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ON δθ-SEQUENCES AND σ-PRODUCTS

KEIKO CHIBA
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Abstract. In this paper we shall obtain characterizations of δθ-sequences and investi-
gate δθ-refinability-like properties of σ-products.

1. Introduction.

In 1967, J. M. W. Worrel [18] introduced the notion of θ-sequences and θ-refinable spaces
and characterized θ-refinable spaces by using pointwise W-refining sequences. After that,
H. J. K. Junnila [11, 12, 13] investigated θ-refinable spaces and characterized such spaces
by using point star Ḟ -refining sequences.

In this paper we investigate δθ-sequences. We introduce the notions of pointwise count-
able W-refining sequences and point star Ċ -refining sequences, and obtain a characteriza-
tion of δθ-refinability under an additional condition. Further we study δθ-refinability-like
properties of σ-products.

2. δθ-sequences

Definition 1. A space X is called “δθ-refinable” [3, p. 370] (resp. θ-refinable) if every
open cover G of X has a δθ-sequence (resp. θ-sequence) (Hn)n∈N of X such that each Hn is
an open cover of X and a refinement of G. Let us denote Hn ≺ G when Hn is a refinement
of G.

A sequence (Hn)n∈N of covers of X is called a “δθ-sequence” (resp. θ-sequence) of X if
for any x ∈ X there is some nx ∈ N such that ord(x,Hnx) ≤ ω (resp. ord(x,Hnx ) < ω) .
Here ord(x,Hnx) = |{H ; x ∈ H ∈ Hnx}| where ω denotes the first infinite ordinal and |A|
denotes the cardinal number of a set A.

Definition 2. ([12]). A family L of subsets of X is interior preserving if for each K ⊂ L,
we have Int

⋂K = ∩{IntL|L ∈ K}. Here IntL denotes the interior of L.
Let U be an open cover of X . For each x ∈ X , define Ux = {U |x ∈ U ∈ U}.
Let U and V are open covers of X . V is called a pointwise W-refinement of U at x if

there is a finite subfamily U ′
of U such that Vx ≺ U ′

. For every open cover U of X , let us
put UF = {⋃U ′ |U ′ ⊂ U , |U ′ | < ω}.

Concerning this, the following is known.
Theorem A ([12, Lemma 2.3]). Let U be an interior preserving open cover of X . Then
the following are equivalent.
(1) There is an interior preserving open pointwise W-refinement V of U .
(2) There is a closure preserving closed cover F of X such that F ≺ UF .

Now we shall introduce the notion of pointwise countable W-refinement and prove The-
orems 1 and 2.
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Definition 3. Let U and V are open covers of X . V is called a pointwise countable W-
refinement of U at x if there is a countable subfamily U ′

of U such that Vx ≺ U ′
. V is called

a pointwise countable W-refinement of U if V is a pointwise countable W-refinement of U
at x for every x ∈ X .

For every open cover U of X , let us put Uc = {⋃U ′ |U ′ ⊂ U , |U ′ | ≤ ω}.
For each x ∈ X , we denote st(x,U) =

⋃{U |x ∈ U ∈ U}.
Theorem 1. Let U be an interior preserving open cover of X. Then the following are
equivalent.
(1) There is an interior preserving open pointwise countable W-refinement V of U .
(2) There is a closure preserving closed cover F of X such that F ≺ Uc.

The proof of Theorem 1 is similar to that of Theorem 2 below.

Theorem 2. Let U be an interior preserving open cover of X. Then the following are
equivalent.
(1) There is a sequence (Vn)n∈N of interior preserving open covers of X such that Vn ≺ U
for each n ∈ N and for each x ∈ X, there is an n such that Vn is a pointwise countable
W-refinement of U at x.
(2) There is a σ-closure preserving closed cover F of X such that F ≺ Uc.

Proof. The basic idea of this proof is in the proof of [12, Lemma 2.3]. (2) ⇒ (1). Let
F = ∪n∈NFn be a closed cover of X such that F ≺ Uc and each Fn is a closure preserving
family. For each x ∈ X , let Vn,x = [

⋂Ux]∩ [X �
⋃

(Fn �Fx)]. Then Vn,x is open in X such
that x ∈ Vn,x. Put Vn = {Vn,x|x ∈ X}. Then Vn is an open cover of X such that Vn ≺ U .

