ON $\delta\theta$ -SEQUENCES AND σ -PRODUCTS

KEIKO CHIBA

Received December 24, 2003

ABSTRACT. In this paper we shall obtain characterizations of $\delta\theta$ -sequences and investigate $\delta\theta$ -refinability-like properties of σ -products.

1. INTRODUCTION.

In 1967, J. M. W. Worrel [18] introduced the notion of θ -sequences and θ -refinable spaces and characterized θ -refinable spaces by using pointwise W-refining sequences. After that, H. J. K. Junnila [11, 12, 13] investigated θ -refinable spaces and characterized such spaces by using point star \dot{F} -refining sequences.

In this paper we investigate $\delta\theta$ -sequences. We introduce the notions of pointwise countable W-refining sequences and point star \dot{C} -refining sequences, and obtain a characterization of $\delta\theta$ -refinability under an additional condition. Further we study $\delta\theta$ -refinability-like properties of σ -products.

2. $\delta\theta$ -sequences

Definition 1. A space X is called " $\delta\theta$ -refinable" [3, p. 370] (resp. θ -refinable) if every open cover \mathcal{G} of X has a $\delta\theta$ -sequence (resp. θ -sequence) $(\mathcal{H}_n)_{n \in \mathbb{N}}$ of X such that each \mathcal{H}_n is an open cover of X and a refinement of \mathcal{G} . Let us denote $\mathcal{H}_n \prec \mathcal{G}$ when \mathcal{H}_n is a refinement of \mathcal{G} .

A sequence $(\mathcal{H}_n)_{n \in \mathbb{N}}$ of covers of X is called a " $\delta\theta$ -sequence" (resp. θ -sequence) of X if for any $x \in X$ there is some $n_x \in \mathbb{N}$ such that $\operatorname{ord}(x, \mathcal{H}_{n_x}) \leq \omega$ (resp. $\operatorname{ord}(x, \mathcal{H}_{n_x}) < \omega$). Here $\operatorname{ord}(x, \mathcal{H}_{n_x}) = |\{H; x \in H \in \mathcal{H}_{n_x}\}|$ where ω denotes the first infinite ordinal and |A|denotes the cardinal number of a set A.

Definition 2. ([12]). A family \mathcal{L} of subsets of X is *interior preserving* if for each $\mathcal{K} \subset \mathcal{L}$, we have $\operatorname{Int} \bigcap \mathcal{K} = \bigcap \{\operatorname{Int} L | L \in \mathcal{K}\}$. Here *Int*L denotes the interior of L.

Let \mathcal{U} be an open cover of X. For each $x \in X$, define $\mathcal{U}_x = \{U | x \in U \in \mathcal{U}\}.$

Let \mathcal{U} and \mathcal{V} are open covers of X. \mathcal{V} is called a pointwise W-refinement of \mathcal{U} at x if there is a finite subfamily \mathcal{U}' of \mathcal{U} such that $\mathcal{V}_x \prec \mathcal{U}'$. For every open cover \mathcal{U} of X, let us put $\mathcal{U}^F = \{\bigcup \mathcal{U}' | \mathcal{U}' \subset \mathcal{U}, |\mathcal{U}'| < \omega\}.$

Concerning this, the following is known.

Theorem A ([12, Lemma 2.3]). Let \mathcal{U} be an interior preserving open cover of X. Then the following are equivalent.

(1) There is an interior preserving open pointwise W-refinement \mathcal{V} of \mathcal{U} .

(2) There is a closure preserving closed cover \mathcal{F} of X such that $\mathcal{F} \prec \mathcal{U}^F$.

Now we shall introduce the notion of pointwise countable W-refinement and prove Theorems 1 and 2.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B10, 54D20.

Key words and phrases. $\delta\theta\text{-sequence},\,\sigma\text{-product}.$

Definition 3. Let \mathcal{U} and \mathcal{V} are open covers of X. \mathcal{V} is called a pointwise countable Wrefinement of \mathcal{U} at x if there is a countable subfamily \mathcal{U}' of \mathcal{U} such that $\mathcal{V}_x \prec \mathcal{U}'$. \mathcal{V} is called a pointwise countable W-refinement of \mathcal{U} if \mathcal{V} is a pointwise countable W-refinement of \mathcal{U} at x for every $x \in X$.

For every open cover \mathcal{U} of X, let us put $\mathcal{U}^c = \{\bigcup \mathcal{U}' | \mathcal{U}' \subset \mathcal{U}, |\mathcal{U}'| \le \omega\}$. For each $x \in X$, we denote $\operatorname{st}(x, \mathcal{U}) = \bigcup \{U | x \in U \in \mathcal{U}\}$.

Theorem 1. Let \mathcal{U} be an interior preserving open cover of X. Then the following are equivalent.

(1) There is an interior preserving open pointwise countable W-refinement \mathcal{V} of \mathcal{U} .

(2) There is a closure preserving closed cover \mathcal{F} of X such that $\mathcal{F} \prec \mathcal{U}^c$.

The proof of Theorem 1 is similar to that of Theorem 2 below.

Theorem 2. Let \mathcal{U} be an interior preserving open cover of X. Then the following are equivalent.

(1) There is a sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$ of interior preserving open covers of X such that $\mathcal{V}_n \prec \mathcal{U}$ for each $n \in \mathbb{N}$ and for each $x \in X$, there is an n such that \mathcal{V}_n is a pointwise countable W-refinement of \mathcal{U} at x.

(2) There is a σ -closure preserving closed cover \mathcal{F} of X such that $\mathcal{F} \prec \mathcal{U}^c$.

Proof. The basic idea of this proof is in the proof of [12, Lemma 2.3]. (2) \Rightarrow (1). Let $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ be a closed cover of X such that $\mathcal{F} \prec \mathcal{U}^c$ and each \mathcal{F}_n is a closure preserving family. For each $x \in X$, let $V_{n,x} = [\bigcap \mathcal{U}_x] \cap [X \setminus \bigcup (\mathcal{F}_n \setminus \mathcal{F}_x)]$. Then $V_{n,x}$ is open in X such that $x \in V_{n,x}$. Put $\mathcal{V}_n = \{V_{n,x} | x \in X\}$. Then \mathcal{V}_n is an open cover of X such that $\mathcal{V}_n \prec \mathcal{U}$.

(i) \mathcal{V}_n is interior preserving.

Proof. For each $A \subset X$, we have $\bigcap_{x \in A} V_{n,x} = [\bigcap \mathcal{U}_A] \cap [X \setminus \bigcup (\mathcal{F}_n \setminus \mathcal{F}_A)]$ where $\mathcal{U}_A = \{U | U \cap A \neq \emptyset\} = \bigcup_{x \in A} \mathcal{U}_x$ and $\mathcal{F}_A = \{F | F \cap A \neq \emptyset\} = \bigcup_{x \in A} \mathcal{F}_x$. Since \mathcal{U} is interior preserving, $\bigcap \mathcal{U}_A$ is open. Since \mathcal{F}_n is closure preserving, $\bigcup (\mathcal{F}_n \setminus \mathcal{F}_A)$

Since \mathcal{U} is interior preserving, $\bigcap \mathcal{U}_A$ is open. Since \mathcal{F}_n is closure preserving, $\bigcup (\mathcal{F}_n \setminus \mathcal{F}_A)$ is closed. Therefore $\bigcap_{x \in A} V_{n,x}$ is open.

(ii) For each $x \in X$, there exists an n such that $(\mathcal{V}_n)_x \prec \mathcal{U}'$ for some countable subfamily \mathcal{U}' of \mathcal{U} .

Proof. For each $x \in X$, there exist an n and $F \in \mathcal{F}_n$ such that $x \in F$. Since $\mathcal{F}_n \prec \mathcal{U}^c$, there is a countable subfamily \mathcal{U}' of \mathcal{U} such that $F \subset \bigcup \mathcal{U}'$.

Let $V \in (\mathcal{V}_n)_x$. Then $V = V_{n,y}$ for some $y \in X$. For each $F' \in \mathcal{F}_n \smallsetminus \mathcal{F}_y$, since $x \in V_{n,y}, x \notin F'$. Since $x \in F, F \in \mathcal{F}_y$. Therefore $y \in F$. Hence $y \in \bigcup \mathcal{U}'$. Thus there is a $U \in \mathcal{U}'$ such that $y \in U$. Since $U \in \mathcal{U}_y, V_{n,y} \subset U$. Therefore $(\mathcal{V}_n)_x \prec \mathcal{U}'$.

(1) \Rightarrow (2). Put $\mathcal{G} = \mathcal{U}^c$. For each $G \in \mathcal{G}$, let $F_{n,G} = \{x \in X | st(x, \mathcal{V}_n) \subset G\}$ and put $\mathcal{F}_n = \{F_{n,G} | G \in \mathcal{G}\}$. Then

(i) $F_{n,G}$ is closed in X.

