of ε > 0, the inequality (25).

Let now prove the opposite inequality.
If λ = 0 the thesis is obvious being non negative the Hausdorff dimension.
Otherwise, let ε > 0, then there exists hε ∈ N such that

h ≥ hε =⇒ log(k1k2 · · · kh)
h log r

> λ − ε.(27)

Let δ > 0 be such that

δ <
1

rhε
;

let {Bj}j a countable covering of C with open balls such that diam (Bj) < δ for every
j ∈ N. By the compactness of C we can assume that exists ν ∈ N such that {Bj}1≤j≤ν is
still a covering of C. For every 1 ≤ j ≤ ν there exists hj ≥ hε such that

1
rhj

≤ diam (Bj) <
1

rhj−1
.

Let m = max {hj : 1 ≤ j ≤ ν} and observe that C is contained in Cm that in turn is the
essential disjoint union of k1k2 ···km intervals of length r−m, Cm = C1

m∪C2
m∪...∪Ck1k2···km

m .
Let us define

µj
.=

card
{
i = 1, ..., k1k2 · · · km : Bj ∩ Ci

m

}
k1k2 · · · km

.(28)

Since for every i = 1, ..., k1k2 · · ·km the interval Ci
m contains points of C and {Bj}1≤j≤ν

is a covering of C we have
ν∑

j=1

µj ≥ 1.(29)

If we divide [0, 1] in rhj−1 intervals, Bj can have nonempty intersection with at most two
such intervals, and each of these intervals contains khj khj+1 · · · km intervals of Cm.

By (28) and (27) we have

µj ≤ 2khjkhj+1 · · · km

k1k2 · · · km
≤ 2

k1k2 · · · khj−1
≤(30)

≤ 2r

k1k2 · · · khj

= 2r

(
1

rhj

) log (k1k2···khj
)

hj log r

≤ 2r (diam(Bj))
λ−ε

.

Then (30) and (29) give

ν∑
j=1

diam (Bj)
λ−ε ≥ 1

2r

ν∑
j=1

µj =
1
2r

> 0;
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then we obtain Hλ−ε
δ (C) ≥ 1

2r > 0 for every δ > 0, so by (13), dimH(C) ≥ λ− ε and, since
ε > 0 is arbitrary

dimH(C) ≥ lim inf
h

log(k1k2 · · · kh)
h log r

.(31)

By inequalities (25) and (31) we have the thesis. �

Lemma 5 Let q, p1, p2 ∈ N, p1 < q, p2 < q, consider a strictly increasing sequence of
numbers {mi}i ⊂ N0 such that m0 = 0 and let us define

t ∈ C ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q∑
j=1

xhq+j (t) = p1 m2i ≤ h < m2i+1

q∑
j=1

xhq+j (t) = p2 m2i+1 ≤ h < m2i+2

∀i ∈ N0.(32)

Then

dimH(C) ≥ min
{

d(
p1

q
), d(

p2

q
)
}
− 1

2q
log2(q) −

1
q
.(33)

Proof. Let t0 ∈ C and let us observe that, taking C0 = [0, 1] and

Ch
.=

⎧⎨
⎩t ∈ [0, 1] :

q∑
j=1

xlq+j (t) =
q∑

j=1

xlq+j (t0) , 0 ≤ l ≤ h − 1

⎫⎬
⎭ for every h ∈ N.(34)

The sets Ch are constructed as in (22) and C = ∩∞
h=1Ch like in (23), where r = 2q and

kh assume only the values
(

q

p1

)
or
(

q

p2

)
. Obviously kh ≥ min

{(
q

p1

)
,

(
q

p2

)}
for every

h ∈ N.
Therefore, by Lemma 4, we have

dimH(C) ≥ liminf
h

log(k1k2...kh)
h log 2q

≥
log2

(
min
{(

q

p1

)
,

(
q

p2

)})
q

.(35)

By Lemma 2 we get

q d(
pi

q
) − 1

2
log2(q) − 1 ≤ log2

(
q

pi

)
≤ q d(

pi

q
) i = 1, 2.(36)

Then (35) and (36) give the thesis. �

Theorem 6 Let Gα
β be the set defined in (8). Then

dimH(Gα
β ) = min {d (α) , d (β)} .

