PRE-CONVERGENCE OF FILTERS AND $p\gamma$ -CONTINUITY*

WON KEUN MIN

Received December 8, 2003; revised January 4, 2004

ABSTRACT. In this paper, we introduce a new class of sets, called $p\gamma$ -sets, and the notion of $p\gamma$ -continuity and investigate some properties and characterizations in terms of pre-convergence of filters. In particular, $p\gamma$ -sets are used to extend known results for preopen sets and precontinuity.

1. INTRODUCTION.

Let X, Y and Z be topological spaces on which no separation axioms are assumed unless explicit stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by clS (resp. intS). A subset S of X is called preopen set [1] (resp. semi-open set [3], α -set [4]) if $S \subset int(cl(S))$ (resp. $S \subset cl(int(S)), S \subset int(cl(int(S)))$). The complement of a preopen set (resp. semi-open set, α -set) is called preclosed set (resp. semi-closed set, α -closed set). The family of all preopen sets (resp. semi-open sets, α -sets) in X will be denoted by PO(X) (resp. $SO(X), \alpha(X)$). A function $f: X \to Y$ is called precontinuous [5] (resp. semi-continuous [3], α -continuous [4]) if $f^{-1}(V) \in PO(X)$ (resp. $f^{-1}(V) \in SO(X)$, $f^{-1}(V) \in \alpha(X)$) for each open set V of Y. A function $f: X \to Y$ is called preirresolute [8] (resp. α -irresolute [8]) if $f^{-1}(V) \in PO(X)$ (resp. $f^{-1}(V) \in \alpha(X)$) for each preopen set (resp. α -set) V of Y. A function $f: X \to Y$ is called preopen set (resp. α -set) U in X, f(U) is a preopen set (resp. α -set) in Y.

A subset M(x) of a space X is called a *semi-neighborhood* (resp. *pre-neighborhood* [5]) of a point $x \in X$ if there exists a semi-open (resp. preopen) set S such that $x \in S \subset M(x)$. In [2], R. M. Latif introduced the notion of semi-convergence of filters. And he investigated some characterizations related to semi-open continuous functions. Now we recall the concept of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subset X : \text{there exists } \mu \subset S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subset A\}$. Then S_x is called the *semi-neighborhood filter* at x. For any filter \mathcal{F} on X, we say that \mathcal{F} semi-converges to x if and only if \mathcal{F} is finer than the semi-neighborhood filter at x.

2. $p\gamma$ -sets.

In this section, we introduce the concepts of pre-convergence of filters, $p\gamma$ -set, $p\gamma$ interior and $p\gamma$ -closure of a set and $p\gamma$ -compact. And we characterize them in terms of pre-convergence of filters.

Definition 2.1. Let (X, τ) be a topological space, $x \in X$, $P(x) = \{A \in PO(X) : x \in A\}$ and let $P_x = \{A \subset X : \text{there exists } \mu \subset P(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subset A\}$. Then P_x is

²⁰⁰⁰ Mathematics Subject Classification. 54C08, 54A10, 54A20.

Key words and phrases. pre-convergence of filters, $p\gamma$ -sets, $p\gamma$ -continuous, $p\gamma$ -open mappings, $p\gamma$ -compact, pre-neighborhood filter, preopen sets.

^{*}This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

WON KEUN MIN

called the *pre-neighborhood filter* at x. For any filter \mathcal{F} on X, we say that \mathcal{F} pre-converges to x if and only if \mathcal{F} is finer than the pre-neighborhood filter at x.

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is called a $p\gamma$ -set in X if for each x in A, there exists an element $U \in P_x$ such that $x \in U \subset A$. And a subset M(x) of X is called a $p\gamma$ -neighborhood of x in X if there exists a $p\gamma$ -set S such that $x \in S \subset M(x)$.

The family of all $p\gamma$ -sets in X will be denoted by $p\gamma(X)$. In particular, the family of all $p\gamma$ -sets induced by the topology τ will be denoted by $p\gamma_{\tau}$.

Remark 2.3. From the definitions of pre-neighborhood filter and $p\gamma$ -set, we can say every preopen set is a $p\gamma$ -set, but the converse is always not true.