(i) Vn is interior preserving.

Proof. For each A ⊂ X , we have
⋂

x∈A Vn,x = [
⋂UA] ∩ [X �

⋃
(Fn � FA)] where UA =

{U |U ∩ A �= ∅} = ∪x∈AUx and FA = {F |F ∩ A �= ∅} =
⋃

x∈A Fx.
Since U is interior preserving,

⋂UA is open. Since Fn is closure preserving,
⋃

(Fn �FA)
is closed. Therefore

⋂
x∈A Vn,x is open.

(ii) For each x ∈ X , there exists an n such that (Vn)x ≺ U ′
for some countable subfamily

U ′
of U .

Proof. For each x ∈ X , there exist an n and F ∈ Fn such that x ∈ F . Since Fn ≺ Uc, there
is a countable subfamily U ′

of U such that F ⊂ ⋃U ′
.

Let V ∈ (Vn)x. Then V = Vn,y for some y ∈ X . For each F
′ ∈ Fn � Fy, since

x ∈ Vn,y, x /∈ F
′
. Since x ∈ F,F ∈ Fy. Therefore y ∈ F . Hence y ∈ ⋃U ′

. Thus there is a
U ∈ U ′

such that y ∈ U . Since U ∈ Uy, Vn,y ⊂ U . Therefore (Vn)x ≺ U ′
.

(1) ⇒ (2). Put G = Uc. For each G ∈ G, let Fn,G = {x ∈ X |st(x,Vn) ⊂ G} and put
Fn = {Fn,G|G ∈ G}. Then

(i) Fn,G is closed in X .

Proof. Let x ∈ X � Fn,G. Then st(x,Vn) � G. Therefore there is V ∈ Vn such that
x ∈ V, V � G. Put O =

⋂
(Vn)x Then x ∈ O. Since Vn is interior preserving, O is open.

Let y ∈ O. Then y ∈ V . Since V � G, st(y,Vn) � G. Thus y /∈ Fn,G. Hence
O ⊂ X � Fn,G.

(ii) F = ∪n∈NFn is a cover of X .

Proof. Let x ∈ X . There is an n such that (Vn)x ≺ U ′
for some countable subfamily U ′

of
U . Put G =

⋃U ′
. Then x ∈ Fn,G.
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(iii) Fn is closure preserving.

Proof. For each G′ ⊂ G, put F =
⋃{Fn,G|G ∈ G′}. Then F is closed. To show this, let

x ∈ X � F . Then x /∈ Fn,G for each G ∈ G′
. Therefore there are VG ∈ Vn such that

x ∈ VG, VG � G. Put V =
⋂{VG|G ∈ G′}. Then V is open, x ∈ V and V ∩ Fn,G = ∅ for

each G ∈ G′
. Thus V ∩ F = ∅. �

Worrel proved the following.
Theorem B([12, Proposition 1.4]). Let U be an open cover of X . Suppose there exists a
sequence (Un)n∈N of open refinements of U satisfying: for each x ∈ X there is a sequence of
integers (〈n, x〉)n∈N such that U〈n+1,x〉 is a pointwise W-refinement of U〈n,x〉 at x for each
n ∈ N. Then U has a θ-sequence of open refinements.

A family L of sets is called monotone if the partial order of set-inclusion is a linear order
on L.

Concerning δθ-sequences, we obtain the following.

Theorem 3. Let L be a monotone open cover of X such that Lc = L. Then the following
holds. Suppose there is a sequence (Un)n∈N of open coves of X such that Un ≺ L for each
n satisfying: for each x ∈ X, there is a sequence of integers (〈n, x〉)n∈N ⊂ N such that
Uc
〈n+1,x〉 is a pointwise countable W-refinement of Uc

〈n,x〉 at x. Then L has a δθ-sequence of
refinements.