Proof. Let $x \in X \setminus F_{n,G}$. Then $st(x, \mathcal{V}_n) \notin G$. Therefore there is $V \in \mathcal{V}_n$ such that $x \in V, V \notin G$. Put $O = \bigcap (\mathcal{V}_n)_x$ Then $x \in O$. Since \mathcal{V}_n is interior preserving, O is open. Let $y \in O$. Then $y \in V$. Since $V \notin G$, $st(y, \mathcal{V}_n) \notin G$. Thus $y \notin F_{n,G}$. Hence

 $O \subset X \smallsetminus F_{n,G}.$

(ii) $\mathcal{F} = \bigcup_{n \in \mathbf{N}} \mathcal{F}_n$ is a cover of X.

Proof. Let $x \in X$. There is an n such that $(\mathcal{V}_n)_x \prec \mathcal{U}'$ for some countable subfamily \mathcal{U}' of \mathcal{U} . Put $G = \bigcup \mathcal{U}'$. Then $x \in F_{n,G}$.

(iii) \mathcal{F}_n is closure preserving.

Proof. For each $\mathcal{G}' \subset \mathcal{G}$, put $F = \bigcup \{F_{n,G} | G \in \mathcal{G}'\}$. Then F is closed. To show this, let $x \in X \setminus F$. Then $x \notin F_{n,G}$ for each $G \in \mathcal{G}'$. Therefore there are $V_G \in \mathcal{V}_n$ such that $x \in V_G, V_G \nsubseteq G$. Put $V = \bigcap \{V_G | G \in \mathcal{G}'\}$. Then V is open, $x \in V$ and $V \cap F_{n,G} = \emptyset$ for each $G \in \mathcal{G}'$. Thus $V \cap F = \emptyset$. \Box

Worrel proved the following.

Theorem B([12, Proposition 1.4]). Let \mathcal{U} be an open cover of X. Suppose there exists a sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of open refinements of \mathcal{U} satisfying: for each $x \in X$ there is a sequence of integers $(\langle n, x \rangle)_{n \in \mathbb{N}}$ such that $\mathcal{U}_{\langle n+1, x \rangle}$ is a pointwise W-refinement of $\mathcal{U}_{\langle n, x \rangle}$ at x for each $n \in \mathbb{N}$. Then \mathcal{U} has a θ -sequence of open refinements.

A family \mathcal{L} of sets is called *monotone* if the partial order of set-inclusion is a linear order on L.

Concerning $\delta\theta$ -sequences, we obtain the following.

Theorem 3. Let \mathcal{L} be a monotone open cover of X such that $\mathcal{L}^c = \mathcal{L}$. Then the following holds. Suppose there is a sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of open coves of X such that $\mathcal{U}_n \prec \mathcal{L}$ for each n satisfying: for each $x \in X$, there is a sequence of integers $(\langle n, x \rangle)_{n \in \mathbb{N}} \subset \mathbb{N}$ such that $\mathcal{U}_{\langle n+1,x \rangle}^c$ is a pointwise countable W-refinement of $\mathcal{U}_{\langle n,x \rangle}^c$ at x. Then \mathcal{L} has a $\delta\theta$ -sequence of refinements.

Proof. This proof is similar to that of Theorem B in outline. Put $\mathcal{L} = \{W_{\alpha} | \alpha < \gamma\}$ for some ordinal γ . For each $V \in \bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}^{c}$, define $\alpha(V) = \min\{\alpha | V \subset W_{\alpha}\}$. For each $V \in \bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}^{c}$, define " \mathcal{U}_{n}^{c} is precise at V" by the condition: If $U \in \mathcal{U}_{n}^{c}$ and $V \subset U$, then $\alpha(V) = \alpha(U)$.

For each $n \in \mathbf{N}$ and each $k \in \mathbf{N}$, put $\mathcal{W}_{n,k} = \{V \in \mathcal{U}_k^c | \mathcal{U}_n^c \text{ is precise at } V\}$ and $L_{n,k} = \{x \in X | \mathcal{U}_k^c \text{ is a pointwise countable W-refinement of } \mathcal{U}_n^c \text{ at } x\}.$

For each h > 2 and each $s = (s(1), s(2), ..., s(h)) \in \mathbf{N}^h$, define $L_s = L_{s(h-2), s(h-1)}$.

For each $x \in X$, there is a sequence $(\langle n, x \rangle)_{n \in \mathbb{N}}$ of integers such that there is a countable subfamily $\mathcal{Q}_n(x)$ of $(\mathcal{U}_{\langle n,x \rangle}^c)_x$ such that $(\mathcal{U}_{\langle n+1,x \rangle}^c)_x \prec \mathcal{Q}_n(x)$ for each n.

Put $Q(n, x) = \bigcup \mathcal{Q}_n(x)$.

For each h > 2 and each $s = (s(1), s(2), ..., s(h)) \in \mathbf{N}^h$, put $H_s = \{x \in L_s | s(i) = \langle i, x \rangle$ for $i = 1, 2, ..., h; Q(h-1, x) \in \mathcal{W}_{s(h-2), s(h-1)}\}$. Then we have

(1) $\{H_s | s \in \mathbf{N}^h, h > 2\}$ is a cover of X.

Proof. Let $x \in X$. Put $\alpha_n = \alpha(Q(n, x))$. Since $Q_{n+1}(x) \prec Q_n(x), Q(n+1, x) \subset Q(n, x)$. Therefore $\alpha_{n+1} \leq \alpha_n$ for each n. Thus there is a k such that $\alpha_k = \alpha_n (\forall n \geq k-2)$. Put $s = (\langle 1, x \rangle, \langle 2, x \rangle, ..., \langle k+1, x \rangle) \in \mathbf{N}^{k+1}$. Then we have (*) $x \in H_s$.

Proof. It is obvious that $x \in L_s$ and $Q(k, x) \in \mathcal{U}^c_{\langle k, x \rangle} = \mathcal{U}^c_{s(k)}$. If $Q(k, x) \subset U, U \in \mathcal{U}^c_{\langle k-1, x \rangle}$, then $x \in U$. Thus $U \in (\mathcal{U}^c_{\langle k-1, x \rangle})_x$. Since $(\mathcal{U}^c_{\langle k-1, x \rangle})_x \prec \mathcal{Q}_{k-2}(x)$, there exists $U' \in \mathcal{Q}_{k-2}(x)$ such that $U \subset U'$. Hence $U \subset Q(k-2, x)$. Therefore $Q(k, x) \subset U \subset Q(k-2, x)$. Thus $\alpha_k \leq \alpha(U) \leq \alpha_{k-2} = \alpha_k$. Hence $\alpha(U) = \alpha_k = \alpha(Q(k, x))$. Therefore $\mathcal{U}^c_{\langle k-1, x \rangle}$ is precise at Q(k, x). Thus $Q(k, x) \in \mathcal{W}_{\langle k-1, x \rangle, \langle k, x \rangle} = \mathcal{W}_{s(k-1), s(k)}$. Hence $x \in H_s$.

For each $\alpha < \gamma$ and $n, k \in \mathbf{N}$, put $V_{\alpha,n,k} = \bigcup \{W | W \in \mathcal{W}_{n,k}, \alpha(W) = \alpha\}$ and $\mathcal{V}_{n,k} = \{V_{\alpha,n,k} | \alpha < \gamma\}$. Then $\mathcal{V}_{n,k}$ is an open family in X and

(2) $\mathcal{V}_{n,k}$ is is point countable on $L_{n,k}$.

Proof. Let $x \in L_{n,k}$. Then there exists a countable subfamily \mathcal{Q}'_n of $(\mathcal{U}^c_n)_x$ such that $(\mathcal{U}^c_k)_x \prec \mathcal{Q}'_n$.

Put $A = \{\alpha(Q) | Q \in Q'_n\}$. Then $\{\alpha | x \in V_{\alpha,n,k}\} \subset A$. To show this, let $\alpha < \gamma$ and $x \in V_{\alpha,n,k}$. Then there is a $W \in \mathcal{W}_{n,k}$ such that $x \in W$ and $\alpha(W) = \alpha$. Since $W \in (\mathcal{U}_k^c)_x, W \subset Q$ for some $Q \in Q'_n$. Since $Q \in \mathcal{U}_n^c, W \subset Q$ and $W \in \mathcal{W}_{n,k}, \alpha(W) = \alpha(Q)$. Thus $\alpha \in A$.