Proof. By Proposition 1 we only have to prove

dimH(Gα
β ) ≥ min {d (α) , d (β)}(37)
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If α = β, (37) becomes

dimH (Fα) ≥ d (α) ,

and it holds true (cf. again Proposition 1), while if α = 1 or β = 0 the thesis is trivial.
Assume now that 0 < β < α < 1.
Let 0 < ε < min {β, 1 − α}. Then there exists q ∈ N such that for every q ≥ q we have

1
2

log2 q
q + 1

q < ε.
Let us observe that there exist p1, p2, q ∈ N, with q ≥ q, such that

0 < β − ε <
p1

q
< β <

p1 + 1
q

<
p2 − 1

q
< α <

p2

q
< α + ε < 1(38)

d(
p1

q
) > d (β) − ε, d(

p2

q
) > d (α) − ε.

Let us take C defined as in Lemma (5). By (38), (33) becomes

dimH(C) ≥ min
{

d(
p1

q
), d(

p2

q
)
}
− ε ≥ min {d(α), d(β)} − 2ε,(39)

for every choice of the sequence {mi}i in (32).
Let us now show that, for a suitable choice of the sequence {mi}i in (32) we have

C ⊆ Gα
β .(40)

We take m0 = 0 and, for every i ∈ N, by induction we assume to already have defined
m1, ...,m2i.

Then we denote by ri =
∑i

h=1 (m2h−1 − m2h−2) and si =
∑i

h=1 (m2h − m2h−1) and
define ⎧⎪⎪⎨

⎪⎪⎩
m2i+1 = min

{
j : j > m2i and

p1ri + p2si + p1 (j − m2i)
jq

< β

}

m2i+2 = min
{

j : j > m2i+1 and
p1ri+1 + p2si + p2 (j − m2i+1)

jq
> α

} .(41)

Let us observe that

y(j+1)q =
yjq (jq) + ps

(j + 1) q
=

jq

(j + 1) q
yjq +

q

(j + 1) q

ps

q

where

s = 1, if m2i ≤ j < m2i+1,

s = 2, if m2i+1 ≤ j < m2i+2.

So y(j+1)q is a convex combination of yjq and
p1

q
if m2i ≤ j < m2i+1, and of yjq and

p2

q
if

m2i+1 ≤ j < m2i+2.

By recalling that
p1

q
< β and

p2

q
> α, ym2iq > α and ym2i+1q < β, respectively beginning

from j = m2i and j = m2i+1, we obtain

yjq (t) > y(j+1)q (t) m2i ≤ j < m2i+1(42)
yjq (t) < y(j+1)q (t) m2i+1 ≤ j ≤ m2i+2 ,
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so we have

ym2i+1q (t) ≤ yjq (t) ≤ ym2iq (t) m2i ≤ j ≤ m2i+1(43)
ym2i+1q (t) ≤ yjq (t) ≤ ym2i+2q (t) m2i+1 ≤ j ≤ m2i+2 ,

On the other side, by the definition of the sequence {mi}i (cf. (41)), we have

y(m2i−1)q (t) ≤ α < ym2iq (t) .

But

ym2iq (t) ≤ y(m2i−1)q (t) · (m2i − 1) q + q

m2iq

and so

α < ym2iq (t) ≤ α (m2i − 1) + 1
m2i

.(44)

In a similar way we obtain

β (m2i+1 − 1)
m2i+1

≤ ym2i+1q (t) < β.(45)

By (43), (44) and (45), we easily obtain

lim sup
j

yjq (t) = α(46)

lim inf
j

yjq (t) = β

Eventually

[n/q] q y[n/q]q (t)
n

≤ yn (t) ≤ [n/q] q y[n/q]q (t) + (n − [n/q] q) q

n
.(47)

By (46) and (47) we have (40).
By (40) and (39) we get

dimH(Gα
β ) ≥ min {d (α) , d (β)} − ε

and, by the arbitrariness of ε, we obtain the thesis. �
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