Proof. This proof is similar to that of Theorem B in outline. Put L = {Wα|α < γ} for some
ordinal γ. For each V ∈ ⋃

n∈N Uc
n, define α(V ) = min{α|V ⊂ Wα}. For each V ∈ ⋃

n∈N Uc
n,

define “Uc
n is precise at V ” by the condition: If U ∈ Uc

n and V ⊂ U , then α(V ) = α(U).
For each n ∈ N and each k ∈ N, put Wn,k = {V ∈ Uc

k|Uc
n is precise at V } and

Ln,k = {x ∈ X |Uc
k is a pointwise countable W-refinement of Uc

n at x}.
For each h > 2 and each s = (s(1), s(2), ..., s(h)) ∈ Nh, define Ls = Ls(h−2),s(h−1).
For each x ∈ X , there is a sequence (〈n, x〉)n∈N of integers such that there is a countable

subfamily Qn(x) of (Uc
〈n,x〉)x such that (Uc

〈n+1,x〉)x ≺ Qn(x) for each n.
Put Q(n, x) =

⋃Qn(x).
For each h > 2 and each s = (s(1), s(2), ..., s(h)) ∈ Nh, put Hs = {x ∈ Ls|s(i) = 〈i, x〉

for i = 1, 2, ..., h; Q(h− 1, x) ∈ Ws(h−2),s(h−1)}. Then we have

(1) {Hs|s ∈ Nh, h > 2} is a cover of X .

Proof. Let x ∈ X . Put αn = α(Q(n, x)). Since Qn+1(x) ≺ Qn(x),Q(n + 1, x) ⊂ Q(n, x).
Therefore αn+1 ≤ αn for each n. Thus there is a k such that αk = αn(∀n ≥ k − 2). Put
s = (〈1, x〉, 〈2, x〉, ..., 〈k + 1, x〉) ∈ Nk+1. Then we have
(*) x ∈ Hs.
Proof. It is obvious that x ∈ Ls and Q(k, x) ∈ Uc

〈k,x〉 = Uc
s(k). If Q(k, x) ⊂ U, U ∈ Uc

〈k−1,x〉,

then x ∈ U . Thus U ∈ (Uc
〈k−1,x〉)x. Since (Uc

〈k−1,x〉)x ≺ Qk−2(x), there exists U
′ ∈ Qk−2(x)

such that U ⊂ U
′
. Hence U ⊂ Q(k − 2, x). Therefore Q(k, x) ⊂ U ⊂ Q(k − 2, x). Thus

αk ≤ α(U) ≤ αk−2 = αk. Hence α(U) = αk = α(Q(k, x)). Therefore Uc
〈k−1,x〉 is precise at

Q(k, x). Thus Q(k, x) ∈ W〈k−1,x〉,〈k,x〉 = Ws(k−1),s(k). Hence x ∈ Hs.

For each α < γ and n, k ∈ N, put Vα,n,k =
⋃{W |W ∈ Wn,k, α(W ) = α} and Vn,k =

{Vα,n,k|α < γ}. Then Vn,k is an open family in X and

(2) Vn,k is is point countable on Ln,k.
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Proof. Let x ∈ Ln,k. Then there exists a countable subfamily Q′
n of (Uc

n)x such that
(Uc

k)x ≺ Q′
n.

Put A = {α(Q)|Q ∈ Q′
n}. Then {α|x ∈ Vα,n,k} ⊂ A. To show this, let α < γ

and x ∈ Vα,n,k. Then there is a W ∈ Wn,k such that x ∈ W and α(W ) = α. Since
W ∈ (Uc

k)x, W ⊂ Q for some Q ∈ Q′
n. Since Q ∈ Uc

n, W ⊂ Q and W ∈ Wn,k, α(W ) = α(Q).
Thus α ∈ A.

For each h > 2 and each s = (s(1), S(2), ..., s(h)) ∈ Nh, put Vs = Vs(h−2),s(h−1),Us =
{U ∈ Uc

s(h)|U � ∪Vs} and Os = Us ∪ Vs. Then
(i) Os is an open cover of X ,
(ii) Os ≺ L,
(iii) for each x ∈ X , by (1), there is h > 2 and s ∈ Nh such that x ∈ Hs. Then ord(x,Os) ≤
ω.

(i) and (ii) are obvious.
Proof of (iii). Since x ∈ Ls(h−2),s(h−1), by (2), ord(x,Vs) ≤ ω. Let U ∈ Us. Then
x /∈ U . If not, U ∈ (Uc

s(h))x. Since (Uc
s(h))x ≺ Q(h−1)(x), U ⊂ Q(h − 1, x). Since

x ∈ Hs, Q(h − 1, x) ∈ Ws(h−2),s(h−1). Therefore Q(h − 1, x) ⊂ Vα,s(h−2),s(h−1) for some
α < γ. Thus U ⊂ Vα,s(h−2),s(h−1) ⊂ ⋃Vs. This is a contradiction because U ∈ Us. Thus
ord(x,Us) = 0.