For each h > 2 and each $s = (s(1), S(2), ..., s(h)) \in \mathbf{N}^h$, put $\mathcal{V}_s = \mathcal{V}_{s(h-2), s(h-1)}, \mathcal{U}_s = \{U \in \mathcal{U}_{s(h)}^c | U \nsubseteq \cup \mathcal{V}_s\}$ and $\mathcal{O}_s = \mathcal{U}_s \cup \mathcal{V}_s$. Then (i) \mathcal{O}_s is an open cover of X,

(ii) $\mathcal{O}_s \prec \mathcal{L}$,

(iii) for each $x \in X$, by (1), there is h > 2 and $s \in \mathbf{N}^h$ such that $x \in H_s$. Then $\operatorname{ord}(x, \mathcal{O}_s) \leq \omega$.

(i) and (ii) are obvious.

Proof of (iii). Since $x \in L_{s(h-2),s(h-1)}$, by (2), $\operatorname{ord}(x, \mathcal{V}_s) \leq \omega$. Let $U \in \mathcal{U}_s$. Then $x \notin U$. If not, $U \in (\mathcal{U}_{s(h)}^c)_x$. Since $(\mathcal{U}_{s(h)}^c)_x \prec \mathcal{Q}_{(h-1)}(x), U \subset Q(h-1,x)$. Since $x \in H_s, Q(h-1,x) \in \mathcal{W}_{s(h-2),s(h-1)}$. Therefore $Q(h-1,x) \subset V_{\alpha,s(h-2),s(h-1)}$ for some $\alpha < \gamma$. Thus $U \subset V_{\alpha,s(h-2),s(h-1)} \subset \bigcup \mathcal{V}_s$. This is a contradiction because $U \in \mathcal{U}_s$. Thus $\operatorname{ord}(x,\mathcal{U}_s) = 0$.

By (i) ' (iii), $\{\mathcal{O}_s | s \in \mathbf{N}^s, h > 2\}$ is a $\delta\theta$ -sequence of open refinements of \mathcal{L} . \Box

Concerning θ -sequences, the following is known.

Theorem C([12, Lemma 1.3]). Let \mathcal{U} be an open cover of X. Then the following are equivalent.

(1) There is a θ -sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of refinements of \mathcal{U} such that \mathcal{U}_n is an interior preserving open cover of X for each n.

(2) There are a sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of interior preserving open covers of X such that $\mathcal{U}_n \prec \mathcal{U}$ for each n and a closed cover $\{F_n | n \in \mathbb{N}\}$ of X such that \mathcal{U}_n is point finite at each $x \in F_n$ for each n.

Concerning $\delta\theta$ -sequences, the similar result of Theorem C holds.

Theorem 4. Let \mathcal{U} be an open cover of X. Then the following are equivalent.

(1) There is a $\delta\theta$ -sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of refinements of \mathcal{U} such that \mathcal{U}_n is an interior preserving open cover of X for each n.

(2) There are a sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ of interior preserving open covers of X such that $\mathcal{U}_n \prec \mathcal{U}$ for each n and a closed cover $\{F_n | n \in \mathbb{N}\}$ of X such that \mathcal{U}_n is point countable at each $x \in F_n$ for each n.

Proof. (1) \Rightarrow (2). For each *n*, put $F_n = \{x \in X | st(x, \mathcal{U}_n) \subset \bigcup \mathcal{U}' \text{ for some countable subfamily } \mathcal{U}' \text{ of } \mathcal{U}\}$. Then

(i) F_n is closed in X.

Proof. Let $x \in X \setminus F_n$. Then $\operatorname{st}(x, \mathcal{U}_n) \notin \bigcup \mathcal{U}'$ for each countable subfamily \mathcal{U}' of \mathcal{U} . Put $U_x = \bigcap (\mathcal{U}_n)_x$. Then $x \in U_x$ and, since \mathcal{U} is interior preserving, U_x is open. And we have $(*) \ U_x \subset X \setminus F_n$.

Proof. Let $y \in U_x$. If $U \in (\mathcal{U}_n)_x$, then $y \in U$. Therefore $(\mathcal{U}_n)_x \subset (\mathcal{U}_n)_y$. Thus $\operatorname{st}(x,\mathcal{U}_n) \subset \operatorname{st}(y,\mathcal{U}_n)$. Since $\operatorname{st}(x,\mathcal{U}_n) \nsubseteq \cup \mathcal{U}'$ for each countable subfamily \mathcal{U}' of \mathcal{U} . Therefore $\operatorname{st}(y,\mathcal{U}_n) \nsubseteq \bigcup \mathcal{U}'$ for each countable subfamily \mathcal{U}' of \mathcal{U} . Hence $y \notin F_n$.

Therefore (\mathcal{U}_n) and F_n satisfy the conditions in (2).

 $(2) \Rightarrow (1)$ is obvious. \Box .

Theorem 5. Let \mathcal{U} be an open cover of X. If \mathcal{U}^c has a $\delta\theta$ -sequence of refinements, then \mathcal{U} has a $\delta\theta$ -sequence of refinements.

Proof. Let $(\mathcal{V}_n)_{n\in\mathbb{N}}$ be a $\delta\theta$ -sequence of refinements of \mathcal{U}^c . For each $V \in \mathcal{V}_n$, there exists a countable subfamily \mathcal{U}_V of \mathcal{U}^c such that $V \subset \bigcup \mathcal{U}_V$. Let $\mathcal{U}_V = \{U_i | i = 1, 2, ...\}, U_i = \bigcup_{j=1}^{\infty} U_{i,j}, U_{i,j} \in \mathcal{U}$. Put $\mathcal{U}_V' = \{U_{i,j} | i, j = 1, 2, ...\}$. Define $\widetilde{\mathcal{V}_n} = \{V \cap U | U \in \mathcal{U}_V', V \in \mathcal{V}_n\}$. Then $\widetilde{\mathcal{V}_n}$ is an open cover of X and $\overline{\mathcal{V}_n} \prec \mathcal{U}$. For each $x \in X$, there is an n such that $1 \leq \operatorname{ord}(x, \mathcal{V}_n) \leq \omega$. Then $1 \leq \operatorname{ord}(x, \widetilde{\mathcal{V}_n}) \leq \omega$. Thus $(\widetilde{\mathcal{V}_n})_{n \in \mathbb{N}}$ is a $\delta\theta$ -sequence of refinements of \mathcal{U} . \Box

Definition 4. Let \mathcal{U} be a cover of X and $(\mathcal{V}_n)_{n \in \mathbb{N}}$ a sequence of covers of X. A sequence $(\mathcal{V}_n)_n$ is called a pointwise W-refining sequence for \mathcal{U} if for each x, there exists some n_x such that \mathcal{V}_{n_x} is a pointwise W-refinement of \mathcal{U} at x.

By Worrell, the next characterization of θ -refinable spaces was given.

Theorem D ([18], or cf. [19, 3.4. Theorem]). A space X is θ -refinable (submetacompact) if and only if every open cover of X has a pointwise W-refining sequence by open covers.

Definition 5. ([11]). Let \mathcal{L} and \mathcal{G} be covers of X. \mathcal{L} is called "point-star F-refinement" of \mathcal{G} at $x \in X$ if there is a finite subfamily \mathcal{G}' of \mathcal{G} such that $x \in \bigcap \mathcal{G}'$ and $\operatorname{st}(x, \mathcal{L}) \subset \bigcup \mathcal{G}'$.

A sequence $(\mathcal{L}_n)_{n \in \mathbb{N}}$ of covers of X is called "*point-star* \dot{F} -refining sequence" of \mathcal{G} if for each $x \in X$, there is an $n_x \in \mathbb{N}$ such that \mathcal{L}_{n_x} is point-star \dot{F} -refinement of \mathcal{G} at x.

Junnila gave the next characterization of submetacompactness.

Theorem E ([18]). A space X is θ -refinable (submetacompact) if and only if every open cover of X has a point star \dot{F} -refinning sequence by open covers.

Definition 6. Let \mathcal{U} be a cover of X and $(\mathcal{V}_n)_{n \in \mathbb{N}}$ a sequence of covers of X. We shall say a sequence $(\mathcal{V}_n)_n$ is a pointwise countable W-refining sequence for \mathcal{U} if for each x, there exists some n_x such that \mathcal{V}_{n_x} is a pointwise countable W-refinement of \mathcal{U} at x.

We shall say a space X is w- $\delta\theta$ -refinable if every open cover of X has a pointwise countable W-refining sequences by open covers.

Definition 7. Let \mathcal{L} and \mathcal{G} are covers of X. We shall say \mathcal{L} is called "point-star \dot{C} -refinement" of \mathcal{G} at $x \in X$ if if there is a countable subfamily \mathcal{G}' of \mathcal{G} such that $x \in \bigcap \mathcal{G}'$ and $\operatorname{st}(x, \mathcal{L}) \subset \bigcup \mathcal{G}'$.