Example 2.4. Let X be the set of real numbers with the cofinite topology. For each $x \in Q$, since both Q and $Q^c \cup \{x\}$ are preopen sets containing $x, \{x\}$ is an element of P_x . Thus $\{x\}$ is a $p\gamma$ -set but not preopen.

Remark 2.5. In a topological space (X, τ) , we get the following relations:

 $\tau \subset \alpha (\mathbf{X}) \subset \mathrm{PO}(\mathbf{X}) \subset p\gamma (\mathbf{X}).$

Theorem 2.6. Let (X, τ) be a topological space. A subset U of X is a $p\gamma$ -set in X if and only if whenever a filter \mathcal{F} pre-converges to x and $x \in U, U \in \mathcal{F}$.

Proof. \Leftarrow) For each $x \in U$, the pre-neighborhood filter P_x pre-converges to x. From the condition, we get $U \in P_x$. Thus U is a $p\gamma$ -set. \Rightarrow) It follows from the definitions of $p\gamma$ -sets and pre-convergence.

Theorem 2.7. Let (X, τ) be a topological space. The intersection of finitely many preopen subsets in X is a $p\gamma$ -set.

Proof. Let U_1 and U_2 be preopen sets in X and suppose $U_1 \cap U_2 \neq \emptyset$. For each $x \in U_1 \cap U_2$, we get $U_1 \cap U_2 \in P_x$. Hence $U_1 \cap U_2$ is a $p\gamma$ -set.

Theorem 2.8. Let (X, τ) be a topological space. Then the family $p\gamma(X)$ of all $p\gamma$ -sets in X is a topology on X.

Proof. Since \emptyset and X are preopen, they are also $p\gamma$ -sets in X.

Let $A, B \in p\gamma(X), x \in A \cap B$ and let \mathcal{F} be a filter pre-converging to x. From Theorem 2.6, it follows $A, B \in \mathcal{F}$ and since \mathcal{F} is a filter, we have $A \cap B \in \mathcal{F}$. It follows that $A \cap B$ is a $p\gamma$ -set from Theorem 2.6.

For each $\alpha \in I$, $A_{\alpha} \in p\gamma(X)$ and $U = \bigcup A_{\alpha}$. Let $x \in U$ and \mathcal{F} be a filter pre-converging to x. Then there exists an A_{α} such that $x \in A_{\alpha}$ and since A_{α} is a $p\gamma$ -set, we can say $A_{\alpha} \in \mathcal{F}$. Also U is an element of the filter \mathcal{F} , and thus $U = \bigcup A_{\alpha}$ is a $p\gamma$ -set.

Definition 2.9. Let (X, τ) be a topological space and $A \subset X$. The $p\gamma$ -interior of A in X, denoted by $int_p(A)$, is the union of all $p\gamma$ -sets contained in A.

Theorem 2.10. Let (X, τ) be a topological space and $A \subset X$. (a) $int_p(A) = \{x \in A : A \in P_x\}.$ (b) A is a $p\gamma$ -set if and only if $A = int_p(A)$.

Proof. (a) For each $x \in int_p(A)$, there exists a $p\gamma$ -set U such that $x \in U \subset A$. From the definition of $p\gamma$ -set, the subset U is in the pre-neighborhood filter P_x . Thus we get $A \in P_x$. Conversely, let $x \in A$ and $A \in P_x$. Then by Definition 2.1, there exist $U_1, \dots, U_n \in P(x)$ such that $U=U_1 \cap \dots \cap U_n \subset A$. By Theorem 2.7, U is a $p\gamma$ -set and $x \in U \subset A$. Thus we get $x \in int_p(A)$.

```
(b) Obvious.
```

In a topological space (X, τ) , the family of all $p\gamma$ -sets induced by the topology τ will be denoted by $(X, p\gamma_{\tau})$. A subset B of X is called a $p\gamma$ -closed set if the complement of B is a $p\gamma$ -set.

Definition 2.11. Let (X, τ) be a topological space and $A \subset X$. A point x in X is called a $p\gamma$ -cluster point of A if $(U - \{x\}) \cap A \neq \emptyset$, for every $p\gamma$ -set U containing x. The set $d_p(A)$ of all $p\gamma$ -cluster points of A is called the $p\gamma$ -derived set of A.