By (i) ‘ (iii), {Os|s ∈ Ns, h > 2} is a δθ-sequence of open refinements of L. �

Concerning θ-sequences, the following is known.

Theorem C([12, Lemma 1.3]). Let U be an open cover of X . Then the following are
equivalent.
(1) There is a θ-sequence (Un)n∈N of refinements of U such that Un is an interior preserving
open cover of X for each n.
(2) There are a sequence (Un)n∈N of interior preserving open covers of X such that Un ≺ U
for each n and a closed cover {Fn|n ∈ N} of X such that Un is point finite at each x ∈ Fn

for each n.

Concerning δθ-sequences, the similar result of Theorem C holds.

Theorem 4. Let U be an open cover of X. Then the following are equivalent.
(1) There is a δθ-sequence (Un)n∈N of refinements of U such that Un is an interior preserving
open cover of X for each n.
(2) There are a sequence (Un)n∈N of interior preserving open covers of X such that Un ≺ U
for each n and a closed cover {Fn|n ∈ N} of X such that Un is point countable at each
x ∈ Fn for each n.

Proof. (1) ⇒ (2). For each n, put Fn = {x ∈ X |st(x,Un) ⊂ ⋃U ′
for some countable

subfamily U ′
of U}. Then

(i) Fn is closed in X .
Proof. Let x ∈ X � Fn. Then st(x,Un) �

⋃U ′
for each countable subfamily U ′

of U . Put
Ux =

⋂
(Un)x. Then x ∈ Ux and, since U is interior preserving, Ux is open. And we have

(*) Ux ⊂ X � Fn.
Proof. Let y ∈ Ux. If U ∈ (Un)x, then y ∈ U . Therefore (Un)x ⊂ (Un)y. Thus
st(x,Un) ⊂ st(y,Un). Since st(x,Un) � ∪U ′

for each countable subfamily U ′
of U . Therefore

st(y,Un) �
⋃U ′

for each countable subfamily U ′
of U . Hence y /∈ Fn.
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Therefore (Un) and Fn satisfy the conditions in (2).

(2) ⇒ (1) is obvious. �.

Theorem 5. Let U be an open cover of X. If Uc has a δθ-sequence of refinements, then U
has a δθ-sequence of refinements.

Proof. Let (Vn)n∈N be a δθ-sequence of refinements of Uc. For each V ∈ Vn, there exists
a countable subfamily UV of Uc such that V ⊂ ⋃UV . Let UV = {Ui|i = 1, 2, ...}, Ui =
∪∞

j=1Ui,j , Ui,j ∈ U . Put U ′
V = {Ui,j |i, j = 1, 2, ...}. Define Ṽn = {V ∩ U |U ∈ U ′

V , V ∈ Vn}.
Then Ṽn is an open cover of X and Vn ≺ U . For each x ∈ X , there is an n such that 1 ≤
ord(x,Vn) ≤ ω. Then 1 ≤ ord(x, Ṽn) ≤ ω. Thus (Ṽn)n∈N is a δθ-sequence of refinements of
U . �
Definition 4. Let U be a cover of X and (Vn)n∈N a sequence of covers of X . A sequence
(Vn)n is called a pointwise W-refining sequence for U if for each x, there exists some nx

such that Vnx is a pointwise W-refinement of U at x.

By Worrell, the next characterization of θ-refinable spaces was given.

Theorem D ([18], or cf. [19, 3.4. Theorem]). A space X is θ-refinable (submetacompact)
if and only if every open cover of X has a pointwise W-refining sequence by open covers.

Definition 5. ([11]). Let L and G be covers of X . L is called “point-star Ḟ -refinement”
of G at x ∈ X if there is a finite subfamily G′

of G such that x ∈ ⋂G′
and st(x,L) ⊂ ⋃G′

.
A sequence (Ln)n∈N of covers of X is called “point-star Ḟ -refining sequence” of G if for

each x ∈ X , there is an nx ∈ N such that Lnx is point-star Ḟ -refinement of G at x.

Junnila gave the next characterization of submetacompactness.