We shall say a sequence $(\mathcal{L}_n)_{n \in \mathbf{N}}$ of covers of X is "point-star \dot{C} -refining sequence" of \mathcal{G} if for each $x \in X$, there is an $n_x \in \mathbf{N}$ such that \mathcal{L}_{n_x} is point-star \dot{C} -refinement of \mathcal{G} at x.

We shall say a space X is ww- $\delta\theta$ -refinable if every open cover of X has a point star \dot{C} -refining sequences by open covers.

It is obvious that every $\delta\theta$ -refinable space is w- $\delta\theta$ -refinable and every w- $\delta\theta$ -refinable space is ww- $\delta\theta$ -refinable. Let L(X) denote the Lindelöf number of a space X, i.e., $L(X) = \min\{\kappa \mid \kappa \geq \omega, \text{ each open cover } \mathcal{G} \text{ of } X \text{ has a subcover } \mathcal{G}' \text{ with } |\mathcal{G}'| \leq \kappa\}.$

Theorem 6. Let X be a space with $L(X) \leq \omega_1$. Then the following are equivalent.

(i) X is $\delta\theta$ -refinable.

(ii) X is w- $\delta\theta$ -refinable.

(iii) X is ww- $\delta\theta$ -refinable.

Proof. It is obvious that (i) \Rightarrow (ii) and (ii) \Rightarrow (iii). To prove that (iii) \Rightarrow (i), let \mathcal{U} be an open cover of X. We may assume that $\mathcal{U} = \{U_{\alpha} | \alpha < \omega_1\}$. By assumption, there exists a sequence $(\mathcal{L}_k)_{k \in \mathbb{N}}$ of point star \dot{C} -refining sequence by open covers of X.

For each $k \in \mathbf{N}$ and each $\alpha < \omega_1$, define $V_{k,\alpha} = U_{\alpha} \cap (\operatorname{st}(X \setminus \bigcup_{\beta \neq \alpha} U_{\beta}, \mathcal{L}_k)),$ $V'_{k,\alpha} = U_{\alpha} \cap (\bigcup_{\beta > \alpha} U_{\beta}) \cap (\operatorname{st}(X \setminus \bigcup_{\beta < \alpha} U_{\beta}, \mathcal{L}_k)) \text{ and put}$ $\mathcal{V}_k = \{V_{k,\alpha} | \alpha < \omega_1\} \cup \{V'_{k,\alpha} | \alpha < \omega_1\}.$ Then

(1) \mathcal{V}_k is an open cover of X such that $\mathcal{V}_k \prec \mathcal{U}$.

Proof. It is obvious that each set of \mathcal{V}_k is an open set and $\mathcal{V}_k \prec \mathcal{U}$. To prove that \mathcal{V}_k is a cover of X, let $x \in X$. Put $\alpha = \min \{\beta < \omega_1 | x \in U_\beta\}$. Then $x \in U_\alpha \setminus \bigcup_{\beta < \alpha} U_\beta$. If $x \notin V'_{k,\alpha}$, then $x \notin \bigcup_{\beta > \alpha} U_\beta$ and thus $x \in \bigcup_{\beta \neq \alpha} U_\beta$. Hence $x \in V_{k,\alpha}$. (2) $(\mathcal{V}_k)_{k \in \mathbf{N}}$ is a $\delta\theta$ -sequence.

Proof. Let $x \in X$. Then there exist a $k \in \mathbb{N}$ and a countable subset $\{\alpha_i | i = 1, 2, ...\} \subset \omega_1$ such that $x \in \bigcap_{i=1}^{\infty} U_{\alpha_i}$ and $\operatorname{st}(x, \mathcal{L}_k) \subset \bigcup_{i=1}^{\infty} U_{\alpha_i}$. If $x \in V_{k,\alpha}$, then there is an $L \in \mathcal{L}_k$ such that $x \in L$ and $L \cap (X \setminus \bigcup_{\beta \neq \alpha} U_\beta) \neq \emptyset$. Since

If $x \in V_{k,\alpha}$, then there is an $L \in \mathcal{L}_k$ such that $x \in L$ and $L \cap (X \setminus \bigcup_{\beta \neq \alpha} U_\beta) \neq \emptyset$. Since $L \subset \bigcup_{i=1}^{\infty} U_{\alpha_i}, \alpha = \alpha_i$ for some *i*. Therefore $\{\alpha < \omega_1 | x \in V_{k,\alpha}\} \subset \{\alpha_i | i = 1, 2, ...\}$. Put $\alpha^* = \sup\{\alpha_i | i = 1, 2, ...\}$. Then $\{\alpha < \omega_1 | x \in V'_{k,\alpha}\} \subset \{\alpha | \alpha \leq \alpha^*\}$. To show this, let $\alpha > \alpha^*$. If $x \in L \in \mathcal{L}_k$, then $L \subset \bigcup_{\beta < \alpha} U_\beta$. Thus $x \notin V'_{k,\alpha}$. Hence $\operatorname{ord}(x, \mathcal{V}_k) \leq \omega$. \Box

3. $\delta\theta$ -refinability-like properties of σ -products

Throughout this sectuaion we assume that each space is a T_1 -space having at least two points. We define σ -products which were introduced by H. H. Corson [8].

Definition 8. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces. " $\sigma = \sigma(S)$ is a σ -product of S" means there is a point $x^* = (x^*_{\alpha})_{\alpha \in \Omega} \in X = \Pi\{X_{\alpha} | \alpha \in \Omega\}$ (called the base point of σ) such that σ is the subspace of X consisting of $\{x \in X | Q(x) \text{ is finite}\}$. Here $Q(x) = \{\alpha | \alpha \in \Omega, x_{\alpha} \neq x^*_{\alpha}\}$. Let $\Omega^n = \{a \subset \Omega : |a| = n\}$ each $n \in \omega$ and put $\Omega^{<\omega} = \bigcup \{\Omega^n | n \in \omega\}$. Here |a| denotes the cardinal number of a.

For a finite subset F of Ω , $\Pi\{X_{\alpha}|\alpha \in F\}$ is said to be a finite subproduct of σ .

For each $a \in \Omega^{<\omega}$, define $Y_a = \prod_{\alpha \in a} X_{\alpha} \times \{x_{\alpha}^*\}_{\alpha \in \Omega \setminus a}$. Let $p_a : \sigma \to Y_a$ be the map defined by

$$p_a(x)_{\alpha} = \begin{cases} x_{\alpha} & \text{if } \alpha \in a \\ x_{\alpha}^* & \text{if } \alpha \in \Omega \smallsetminus a. \end{cases}$$

Then p_a is an open continuous onto map.

For each $x \in \sigma$, put $x_a = p_a(x)$.

The following fact concerning σ -products is known.

Fact. Let $\sigma = \sigma(\mathcal{S})$ and $\sigma_n = \{x \in \sigma : |Q(x)| \le n\}$ for each $n \in \omega$. Then σ_n is closed in σ .

Several papers have investigated the results for σ -products of the following type:

(*) Let \mathcal{P} be a topological property. Let σ be a σ -product of spaces. If each finite subproduct of σ has property \mathcal{P} , then σ has \mathcal{P} .

First, Kombarov [15] proved that (*) holds for \mathcal{P} being paracompactness and Lindelöfness for regular spaces. After that, it was proved that (*) holds for \mathcal{P} being the following properties: Lindelöfness (Chiba [6]), metacompactness (Teng [17]), subparacompactness

and θ -refinability (submetacompactness)([17]), weak θ -refinability, weak $\delta\theta$ -refinability, hereditarily weak θ -refinability and hereditarily weak $\delta\theta$ -refinability ([5]).

Concerning $\delta\theta$ -refinability (submeta-Lindelöfness), the following is known.

Theorem F ([5]). Let $\mathcal{S} = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(\mathcal{S})$. Suppose σ is normal. If every finite subproduct of σ is $\delta\theta$ -refinable, then σ is $\delta\theta$ -refinable.

In this paper we investigate $\delta\theta$ -refinability and $\delta\theta$ -refinability-like properties of σ -products.

Let κ be an infinite cardinal. A space X is called κ -paracompact if every open cover of X with its cardinality $< \kappa$ has a locally finite open refinement.

A space X is called κ -subparacompact if every open cover of X with its cardinality $\leq \kappa$ has a σ -locally finite closed refinement.

A space X is called κ -submetacompact if every open cover of X with its cardinality $\leq \kappa$ has a θ -sequence of open refinements.

A space X is subnormal if for any disjoint closed sets A and B in X, there are disjoint G_{δ} -sets G and H such that $A \subset G$ and $B \subset H$.

Lemma 1. (2). A space X is κ -subparacompact if and only if for every cover of X with its cardinality $\leq \kappa$ has a σ -discrete closed refinement.