Theorem 2.12. Let (X, τ) be a topological space and $A \subset X$. A point x in X is a $p\gamma$ cluster point of A if and only if $(U - \{x\}) \cap A \neq \emptyset$, for all $U \in P_x$.

Proof. Obvious.

Definition 2.13. Let (X, τ) be a topological space and $A \subset X$. The $p\gamma$ -closure of A in X, denoted by $cl_p(A)$, is the intersection of all $p\gamma$ -closed sets containing A.

We can get the following theorem from Definition 2.9 and Definition 2.13. **Theorem 2.14.** Let (X, τ) be a topological space and $A \subset X$. (1) $A \subset cl_p(A)$. (2) A is $p\gamma$ -closed if and only if $A = cl_pA$. (3) $int_p(A) = X - cl_p(X - A)$. (4) $cl_p(A) = X - int_p(X - A)$.

Theorem 2.15. Let (X, τ) be a topological space and $A \subset X$. Then $cl_p(A) = A \cup d_p(A)$.

Proof. It follows from Definition 2.13.

Theorem 2.16. Let (X, τ) be a topological space and $A \subset X$.

 $cl_p(A) = \{ x \in X : A \cap U \neq \emptyset \text{ for all } U \in P_x \}.$

Proof. It follows from Theorem 2.12 and Theorem 2.15.

Theorem 2.17. Let (X, τ) be a topological space. A subset A in X is $p\gamma$ -closed if and only if whenever a filter \mathcal{F} on X pre-converges to x and $A \in \mathcal{F}$, $x \in A$.

Proof. \Rightarrow) Let A be a $p\gamma$ -set, $A \in \mathcal{F}$ and let \mathcal{F} be a filter finer than P_x . Then by Theorem 2.16, we have $x \in cl_p(A)$. And it follows $x \in A$ from Theorem 2.14(2). \Leftarrow) Let $x \in cl_p(A)$. Then we can say that $A \cap U \neq \emptyset$ for all $U \in P_x$. Let \mathcal{F} be a filter

generated by the filter base $\{A \cap U : U \in P_x\}$. Then \mathcal{F} pre-converges to x and $A \in \mathcal{F}$, and

so by the condition $x \in A$ and we have $cl_p(A) = A$.

Definition 2.18. Let (X, τ) be a topological space, $x \in X$ and let \mathcal{F} be a filter on X. We say that \mathcal{F} has a $p\gamma$ -cluster point x if each $F \in \mathcal{F}$ meets each $U \in P_x$.

Theorem 2.19. Let (X, τ) be a topological space, $x \in X$ and let \mathcal{F} be a filter on X. Then \mathcal{F} has a $p\gamma$ -cluster point x if and only if $x \in \cap \{cl_pF : F \in \mathcal{F}\}$.

Proof. It is obvious from Theorem 2.16 and Definition 2.18.

Theorem 2.20. Let (X, τ) be a topological space, and let \mathcal{F} be a filter on X. \mathcal{F} has x as a $p\gamma$ -cluster point if and only if there is a filter \mathcal{G} finer than \mathcal{F} which pre-converges to x.

Proof. \Rightarrow) Let x be a $p\gamma$ -cluster point of \mathcal{F} . Then from Definition 2.18, the collection $G = \{U \cap F : U \in P_x, F \in \mathcal{F}\}$ is a filter base for a filter \mathcal{G} which is finer than \mathcal{F} and pre-converges to x.

 \Leftarrow) It is obvious from the definition of pre-convergence of filters.

In a topological space X, a family \mathcal{C} of $p\gamma$ -sets in X will be called a $p\gamma$ -cover of X if \mathcal{C} covers X.

Definition 2.21. A topological space X is said to be $p\gamma$ -compact if each $p\gamma$ -cover of X has a finite subcover.

Theorem 2.22. For topological space (X, τ) , the following are equivalent:

a) X is $p\gamma$ -compact,

b) each family ${\mathcal C}$ of $p\gamma\text{-closed sets}$ in X with the finite intersection property has nonempty intersection,

c) each filter in X has a $p\gamma$ -cluster point.