Theorem E ([18]). A space X is θ-refinable (submetacompact) if and only if every open
cover of X has a point star Ḟ -refinning sequence by open covers.

Definition 6. Let U be a cover of X and (Vn)n∈N a sequence of covers of X . We shall
say a sequence (Vn)n is a pointwise countable W-refining sequence for U if for each x, there
exists some nx such that Vnx is a pointwise countable W-refinement of U at x.

We shall say a space X is w-δθ-refinable if every open cover of X has a pointwise countable
W-refining sequences by open covers.

Definition 7. Let L and G are covers of X . We shall say L is called “point-star Ċ-
refinement” of G at x ∈ X if if there is a countable subfamily G′

of G such that x ∈ ⋂G′

and st(x,L) ⊂ ⋃G′
.

We shall say a sequence (Ln)n∈N of covers of X is “point-star Ċ-refining sequence” of G
if for each x ∈ X , there is an nx ∈ N such that Lnx is point-star Ċ-refinement of G at x.

We shall say a space X is ww-δθ-refinable if every open cover of X has a point star
Ċ-refining sequences by open covers.

It is obvious that every δθ-refinable space is w-δθ-refinable and every w-δθ-refinable
space is ww-δθ-refinable. Let L(X) denote the Lindelöf number of a space X , i.e., L(X) =
min{κ | κ ≥ ω, each open cover G of X has a subcover G′

with |G′ | ≤ κ}.

Theorem 6. Let X be a space with L(X) ≤ ω1. Then the following are equivalent.
(i) X is δθ-refinable.
(ii) X is w-δθ-refinable.
(iii) X is ww-δθ-refinable.
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Proof. It is obvious that (i) ⇒ (ii) and (ii) ⇒ (iii). To prove that (iii) ⇒ (i), let U be an
open cover of X . We may assume that U = {Uα|α < ω1}. By assumption, there exists a
sequence (Lk)k∈N of point star Ċ-refining sequence by open covers of X .

For each k ∈ N and each α < ω1, define
Vk,α = Uα∩(st(X �

⋃
β �=α Uβ ,Lk)),

V
′
k,α = Uα ∩ (

⋃
β>α Uβ)∩(st(X �

⋃
β<α Uβ ,Lk)) and put

Vk = {Vk,α|α < ω1} ∪ {V ′
k,α|α < ω1}.

Then

(1) Vk is an open cover of X such that Vk ≺ U .

Proof. It is obvious that each set of Vk is an open set and Vk ≺ U . To prove that Vk is
a cover of X , let x ∈ X . Put α = min {β < ω1|x ∈ Uβ}. Then x ∈ Uα �

⋃
β<α Uβ. If

x /∈ V
′
k,α, then x /∈ ⋃

β>α Uβ and thus x ∈ ⋃
β �=α Uβ . Hence x ∈ Vk,α.

(2) (Vk)k∈N is a δθ-sequence.
Proof. Let x ∈ X . Then there exist a k ∈ N and a countable subset {αi|i = 1, 2, ...} ⊂ ω1

such that x ∈ ⋂∞
i=1 Uαi and st(x,Lk) ⊂ ⋃∞

i=1 Uαi .
If x ∈ Vk,α, then there is an L ∈ Lk such that x ∈ L and L ∩ (X �

⋃
β �=α Uβ) �= ∅. Since

L ⊂ ⋃∞
i=1 Uαi , α = αi for some i. Therefore {α < ω1|x ∈ Vk,α} ⊂ {αi|i = 1, 2, ...}. Put

α∗ = sup{αi|i = 1, 2, ...}. Then {α < ω1|x ∈ V
′
k,α} ⊂ {α|α ≤ α∗}. To show this, let α > α∗.

If x ∈ L ∈ Lk, then L ⊂ ⋃
β<α Uβ. Thus x /∈ V

′
k,α. Hence ord(x,Vk) ≤ ω. �

3. δθ-refinability-like properties of σ-products

Throughout this sectuion we assume that each space is a T1-space having at least two
points. We define σ-products which were introduced by H. H. Corson [8].