Lemma 2. ([7, Lemma 2.5]). A space X is subnormal and κ -paracompact, then X is κ -subparacompact.

Theorem 7. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is subnormal and κ -paracompact where $\kappa = |\Omega|$. If every finite subproduct of σ is $\delta\theta$ -refinable, then σ is $\delta\theta$ -refinable.

By Lemma 2, Theorem 7 follows from Theorem 8 below.

Theorem 8. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -paracompact and κ -subparacompact where $\kappa = |\Omega|$. If every finite subproduct of σ is $\delta\theta$ -refinable, then σ is $\delta\theta$ -refinable.

Proof. Let $\mathcal{A} = \Omega^{<\omega}$ and put $\Lambda = \mathcal{A}^{<\omega}$. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ be an arbitrary open cover of σ . For each $a \in \mathcal{A}$, let $U_{a,\xi}$ be the maximal open set in Y_a satisfying $p_a^{-1}(U_{a,\xi}) \subset G_{\xi}$ and put $U_a = \bigcup_{\xi \in \Xi} U_{a,\xi}$. Then $\{p_a^{-1}(U_a) | a \in \mathcal{A}\}$ is an open cover of σ such that $p_a^{-1}(U_a) \subset p_b^{-1}(U_b)$ for each $a, b \in \mathcal{A}$ with $a \subset b$. Since $|\mathcal{A}| = \kappa$ and σ is κ -paracompact, there is a locally finite open cover $\mathcal{J} = \{J_a | a \in \mathcal{A}\}$ of σ such that $J_a \subset p_a^{-1}(U_a)$ for each $a \in \mathcal{A}$. For each $\lambda \in \Lambda$, let us put $V_{\lambda} = \sigma \setminus \bigcup_{b \in \mathcal{A} \setminus \lambda} \overline{J_b}$. The we have:

(1) $\mathcal{V} = \{V_{\lambda} | \lambda \in \Lambda\}$ is an open cover of σ .

(2) $V_{\lambda} \subset V_{\nu}$ if $\lambda, \nu \in \Lambda$ with $\lambda \subset \nu$.

(2) $V_{\lambda} \subset V_{\nu}$ if $\lambda, \nu \in \Omega$ and $\lambda \in \Omega$. (3) Put $a_{\lambda} = \bigcup \{a | a \in \lambda\}$. Then $a_{\lambda} \in \mathcal{A}$ and $\overline{V_{\lambda}} \subset p_{a_{\lambda}}^{-1}(U_{a_{\lambda}})$. For each $\lambda \in \Lambda$, define $T_{a_{\lambda}} = Y_{a_{\lambda}} \setminus p_{a_{\lambda}}(\sigma \setminus \overline{V_{\lambda}})$ and put $C_{\lambda} = \operatorname{Int} p_{a_{\lambda}}^{-1}(T_{a_{\lambda}})$. Then $T_{a_{\lambda}}$ is a closed subset of $Y_{a_{\lambda}}$ and we have

(4) $T_{a_{\lambda}} \subset U_{a_{\lambda}}$ for each $\lambda \in \Lambda$.

(5) $\mathcal{C} = \{C_{\lambda} | \lambda \in \Lambda\}$ is an open cover of σ . (This was essentially proved in [1], or see [4]).

Since σ is κ -subparacompact and $|\Lambda| = \kappa$, there is a σ -discrete closed cover $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ of σ , where \mathcal{F}_n is discrete in σ such that $\mathcal{F}_n \prec \mathcal{C}$. We can represent $\mathcal{F}_n = \{F_{\lambda,n} | \lambda \in \Lambda\}$ with $F_{\lambda,n} \subset C_{\lambda}$ for each $\lambda \in \Lambda$. For each $\lambda \in \Lambda, \mathcal{U}_{\lambda} = \{U_{a_{\lambda},\xi} | \xi \in \Xi\}$ is an open cover of $U_{a_{\lambda}}$. Since $Y_{a_{\lambda}}$ is $\delta\theta$ -refinable and $T_{a_{\lambda}}$ is closed in $Y_{a_{\lambda}}$, there is a sequence $(\mathcal{H}_{\lambda,m})_{m\in\mathbb{N}}$ of collections of open sets in $Y_{a_{\lambda}}$ satisfying:

 $(6)_{\lambda}$. $\mathcal{H}_{\lambda,m} \prec \mathcal{U}_{\lambda}$ for each m.

- $(7)_{\lambda}$. $\mathcal{H}_{\lambda,m}$ covers $T_{a_{\lambda}}$ for each m.
- $(8)_{\lambda}$. For each $y \in T_{a_{\lambda}}$, there is an $m(y) \in \mathbf{N}$ such that $\operatorname{ord}(y, \mathcal{H}_{\lambda, m(y)}) \leq \omega$.
 - Here we can represent $\mathcal{H}_{\lambda,m} = \{H_{\lambda,m,\xi} | \xi \in \Xi\}$ with $H_{\lambda,m,\xi} \subset U_{a_{\lambda},\xi}$ for each $\xi \in \Xi$.
- For each $n \in \omega, n \in \mathbf{N}, \lambda \in \Lambda$ and $\xi \in \Xi$, let $H(n, m, \lambda, \xi) = p_{a_{\lambda}}^{-1}(H_{\lambda, m, \xi}) \cap C_{\lambda} \cap (\sigma \setminus \bigcup_{\mu \neq \lambda} F_{\mu, n})$ and put $\mathcal{H}_{n, m} = \{H(n, m, \lambda, \xi) | \lambda \in \Lambda, \xi \in \Xi\}$. Then we have:
- (9) $\mathcal{H}_{n,m}$ is an open cover of σ .
- (10) $\mathcal{H}_{n,m} \prec \mathcal{G}$.
- (11) For each $x \in \sigma$, there are an $n \in \omega$ and an $m \in \mathbf{N}$ such that $\operatorname{ord}(x, \mathcal{H}_{n,m}) \leq \omega$.

Proof of (9). Let $x \in \sigma$. If $x \notin \bigcup \mathcal{F}_n$, then $x \in \sigma \setminus \bigcup \mathcal{F}_n$. By (5), $x \in C_{\lambda}$ for some λ . Then $x_{a_{\lambda}} \in T_{a_{\lambda}}$. By $(7)_{\lambda}, x_{a_{\lambda}} \in H_{\lambda,m,\xi}$ for some ξ . Thus $x \in H(n, m, \lambda, \xi)$.

If $x \in \bigcup \mathcal{F}_n$, then $x \in F_{\lambda,n}$ for some $\lambda \in \Lambda$. Since \mathcal{F}_n is discrete, $x \notin \bigcup_{\mu \neq \lambda} F_{\mu,n}$. Since $F_{\lambda,n} \subset C_{\lambda}, x \in C_{\lambda}$. Therefore $x \in H(n, m, \lambda, \xi)$ for some ξ .

Proof of (10). Let $H_{\lambda,m,\xi} \in \mathcal{H}_{\lambda,m}$. Then $H_{\lambda,m,\xi} \subset U_{a_{\lambda},\xi}$. Thus $p_{a_{\lambda}}^{-1}(H_{\lambda,m,\xi}) \subset G_{\xi}$. Hence $H(n,m,\lambda,\xi) \subset G_{\xi}$.

Proof of (11). Let $x \in \sigma$. Since \mathcal{F} is a cover of σ , there are an $n \in \omega$ and a $\lambda \in \Lambda$ such that $x \in F_{n,\lambda}$. Then $x \notin \bigcup_{\mu \neq \lambda} F_{\mu,n}$ and $x \in C_{\lambda}$. Thus $x_{a_{\lambda}} \in T_{a_{\lambda}}$. By $(8)_{\lambda}$, there is an m such that $\operatorname{ord}(x_{a_{\lambda}}, \mathcal{H}_{\lambda,m}) \leq \omega$. Then $\operatorname{ord}(x, \mathcal{H}_{n,m}) \leq \omega$. To show this, let $x \in H(n, m, \lambda, \xi)$. Then $x_{a_{\lambda}} \in H_{\lambda,m,\xi}$. Such λ are at most countable.

Thus $\{\mathcal{H}_{n,m} | n \in \omega, m \in \mathbf{N}\}$ is a $\delta\theta$ -sequence of open refinements of \mathcal{G} .

Remark 1 ([7, p.85, Remark]). As is well-known, paracompactness implies subparacompactness. However, for each $\lambda \geq \omega$, λ -paracompactness does not imply λ -paracompactness.

The author proved in [4] that under the assumption of σ being κ -paracompact, if every finite subproduct of σ is normal, then σ is normal. We can prove the following similarly.