Proof. a) \Rightarrow b) and b) \Rightarrow c) are clear.

c) \Rightarrow a): Suppose C is a $p\gamma$ -cover of X with no finite subcover. Then $X - (U_1 \cup \cdots \cup U_n) \neq \emptyset$ for each finite collection $\{U_1, \cdots, U_n\}$ from C. Thus we get a filter base $\{X - (U_1 \cup \cdots \cup U_n) : \{U_1, \cdots, U_n\} \subset C\}$, generating a filter \mathcal{F} . Then by c), \mathcal{F} has a $p\gamma$ -cluster point, say to x. Then x is contained in a member U of C and $U \in P_x$. For $X - U \in \mathcal{F}$, it is impossible the intersection of (X - U) and U is not empty, thus we have a contradiction. Consequently C must have a finite subcover.

3. $p\gamma$ -continuous and $p\gamma$ -irresolute functions

In this section, we introduce the concepts of $p\gamma$ -continuous, $p\gamma$ -irresolute and $p\gamma$ -open functions and characterize their properties in terms of pre-convergence of filters.

Definition 3.1. Let (X, τ) and (Y, μ) be topological spaces. A function $f : X \to Y$ is said to be $p\gamma$ -continuous if the inverse image of each open set of Y is a $p\gamma$ -set in X.

Since the family of all $p\gamma$ -sets in a given topological space is a topology, we get the

following equivalent statements.

Theorem 3.2. Let (X,τ) and (Y,μ) be topological spaces. If $f:(X,\tau)\to (Y,\mu)$ is a function, then the following statements are equivalent:

- (1) f is $p\gamma$ -continuous.
- (2) The inverse image of each closed set in Y is $p\gamma$ -closed.
- (3) $cl_p(f^{-1}(B)) \subset f^{-1}(cl(B))$ for every $B \subset Y$.
- (4) $f(cl_p(A)) \subset cl(f(A))$ for every $A \subset X$.
- (5) $f^{-1}(int(B)) \subset int_n(f^{-1}(B))$ for every $B \subset Y$.

Let (X,τ) and (Y,μ) be topological spaces. We say that a function $f:X\to Y$ is $p\gamma$ -continuous at x if for each neighborhood U of f(x) in Y, there exists a $p\gamma$ -neighborhood V of x in X such that $f(V) \subset U$.

Theorem 3.3. Let $f: (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then the following are equivalent:

- (1) f is $p\gamma$ -continuous at x.
- (2) If a filter \mathcal{F} pre-converges to x, then $f(\mathcal{F})$ converges to f(x).

Proof. (1) \Rightarrow (2): Let U be a neighborhood of f(x) in Y. Then by (1), $f^{-1}(U)$ is an element in P_x . Since \mathcal{F} pre-converges to x and $f(\mathcal{F})$ is a filter, $U \in f(\mathcal{F})$. Consequently, $f(\mathcal{F})$ converges to f(x).

 $(2) \Rightarrow (1)$: Let U be a neighborhood of f(x). Since P_x pre-converges to x, $f(P_x)$ converges to f(x), and so $U \in f(P_x)$. Thus there is a $p\gamma$ -neighborhood $V \in P_x$ such that $f(V) \subset U$.

Corollary 3.4. Let $f: (X, \tau) \to (Y, \mu)$ be a precontinuous function and $x \in X$. If a filter \mathcal{F} pre-converges to x, then $f(\mathcal{F})$ converges to f(x) in Y.

Proof. It is obvious by using Theorem 3.2 and Theorem 3.3.

The following example shows that the converse of Corollary 3.4. may not be true.

Example 3.5. Consider the set R of real numbers with the cofinite topology. We define $f: R \to R$ by f(x) = 0, if x = 0 and otherwise, f(x) = 1. Clearly a filter \mathcal{F} pre-converges to x if and only if \mathcal{F} is finer than \dot{x} . Thus $f(x) \subset f(\mathcal{F})$, and $f(\mathcal{F})$ converges to f(x). For an open set $U = R - \{1\}$, $f^{-1}(U) = \{0\}$. But $\{0\}$ is not preopen in R, and so f is not pre-continuous.