Definition 8. Let S = {Xα|α ∈ Ω} be spaces. “σ = σ(S) is a σ-product of S” means
there is a point x∗ = (x∗

α)α∈Ω ∈ X = Π{Xα|α ∈ Ω} (called the base point of σ) such that σ
is the subspace of X consisting of {x ∈ X |Q(x) is finite}. Here Q(x) = {α|α ∈ Ω, xα �= x∗

α}.
Let Ωn = {a ⊂ Ω : |a| = n} each n ∈ ω and put Ω<ω = ∪{Ωn|n ∈ ω}. Here |a| denotes the
cardinal number of a.

For a finite subset F of Ω, Π{Xα|α ∈ F} is said to be a finite subproduct of σ.
For each a ∈ Ω<ω, define Ya = Πα∈aXα × {x∗

α}α∈Ω�a. Let pa : σ → Ya be the map
defined by

pa(x)α =

{
xα if α ∈ a

x∗
α if α ∈ Ω � a.

Then pa is an open continuous onto map.
For each x ∈ σ, put xa = pa(x).

The following fact concerning σ-products is known.

Fact. Let σ = σ(S) and σn = {x ∈ σ : |Q(x)| ≤ n} for each n ∈ ω. Then σn is closed in σ.

Several papers have investigated the results for σ-products of the following type:
(*) Let P be a topological property. Let σ be a σ-product of spaces. If each finite subproduct
of σ has property P , then σ has P .

First, Kombarov [15] proved that (*) holds for P being paracompactness and Lindelöfness
for regular spaces. After that, it was proved that (*) holds for P being the following
properties: Lindelöfness (Chiba [6]), metacompactness (Teng [17]), subparacompactness
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and θ-refinability (submetacompactness )([17]) , weak θ-refinability, weak δθ-refinability,
hereditarily weak θ-refinability and hereditarily weak δθ-refinability ([5]).

Concerning δθ-refinability (submeta-Lindelöfness), the following is known.

Theorem F ([5]). Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is normal. If
every finite subproduct of σ is δθ-refinable, then σ is δθ-refinable.

In this paper we investigate δθ-refinability and δθ-refinability-like properties of σ-products.

Let κ be an infinite cardinal. A space X is called κ-paracompact if every open cover of
X with its cardinality ≤ κ has a locally finite open refinement.

A space X is called κ-subparacompact if every open cover of X with its cardinality ≤ κ
has a σ-locally finite closed refinement.

A space X is called κ-submetacompact if every open cover of X with its cardinality ≤ κ
has a θ-sequence of open refinements.

A space X is subnormal if for any disjoint closed sets A and B in X , there are disjoint
Gδ-sets G and H such that A ⊂ G and B ⊂ H .

Lemma 1. ([2]). A space X is κ-subparacompact if and only if for every cover of X with
its cardinality ≤ κ has a σ-discrete closed refinement.

Lemma 2. ([7, Lemma 2.5]). A space X is subnormal and κ-paracompact, then X is
κ-subparacompact.

Theorem 7. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is subnormal and
κ-paracompact where κ = |Ω|. If every finite subproduct of σ is δθ-refinable, then σ is
δθ-refinable.

By Lemma 2, Theorem 7 follows from Theorem 8 below.

Theorem 8. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-paracompact
and κ-subparacompact where κ = |Ω|. If every finite subproduct of σ is δθ-refinable, then σ
is δθ-refinable.

Proof. Let A = Ω<ω and put Λ = A<ω . Let G = {Gξ|ξ ∈ Ξ} be an arbitrary open cover of
σ. For each a ∈ A, let Ua,ξ be the maximal open set in Ya satisfying p−1

a (Ua,ξ) ⊂ Gξ and put
Ua = ∪ξ∈ΞUa,ξ. Then {p−1

a (Ua)|a ∈ A} is an open cover of σ such that p−1
a (Ua) ⊂ p−1

b (Ub)
for each a, b ∈ A with a ⊂ b. Since |A| = κ and σ is κ-paracompact, there is a locally finite
open cover J = {Ja|a ∈ A} of σ such that Ja ⊂ p−1

a (Ua) for each a ∈ A. For each λ ∈ Λ,
let us put Vλ = σ � ∪b∈A�λJb. The we have:
(1) V = {Vλ|λ ∈ Λ} is an open cover of σ.
(2) Vλ ⊂ Vν if λ, ν ∈ Λ with λ ⊂ ν.
(3) Put aλ = ∪{a|a ∈ λ}. Then aλ ∈ A and Vλ ⊂ p−1

aλ
(Uaλ

).
For each λ ∈ Λ, define Taλ

= Yaλ
� paλ

(σ � Vλ) and put Cλ =Intp−1
aλ

(Taλ
). Then Taλ

is
a closed subset of Yaλ

and we have
(4) Taλ

⊂ Uaλ
for each λ ∈ Λ.