Theorem 9. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -paracompact where $\kappa = |\Omega|$. If every finite subproduct of σ is subnormal, then σ is subnormal.

Proof. Let $\mathcal{G} = \{G_i | i = 1, 2\}$ be an arbitrary binary open cover of σ . Let us define $\mathcal{A}, \Lambda, U_{a,i}, U_a, \mathcal{J}, V_\lambda, T_{a_\lambda}, C_\lambda$ and \mathcal{U}_λ are similar to that of the proof of Theorem 8.

For each $\lambda \in \Lambda, \mathcal{U}_{\lambda} = \{U_{a_{\lambda},i} | i = 1, 2\}$ is an open cover of $U_{a_{\lambda}}$. Since $Y_{a_{\lambda}}$ is subnormal, there are F_{σ} -sets $K_{\lambda,i}$, i = 1, 2 of $T_{a_{\lambda}}$ such that $T_{a_{\lambda}} = \bigcup_{i=1}^{2} K_{\lambda,i}$ and $K_{\lambda,i} \subset U_{a_{\lambda},i}$ for i = 1, 2. Let $\mathcal{O} = \{O_{\lambda} | \lambda \in \Lambda\}$ be a locally finite open cover of σ such that $O_{\lambda} \subset C_{\lambda}$ for each $\lambda \in \Lambda$.

Let us put $K_i = \bigcup_{\lambda \in \Lambda} (p_{a_\lambda}^{-1}(K_{\lambda,i}) \cap \overline{O_\lambda})$. Then K_i are F_{σ} -sets in $\sigma, K_i \subset G_i$ for i = 1, 2and $\sigma = \bigcup_{i=1}^2 K_i$. \Box

By Theorems 7 and 9, we obtain the following.

Theorem 10. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -paracompact where $\kappa = |\Omega|$. If every finite subproduct of σ is subnormal and $\delta\theta$ -refinable, then σ is $\delta\theta$ -refinable.

Lemma 3. (1) Let \mathcal{G} be an open cover of X and $(\mathcal{V}_n)_{n \in \mathbb{N}}$ is a pointwise countable W-refining sequence of \mathcal{G} . Then there exists a pointwise countable W-refining sequence $(\mathcal{H}_n)_{n \in \mathbb{N}}$ of \mathcal{G} satisfying the following conditions: For each $x \in X$, there exist an $n_x \in \mathbb{N}$ and a countable subfamily \mathcal{G}' of \mathcal{G} such that $(\mathcal{H}_n)_x \prec \mathcal{G}'$ for each $n \geq n_x$.

(2) Let \mathcal{G} be an open cover of X and $(\mathcal{V}_n)_{n\in\mathbb{N}}$ is a point-star \dot{C} -refining sequence of \mathcal{G} . Then there exists a point-star \dot{C} -refining sequence $(\mathcal{H}_n)_{n\in\mathbb{N}}$ of \mathcal{G} satisfying the following

conditions: For each $x \in X$, there exist an $n_x \in \mathbf{N}$ and a countable subfamily \mathcal{G}' of \mathcal{G} such that $x \in \bigcap \mathcal{G}'$ and $st(x, \mathcal{H}_n) \subset \bigcup \mathcal{G}'$ for each $n \ge n_x$.

Proof. Let us put $\mathcal{H}_n = \wedge_{i=1}^n \mathcal{V}_i (= \{ \cap_{i=1}^n V_i | V_i \in \mathcal{V}_i \text{ for each } i = 1, 2, ..., n \})$. Then $(\mathcal{H}_n)_{n \in \mathbb{N}}$ is a desired one. \Box

Theorem 11. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -paracompact where $\kappa = |\Omega|$. If every finite subproduct of σ is w- $\delta\theta$ -refinable, then σ is w- $\delta\theta$ -refinable.

Proof. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ be an arbitrary open cover of σ . Let us define $\mathcal{A}, \Lambda, U_{a,\xi}, U_a, \mathcal{J}, V_{\lambda}, T_{a_{\lambda}}, C_{\lambda}$ and \mathcal{U}_{λ} are similar to that of the proof of Theorem 8.

Since $|\Lambda| = \kappa$ and σ is κ -paracompact, there is a locally finite open cover $\mathcal{O} = \{O_{\lambda} | \lambda \in \Lambda\}$ of σ such that $O_{\lambda} \subset C_{\lambda}$ for each $\lambda \in \Lambda$. For each $\lambda \in \Lambda, \mathcal{U}_{\lambda} = \{U_{a_{\lambda},\xi} | \xi \in \Xi\}$ is an open cover of $U_{a_{\lambda}}$. Since $Y_{a_{\lambda}}$ is w- $\delta\theta$ -refinable and $T_{a_{\lambda}}$ is closed in $Y_{a_{\lambda}}$, there is a sequence $(\mathcal{H}_{\lambda,m})_{m \in \mathbb{N}}$ of collections of open sets in $Y_{a_{\lambda}}$ satisfying:

 $(6)_{\lambda}$. $\mathcal{H}_{\lambda,m}$ covers $T_{a_{\lambda}}$ for each m.

 $(7)_{\lambda}$. For each $y \in T_{a_{\lambda}}$, there are a countable subset Ξ_y of Ξ and an $m_y \in \mathbf{N}$ such that $\mathcal{H}_{\lambda,m}(y)$ is a partial refinement of $\{U_{a_{\lambda},\xi} | \xi \in \Xi_y\}$ for each $m \ge m_y$.

Put $\mathcal{H}_m = \{p_{a_\lambda}^{-1}(H) \cap O_\lambda | H \in \mathcal{H}_{\lambda,m}, \lambda \in \Lambda\}$. Then we have:

(8) \mathcal{H}_m is an open cover of σ .

(9) For each $x \in \sigma$, there are a countable subset Ξ_x of Ξ and an $m_x \in \mathbf{N}$ such that $\mathcal{H}_{m_x}(x)$ is a partial refinement of $\{G_{\xi} | \xi \in \Xi_x\}$.

Proof of (8). Let $x \in \sigma$. Then $x \in O_{\lambda}$ for some λ . Therefore $x_{a_{\lambda}} \in T_{a_{\lambda}}$. By $(6)_{\lambda}, x_{a_{\lambda}} \in H$ for some $H \in \mathcal{H}_{\lambda,m}$. Thus $x \in p_{a_{\lambda}}^{-1}(H) \cap O_{\lambda}$.

Proof of (9). Let $x \in \sigma$. Since \mathcal{O} is locally finite, there is a finite subset $\{\lambda_i | i = 1, 2, ..., n\}$ such that $x \in O_{\lambda} \iff \lambda \in \{\lambda_i | i = 1, 2, ..., n\}$. For each i = 1, 2, ..., n, since $x_{a_{\lambda_i}} \in T_{a_{\lambda_i}}$, there are countable subsets Ξ_i of Ξ and $m_i \in \mathbb{N}$ for i = 1, 2, ..., n such that $\mathcal{H}_{\lambda_i, m}(x_{a_{\lambda_i}})$ is a partial refinement of $\{U_{a_{\lambda_i}, \xi} | \xi \in \Xi_i\}$ for every $m \ge m_i$. Let us put $m^* = \max\{m_i | i = 1, 2, ..., n\}$ and $\Xi^* = \bigcup_{i=1}^n \Xi_i$. Then $\mathcal{H}_m(x)$ is a partial refinement of $\{G_{\xi} | \xi \in \Xi^*\}$.

To show this, let $x \in p_{a_{\lambda}}^{-1}(H) \cap O_{\lambda}$, $H \in \mathcal{H}_{\lambda,m}$. Then $\lambda = \lambda_i$ for some i = 1, 2, ..., n. Since $x_{a_{\lambda_i}} \in H, H \subset U_{a_{\lambda_i},\xi}$ for some ξ_i . Therefore $p_{a_{\lambda_i}}^{-1}(U_{a_{\lambda_i},\xi}) \subset G_{\xi}$. \Box

Theorem 12. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -paracompact where $\kappa = |\Omega|$. If every finite subproduct of σ is ww- $\delta\theta$ -refinable, then σ is ww- $\delta\theta$ -refinable.

Proof. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ be an arbitrary open cover of σ . Let us define $\Lambda, U_{a,\xi}, U_a, V_{\lambda}, T_{a_{\lambda}}, C_{\lambda}, O_{\lambda}$ and \mathcal{U}_{λ} are similar to that of the proof of Theorem 11. Since $Y_{a_{\lambda}}$ is ww- $\delta\theta$ -refinable and $T_{a_{\lambda}}$ is closed in $Y_{a_{\lambda}}$, there is a sequence $(\mathcal{H}_{\lambda,m})_{m \in \mathbb{N}}$ of collections of open sets in $Y_{a_{\lambda}}$ satisfying:

 $(6)_{\lambda}$. $\mathcal{H}_{\lambda,m}$ covers $T_{a_{\lambda}}$ for each m.