Definition 3.6. Let (X, τ) and (Y, μ) be topological spaces. A function $f: X \to Y$ is said to be $p\gamma$ -irresolute if the inverse image of each $p\gamma$ -set of Y is a $p\gamma$ -set in X.

The following are obtained by Definition 3.6.

Theorem 3.7. Let $f: (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then the following are equivalent :

(1) f is $p\gamma$ -irresolute.

(2) The inverse image of each $p\gamma$ -closed set in Y is a $p\gamma$ -closed set.

(3) $cl_{p\tau}(f^{-1}(V)) \subset f^{-1}(cl_{p\mu}(V))$, for every $V \subset Y$. (4) $f(cl_{p\tau}(U)) \subset cl_{p\mu}(f(U))$, for every $U \subset X$.

(5) $f^{-1}(int_{p\mu}(B)) \subset int_{p\tau}(f^{-1}(B))$, for every $B \subset Y$.

Theorem 3.8. Let $f: (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then the following are equivalent:

(1) f is $p\gamma$ -irresolute.

(2) For $x \in X$ and for each $V \in P_{f(x)}$, there exists an element U in the pre-neighborhood filter P_x such that $f(U) \subset V$.

(3) For each $x \in X$, if a filter \mathcal{F} pre-converges to x, then $f(\mathcal{F})$ pre-converges to f(x) in Y.

Proof. $(1) \Rightarrow (2)$: It is obvious.

 $(2) \Rightarrow (3)$: Let V be an element of the pre-neighborhood filter $P_{f(x)}$ and let \mathcal{F} be a filter on X pre-converging to x. Then by 2), there exists an element U in the pre-neighborhood filter P_x such that $f(U) \subset V$. Since U is an element in P_x and $f(\mathcal{F})$ is a filter finer than $f(P_x)$, we can say $V \in f(\mathcal{F})$. Consequently $f(\mathcal{F})$ pre-converges to f(x).

(3) \Rightarrow (1): Let V be a $p\gamma$ -set in Y. Suppose $f^{-1}(V)$ is not empty. For each $x \in f^{-1}(V)$, since the pre-neighborhood filter P_x pre-converges to x, by 3) we can say $f(P_x)$ pre-converges to f(x). And since V is a $p\gamma$ -set containing f(x) and $P_{f(x)} \subset f(P_x)$, $V \in f(P_x)$. Thus we can take some $p\gamma$ -set U in P_x such that $f(U) \subset V$, and so $f^{-1}(V)$ is an element of P_x . Thus $f^{-1}(V)$ is a $p\gamma$ -set in X by Theorem 2.10 (b).

Corollary 3.9. Let $f: (X, \tau) \to (Y, \mu)$ be a function. If f is preirresolute, then whenever a filter \mathcal{F} pre-converges to x in X, $f(\mathcal{F})$ pre-converges to f(x) in Y.

Proof. Let V be an element of the pre-neighborhood filter $P_{f(x)}$ and let \mathcal{F} be a filter on X pre-converging to x. By Definition 2.1, there exist $U_1, \dots, U_n \in P(f(x))$ such that $U=U_1 \cap \dots \cap U_n \subset V$. From f is a preirresolute function, it follows $f^{-1}(V) \in P_x$. Since $f(\mathcal{F})$ is a filter finer than $f(P_x), V \in f(\mathcal{F})$, so that $f(\mathcal{F})$ pre-converges to f(x).

Remark. 3.10. We can get the following diagrams :

(1) continuity $\implies \alpha$ -continuity \implies pre-continuity $\implies p\gamma$ -continuity.

(2) preirresolute $\implies p\gamma$ -irresolute.

From Example 3.5, we can show the converse in (2) need not be true. And non of the implications in the diagram (1) above is reversible.

Theorem 3.11. a) The $p\gamma$ -continuous image of a $p\gamma$ -compact space is compact. b) The $p\gamma$ -irresolute image of a $p\gamma$ -compact space is $p\gamma$ -compact.

Proof. From the definitions of $p\gamma$ -compactness and $p\gamma$ -continuity, we get the results.