(5) C = {Cλ|λ ∈ Λ} is an open cover of σ. (This was essentially proved in [1], or see [4]).
Since σ is κ-subparacompact and |Λ| = κ, there is a σ-discrete closed cover F =

⋃
n∈N Fn

of σ, where Fn is discrete in σ such that Fn ≺ C. We can represent Fn = {Fλ,n|λ ∈ Λ}
with Fλ,n ⊂ Cλ for each λ ∈ Λ. For each λ ∈ Λ,Uλ = {Uaλ,ξ|ξ ∈ Ξ} is an open cover of
Uaλ

. Since Yaλ
is δθ-refinable and Taλ

is closed in Yaλ
, there is a sequence (Hλ,m)m∈N of

collections of open sets in Yaλ
satisfying:

(6)λ. Hλ,m ≺ Uλ for each m.
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(7)λ. Hλ,m covers Taλ
for each m.

(8)λ. For each y ∈ Taλ
, there is an m(y) ∈ N such that ord(y,Hλ,m(y)) ≤ ω.

Here we can represent Hλ,m = {Hλ,m,ξ|ξ ∈ Ξ} with Hλ,m,ξ ⊂ Uaλ,ξ for each ξ ∈ Ξ.
For each n ∈ ω, n ∈ N, λ ∈ Λ and ξ ∈ Ξ, let H(n, m, λ, ξ) = p−1

aλ
(Hλ,m,ξ) ∩ Cλ ∩ (σ �

∪µ�=λFµ,n) and put Hn,m = {H(n, m, λ, ξ)|λ ∈ Λ, ξ ∈ Ξ}. Then we have:
(9) Hn,m is an open cover of σ.
(10) Hn,m ≺ G.
(11) For each x ∈ σ, there are an n ∈ ω and an m ∈ N such that ord(x,Hn,m) ≤ ω.

Proof of (9). Let x ∈ σ. If x /∈ ⋃Fn, then x ∈ σ �
⋃Fn. By (5), x ∈ Cλ for some λ. Then

xaλ
∈ Taλ

. By (7)λ, xaλ
∈ Hλ,m,ξ for some ξ. Thus x ∈ H(n, m, λ, ξ).

If x ∈ ⋃Fn, then x ∈ Fλ,n for some λ ∈ Λ. Since Fn is discrete, x /∈ ∪µ�=λFµ,n. Since
Fλ,n ⊂ Cλ, x ∈ Cλ. Therefore x ∈ H(n, m, λ, ξ) for some ξ.

Proof of (10). Let Hλ,m,ξ ∈ Hλ,m. Then Hλ,m,ξ ⊂ Uaλ,ξ. Thus p−1
aλ

(Hλ,m,ξ) ⊂ Gξ. Hence
H(n, m, λ, ξ) ⊂ Gξ.

Proof of (11). Let x ∈ σ. Since F is a cover of σ, there are an n ∈ ω and a λ ∈ Λ such
that x ∈ Fn,λ. Then x /∈ ∪µ�=λFµ,n and x ∈ Cλ. Thus xaλ

∈ Taλ
. By (8)λ, there is an m

such that ord(xaλ
,Hλ,m) ≤ ω. Then ord(x,Hn,m) ≤ ω. To show this, let x ∈ H(n, m, λ, ξ).

Then xaλ
∈ Hλ,m,ξ . Such λ are at most countable.

Thus {Hn,m|n ∈ ω, m ∈ N} is a δθ-sequence of open refinements of G.

Remark 1 ([7, p.85, Remark]). As is well-known, paracompactness implies subparacom-
pactness. However, for each λ ≥ ω, λ-paracompactness does not imply λ-paracompactness.

The author proved in [4] that under the assumption of σ being κ-paracompact, if every
finite subproduct of σ is normal, then σ is normal. We can prove the following similarly.

Theorem 9. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-paracompact
where κ = |Ω|. If every finite subproduct of σ is subnormal, then σ is subnormal.