(7)'_{λ}. For each $y \in T_{a_{\lambda}}$, there are a countable subset Ξ_y of Ξ and an $m_y \in \mathbb{N}$ such that (i). $y \in \bigcap \{ U_{a_{\lambda},\xi} | \xi \in \Xi_y \},$

(ii). $\operatorname{st}(y, \mathcal{H}_{\lambda, m}) \subset \bigcup \{ U_{a_{\lambda}, \xi} | \xi \in \Xi_y \}$ for each $m \ge m_y$.

Put $\mathcal{H}_m = \{p_{a_\lambda}^{-1}(H) \cap O_\lambda | H \in \mathcal{H}_{\lambda,m}, \lambda \in \Lambda\}$. Then we have:

(8) \mathcal{H}_m is an open cover of σ .

(9) For each $x \in \sigma$, there are a countable subset Ξ_x of Ξ and an $m_x \in \mathbf{N}$ such that

- (i) $x \in \bigcap \{ G_{\xi} | \xi \in \Xi_x \},$
- (ii) st $(x, \mathcal{H}_{m_x}) \subset \bigcup \{G_{\xi} | \xi \in \Xi_x\}.$

Theorem 13. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and G an open subspace of $\sigma = \sigma(S)$. Suppose G is κ -submetacompact where $\kappa = |\Omega|$. If every finite subproduct of σ is hereditarily w- $\delta\theta$ -refinable, then G is w- $\delta\theta$ -refinable.

Proof. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ be an arbitrary open cover of G. For each $a \in \mathcal{A}$, let $U_{a,\xi}$ be the maximal open set in Y_a satisfying $p_a^{-1}(U_{a,\xi}) \subset G_{\xi}$ and put $U_a = \bigcup_{\xi \in \Xi} U_{a,\xi}$. Since $\mathcal{U} = \{p_a^{-1}(U_a) | a \in \mathcal{A}\}$ is an open cover of G with $|\mathcal{U}| = \kappa$, there is a σ -discrete closed cover $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ of G, where \mathcal{F}_n is discrete in G such that $\mathcal{F}_n \prec \mathcal{U}$. We can represent $\mathcal{F}_n = \{F_{a,n} | a \in \mathcal{A}\}$ with $F_{a,n} \subset U_a$ for each $a \in \mathcal{A}$.

For each $a \in \mathcal{A}$, since $\mathcal{U}_a = \{U_{a,\xi} | \xi \in \Xi\}$ is an open cover of U_a and U_a is $\delta\theta$ -refinable, there is a sequence $(\mathcal{H}_{a,m})_{m \in \mathbb{N}}$ of open covers of U_a satisfying:

 $(1)_a$. $\mathcal{H}_{a,m} \prec \mathcal{U}_a$ for each m.

 $(2)_a$. For each $y \in U_a$, there is an $m(y) \in \mathbf{N}$ such that $\operatorname{ord}(y, \mathcal{H}_{a,m(y)}) \leq \omega$.

Here we can represent $\mathcal{H}_{a,m} = \{H_{a,m,\xi} | \xi \in \Xi\}$ with $H_{a,m,\xi} \subset U_{a,\xi}$ for each $\xi \in \Xi$. For each $n \in \omega, m \in \mathbf{N}, a \in \mathcal{A}$ and $\xi \in \Xi$, let $H(n,m,a,\xi) = p_a^{-1}(H_{a,m,\xi}) \cap (G \setminus \mathbb{R})$

 $\bigcup_{b \in \mathcal{A}, b \neq a} F_{b,n} \text{ and put } \mathcal{H}_{n,m} = \{H(n,m,a,\xi) | a \in \mathcal{A}, \xi \in \Xi\}. \text{ Then we have:}$

(3) $\mathcal{H}_{n,m}$ is an open cover of G.

(4) $\mathcal{H}_{n,m} \prec \mathcal{G}$.

(5) For each $x \in G$, there are an $n \in \omega$ and an $m \in \mathbf{N}$ such that $\operatorname{ord}(x, \mathcal{H}_{n,m}) \leq \omega$. Thus $\{\mathcal{H}_{n,m} | n \in \omega, m \in \mathbf{N}\}$ is a $\delta\theta$ -sequence of refinements of \mathcal{G} . \Box

Theorem 14. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and G an open subspace of $\sigma = \sigma(S)$. Suppose G is κ -submetacompact where $\kappa = |\Omega|$. If every finite subproduct of σ is hereditarily ww- $\delta\theta$ -refinable, then G is ww- $\delta\theta$ -refinable.

Proof. This proof is similar to that of Theorem 13. \Box

Corollary 1. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -submetacompact where $\kappa = |\Omega|$. If every finite subproduct of σ is hereditarily w- $\delta\theta$ -refinable, then σ is w- $\delta\theta$ -refinable.

Corollary 2. Let $S = \{X_{\alpha} | \alpha \in \Omega\}$ be spaces and $\sigma = \sigma(S)$. Suppose σ is κ -submetacompact where $\kappa = |\Omega|$. If every finite subproduct of σ is hereditarily ww- $\delta\theta$ -refinable, then σ is ww- $\delta\theta$ -refinable.

4. Appendix to σ -products

Let us consider the following conditions for a space X.

 (S_1) X has an increasing closed cover $\{X_n | n \in \omega\}$.

 (S_2) For each $n \in \omega$, there is a closed cover $\mathcal{Y}_n = \{Y_a | a \in A_n\}$ of X_n .

 (S_3) For each $a \in A = \bigcup_{n \in \omega} A_n$, there is a continuous onto map $p_a : X \to Y_a$ such that $p_a|Y_a =$ identity.

 (S_4) For each $n \in \omega$ and each open set U such that $X_{n-1} \subset U$, there is a discrete family $\mathcal{J} = \{J_a | a \in A_n\}$ of open sets in X such that $J_a \supset Y_a \smallsetminus U$. Here $X_{-1} = \emptyset$.

 (S_5) $\mathcal{K}_n = \{Y_a \smallsetminus X_{n-1} | a \in A_n\}$ is a discrete family of closed subsets in $X \smallsetminus X_{n-1}$ for each $n \in \omega$. Here $X_{-1} = \emptyset$.

 (S_6) There is a point finite open expansion of \mathcal{K}_n in X for each $n \in \omega$ (i.e., there is a point finite open family $\mathcal{M}_n = \{M_{n,a} | a \in A_n\}$ in X such that $M_{n,a} \supset Y_a \smallsetminus X_{n-1}$ for each $a \in A_n$.

Each normal σ -product space satisfies the conditions $(S_1) \sim (S_6)$. Each σ -product space and each open subspace of it satisfies the conditions $(S_1) \sim (S_3)$ and $(S_5) \sim (S_6)$.

In [5], the author generalised the theorems of the type: "(*) Let \mathcal{P} be a topological property. Let σ be a σ -product of spaces. If each finite subproduct of σ has property \mathcal{P} , then σ has \mathcal{P} ." to the theorem of the type:

(1) Suppose X satisfies the conditions $(S_1) \sim (S_4)$. If each Y_a has the property P, then X has the property P.

(2) Suppose X satisfies the conditions $(S_1) \sim (S_3)$ and $(S_5) \sim (S_6)$. If each Y_a has the property P, then X has the property P.

The results of metacompactness and submetacompactness of σ -products are generalized to the following by the same proof of [16] and [17],

Theorem 15. ([16]). Suppose X satisfies the conditions $(S_1) \sim (S_3)$ and $(S_5) \sim (S_6)$. If each Y_a is metacompact, then X is metacompact.

Theorem 16. ([17]). Suppose X satisfies the conditions $(S_1) \sim (S_3)$ and $(S_5) \sim (S_6)$. If each Y_a is submetacompact, then X is submetacompact.

Remark 2. Similar result hold for metaLindelöfness.

Definition 9. A space X is called "discretely θ -expandable" [14] if for every discrete collection $\{F_{\xi}|\xi \in \Xi\}$ of subsets of X, there exists a sequence $(\mathcal{G}_n = \{G_{\xi,n}|\xi \in \Xi\})_{n \in \mathbb{N}}$ of collections of open subsets of X satisfying the following:

(i) $F_{\xi} \subset G_{\xi,n}$ for each ξ and each n.

(ii) For every point x of X there is n_x for which x is contained in at most finite member of \mathcal{G}_{n_x} (i.e., \mathcal{G}_{n_x} is point finite at x).