Definition 3.12. For two topological spaces (X, τ) and (Y, μ) , a function $f : (X, \tau) \to (Y, \mu)$ is said to be $p\gamma$ -open if for every open set G in X, f(G) is a $p\gamma$ -set in Y.

Theorem 3.13. Let $f: (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then f is $p\gamma$ -open if and only if $int(f^{-1}(B)) \subset f^{-1}(int_{p\mu}(B))$ for each $B \subset Y$.

Proof. \Rightarrow) Let $B \subset Y$ and $x \in int(f^{-1}(B))$. Then $f(int(f^{-1}(B)))$ is a $p\gamma$ -set containing f(x). Since $f(int(f^{-1}(B))) \in P_{f(x)}$ and $P_{f(x)}$ is a filter, $B \in P_{f(x)}$. Thus $f(x) \in int_{p\mu}(B)$ and so $x \in f^{-1}(int_{p\mu}(B))$.

⇐) Let A be an open subset in X and $y \in f(A)$. Then $A \subset int(f^{-1}f(A)) \subset f^{-1}(int_{p\mu}(f(A)))$. Let x be an element in A such that f(x) = y. Then $x \in f^{-1}(int_{p\mu}(f(A)))$, and $y \in int_{p\mu}(f(A))$. Thus from Theorem 2.10(b), we can say that f(A) is a $p\gamma$ -set.

Remark. 3.14. If a function is preopen, then the function is also $p\gamma$ -open. But the converse may not hold. Consider the set R of real numbers with cofinite topology and a function $f: R \to R$ defined by f(x) = 0 for all $x \in R$. Then f is $p\gamma$ -open. But for any open set $G, f(G) = \{0\}$ and $\{0\}$ is not a preopen set, thus f is not preopen.

Theorem 3.15. Let $f: (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then f is $p\gamma$ -open if and only if for each $x \in X$ and for each neighborhood G of x, f(G) is also an element of pre-neighborhood filter $P_{f(x)}$ in Y.

Proof. \Rightarrow) Let G be a neighborhood of x, then there exists an open set U such that $x \in U \subset G$. Since f is $p\gamma$ -open, $f(x) \in f(U) = int_{p\mu}(f(U))$, and so $f(U) \in P_{f(x)}$. Thus we have $f(G) \in P_{f(x)}$. \Leftrightarrow) Let $B \subset Y$ and $x \in int(f^{-1}(B))$, then since $f^{-1}(B)$ is a neighborhood of x, $f^{-1}(B) \in P_x$. By the condition, we have $f(f^{-1}(B)) \in P_{f(x)}$. And since $P_{f(x)}$ is a filter, B is also an element of $P_{f(x)}$. By Theorem 2.10, it follows $f(x) \in int_{p\mu}(B)$. Thus by Theorem 3.13, the function f is $p\gamma$ -open.

Remark. 3.16. We get the following relations:

open function $\implies \alpha$ -open function \implies preopen function $\implies p\gamma$ -open function.

References

- H. H. Corson and E. Michael, "Metrizability of certain countable unions," Illinois J. Math 8 (1964), 351-360.
- [2] R. M. Latif, "to appear, Semi-convergence of filters and nets," *Soochow Journal of Mathematics*.
- [3] N. Levine, "Semi-open Sets and Semi-continuity in Topological Spaces," Amer. Math. Monthly 70 (1963), 36-41.
- [4] A. S. Mashhour, I. A. Hasanein and S. N. El-deeb, "α-cotinuous and α-open mappings," Acta Math. Hung. 41 (4) (1983), 213-218.
- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-deeb, "On precontinuous and weak precontinuous mappings," Proc. Math. Phs. Soc. Egypt. 53 (1982), 47-53.
- [6] W. K. Min, "γ-sets and γ-continuous functions," Inter. J. Math. Math. Sci. 31 (3) (2002), 177-181.
- [7] O. Njastad , " On some classes of nearly open sets," pacific journal of mathematics 15(3) (1964), 961-970.
- [8] I. L. Reilly and M. K. Vamanmurthy, "On α-continuity in topological spaces," Acta Math. Hung. 45 (4) (1985), 27-32.

Won Keun Min Department of Mathematics Kangwon National University Chuncheon, 200-701 Korea wkmin@cc.kangwon.ac.kr

178