A space X is called " θ -expandable" [14] if for every locally finite collection $\{F_{\xi}|\xi \in \Xi\}$ of subsets of X, there exists a sequence $(\mathcal{G}_n = \{G_{\xi,n}|\xi \in \Xi\})_{n \in \mathbb{N}}$ of collections of open subsets of X satisfying the following:

(i) $F_{\xi} \subset G_{\xi,n}$ for each ξ and each n.

(ii) For every point x of X there is an n_x for which x is contained in at most finite member of \mathcal{G}_{n_x} (i.e., \mathcal{G}_{n_x} is point finite at x).

Theorem G ([5, Proposition 2]). Suppose X satisfies the conditions $(S_1) \sim (S_4)$. Then the following holds.

(a) If every Y_a is discretely θ -expandable, then X is discretely θ -expandable.

(b) If every Y_a is θ -expandable, then X is θ -expandable.

The above theorem can be generalised as follows:

Theorem 17. Suppose X satisfies conditions $(S_1) \sim (S_3)$ and $(S_5) \sim (S_6)$. Then the following holds.

(a) If every Y_a is discretely θ -expandable, then X is discretely θ -expandable.

(b) If every Y_a is θ -expandable, then X is θ -expandable.

Proof. (a). Let $\mathcal{F} = \{F_{\lambda} | \lambda \in \Lambda\}$ be a discrete collection of closed subsets in X. Then $\mathcal{F}_a = \{F_{\lambda} \cap Y_a | \lambda \in \Lambda\}$ is a discrete collection of closed subsets in Y_a for each $a \in A$. Since Y_a is θ -expandable, there is a sequence $(\mathcal{L}_{a,m})_{m \in \mathbb{N}}$ of collections of open subsets in Y_a such that $\mathcal{L}_{a,m} = \{L_{\lambda,a,m} | \lambda \in \Lambda\}$, satisfying:

 $(i)_a$. $F_{\lambda} \cap Y_a \subset L_{\lambda,a,m}$ for each λ, m .

 $(ii)_a$. $L_{\lambda,a,m+1} \subset L_{\lambda,a,m}$ for each λ, m .

 $(iii)_a$. For each $y \in Y_a$, there is an $m_y \in \mathbf{N}$ such that $\operatorname{ord}(y, \mathcal{L}_{a, m_y}) < \omega$.

By (S_6) , there is a point finite open family $\mathcal{M}_n = \{M_{a,n} | a \in A_n\}$ in X such that $Y_a \setminus X_{n-1} \subset M_{a,n}$ for each $a \in A_n$. Here we may assume that $M_{a,n} \cap X_{n-1} = \emptyset$.

Let us put $H_{\lambda,m} = \bigcup_{n \in \mathbb{N}} \bigcup_{a \in A_n} (p_a^{-1}(L_{\lambda,a,m}) \cap M_{a,n})$ and put $\mathcal{H}_m = \{H_{\lambda,m} | \lambda \in \Lambda\}$. Then \mathcal{H}_m is a collection of open subsets in X for each m and satisfies the following conditions: (1) $F_{\lambda} \subset H_{\lambda,m}$ for each $\lambda \in \Lambda, m \in \mathbb{N}$.

(2) For each $x \in X$, there is an $m_x \in \mathbf{N}$ such that $\operatorname{ord}(x, \mathcal{H}_{m_x}) < \omega$.

Proof of (1). Let $x \in F_{\lambda}$. Then, by $(S_1), x \in X_n \setminus X_{n-1}$ for some $n \in \omega$. By $(S_2), x \in Y_a$ for some $a \in A_n$. Then, by $(i)_a, x \in L_{\lambda,a,m}$. Since $Y_a \setminus X_{n-1} \subset M_{a,n}, x \in L_{\lambda,a,m} \cap M_{a,n} \subset H_{\lambda,m}$.

Proof of (2). Let $x \in X$. Then, by $(S_1), x \in X_n \setminus X_{n-1}$ for some $n \in \omega$. Then $x \notin M_{a,l}$ for each l > n. Let $A'_l = \{a \in A_l | x \in M_{a,l}\}$ for each $l \leq n$ and put $A' = \bigcup_{i \leq n} A'_l$. Since \mathcal{M}_l is point finite at x for each l, A' is a finite set. Let us put $x_a = p_a(x)$ for each $a \in A$. By $(iii)_a$, there is an $m_a \in \mathbb{N}$ such that $\operatorname{ord}(x_a, \mathcal{L}_{a,m_a}) < \omega$. Let $m^* = \max\{m_a | a \in A'\}$. Then $\operatorname{ord}(x, \mathcal{H}_{m^*}) < \omega$.

To show this, let $\Lambda_a = \{\lambda \in \Lambda | x_a \in L_{\lambda,a,m^*}\}$ and put $\Lambda' = \bigcup_{a \in A'} \Lambda_a$. Then, since ord $(x_a, \mathcal{L}_{a,m_a})$ is finite and ord $(x_a, \mathcal{L}_{a,m^*}) <$ ord $(x_a, \mathcal{L}_{a,m_a}), \Lambda_a$ is a finite set. Therefore Λ' is a finite set. If $x \in H_{\lambda,m^*}$, then $x \in p_a^{-1}(L_{\lambda,a,m^*}) \cap M_{a,l}$ for some λ and l. Since $x \notin M_{a,l}$ for each l > n, we have $l \leq n$. Therefore, if $x \in p_a^{-1}(L_{\lambda,a,m}) \cap M_{a,l}$ for some λ and l, then $a \in A'$. And, since $x_a \in L_{\lambda,a,m^*}, \lambda \in \Lambda_a$.

(b). This proof is quite similar to that of (a). \Box

Corollary 3. (a). If every finite subproduct of σ is discretely θ -expandable, then σ is discretely θ -expandable.

(b)([10]). If every finite subproduct of σ is θ -expandable, then σ is θ -expandable.

Corollary 4. (a) If every finite subproduct of σ is hereditarily discretely θ -expandable, then σ is hereditarily discretely θ -expandable.

(b) If every finite subproduct of σ is hereditarily θ -expandable, then σ is hereditarily θ -expandable.

Remark 3. Almost θ -expandability in [10] is the same notion of θ -expandability in [14].

References

- [1] A. Bešlagić, Normality in products, Topology Appl., 22, (1986), 71-82.
- [2] D. K. Burke, On subparacompactness, Proc. Amer. Math. Soc., 23 (1969), 655-663.
- [3] D. K. Burke, Covering properties, Handbook of Set Theoretic Topology, chapter 9, K. Kunen and J. Vaughan, editors, North Holland, Amsterdam (1984), 347-422.
- [4] K. Chiba, Normality of σ -products, Proc. Amer. Math. Soc., **119** (1993), 999-1003.
- [5] K. Chiba, Covering properties of σ -products, Math. Japonica, **39**, No.2 (1994), 343-352.
- [6] K. Chiba, Covering properties in products, II, Rep. Fac. of Sci. Shozuoka Univ., 28 (1994), 1-15.
- [7] K. Chiba and Y. Yajima, Covering properties of inverse limits, II, Topology Proceedings, 27, No. 1 (2003), 81-102 (in press).
- [8] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math., 81 (1959), 785-796.
- [9] R. Engelking, General Topology, Polish Scientific publishers, Warszawa (1988).
- [10] J. J. Guang, Some properties of σ -products, China Ann. Math. Ser. B 14, (1993), No. 1,47-54.
- [11] H. J. K. Junnila, On submetacompactness, Topology Preceding, vol. **3**,(1978),375-405.
- [12] H. J. K. Junnila, Metacompactness, paracompactness and interior-preserving open covers, Trans Amer. Math. Soc. 249 (1979), 373-385.
- [13] H. J. K. Junnila, Three covering propertis, in: G. M. Reed, Ed., Surveys in General Topology, (Academic Press, New York) (1980), 195-245.
- [14] Y. Katuta, Expandability and its generalizations, Fund. Math., 87(1975),231-250.
- [15] A. P. Kombarov, On the normality of Σ_m -products, Soviet Math. Dokl., 14, No.4 (1973), 1050-1053.

- [16] M. Sakai and Y. Yajima, Subparacompactness and submeta compactness of $\sigma\mbox{-}products,$ Topology Appl., 129, No. 2 (2003), 153-158.
- [17] H. Teng, On σ-product spaces I, Math. Japonica, 36, No.3 (1991), 515-522.
- [18] J. M. W. Worrell, Some properties of full normality and their relations to Cech completeness, Notices Amer. Math. Soc., 14, (1967), 555.
- [19] Y. Yasui, Generalized paracompactness, in: K. Morita and J. Nagata, Ed., Topics in General Toplogy (1989), 161-202.

Department of Mathematics, Faculty of Science, Shizuoka University, Ohya, Shizuoka, 422-8529 Japan

E-mail address: smktiba,@sci.shizuoka.ac.jp