Proof. Let G = {Gi|i = 1, 2} be an arbitrary binary open cover of σ. Let us define
A,Λ, Ua,i, Ua,J , Vλ, Taλ

, Cλ and Uλ are similar to that of the proof of Theorem 8.
For each λ ∈ Λ,Uλ = {Uaλ,i|i = 1, 2} is an open cover of Uaλ

. Since Yaλ
is subnormal,

there are Fσ-sets Kλ,i, i = 1, 2 of Taλ
such that Taλ

= ∪2
i=1Kλ,i and Kλ,i ⊂ Uaλ,i for i = 1, 2.

Let O = {Oλ|λ ∈ Λ} be a locally finite open cover of σ such that Oλ ⊂ Cλ for each λ ∈ Λ.
Let us put Ki =

⋃
λ∈Λ(p−1

aλ
(Kλ,i) ∩ Oλ). Then Ki are Fσ-sets in σ,Ki ⊂ Gi for i = 1, 2

and σ = ∪2
i=1Ki. �

By Theorems 7 and 9, we obtain the following.

Theorem 10. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-paracompact
where κ = |Ω|. If every finite subproduct of σ is subnormal and δθ-refinable, then σ is
δθ-refinable.

Lemma 3. (1) Let G be an open cover of X and (Vn)n∈N is a pointwise countable W-
refining sequence of G. Then there exists a pointwise countable W-refining sequence (Hn)n∈N

of G satisfying the following conditions: For each x ∈ X, there exist an nx ∈ N and a count-
able subfamily G′

of G such that (Hn)x ≺ G′
for each n ≥ nx.

(2) Let G be an open cover of X and (Vn)n∈N is a point-star Ċ-refining sequence of G.
Then there exists a point-star Ċ-refining sequence (Hn)n∈N of G satisfying the following
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conditions: For each x ∈ X, there exist an nx ∈ N and a countable subfamily G′
of G such

that x ∈ ⋂G′
and st(x,Hn) ⊂ ⋃G′

for each n ≥ nx.

Proof. Let us put Hn = ∧n
i=1Vi(= {∩n

i=1Vi|Vi ∈ Vi for each i = 1, 2, ..., n}). Then (Hn)n∈N

is a desired one. �

Theorem 11. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-paracompact
where κ = |Ω|. If every finite subproduct of σ is w-δθ-refinable, then σ is w-δθ-refinable.

Proof. Let G = {Gξ|ξ ∈ Ξ} be an arbitrary open cover of σ. Let us define A,Λ, Ua,ξ, Ua,J ,
Vλ, Taλ

, Cλ and Uλ are similar to that of the proof of Theorem 8.
Since |Λ| = κ and σ is κ-paracompact, there is a locally finite open cover O = {Oλ|λ ∈ Λ}

of σ such that Oλ ⊂ Cλ for each λ ∈ Λ. For each λ ∈ Λ,Uλ = {Uaλ,ξ |ξ ∈ Ξ} is an open cover
of Uaλ

. Since Yaλ
is w-δθ-refinable and Taλ

is closed in Yaλ
, there is a sequence (Hλ,m)m∈N

of collections of open sets in Yaλ
satisfying:

(6)λ. Hλ,m covers Taλ
for each m.

(7)λ. For each y ∈ Taλ
, there are a countable subset Ξy of Ξ and an my ∈ N such that

Hλ,m(y) is a partial refinement of {Uaλ,ξ |ξ ∈ Ξy} for each m ≥ my.
Put Hm = {p−1

aλ
(H) ∩ Oλ|H ∈ Hλ,m, λ ∈ Λ}. Then we have:

(8) Hm is an open cover of σ.
(9) For each x ∈ σ, there are a countable subset Ξx of Ξ and an mx ∈ N such that Hmx(x)
is a partial refinement of {Gξ|ξ ∈ Ξx}.
Proof of (8). Let x ∈ σ. Then x ∈ Oλ for some λ. Therefore xaλ

∈ Taλ
. By (6)λ, xaλ

∈ H
for some H ∈ Hλ,m. Thus x ∈ p−1

aλ
(H) ∩ Oλ.

Proof of (9). Let x ∈ σ. Since O is locally finite, there is a finite subset {λi|i = 1, 2, ..., n}
such that x ∈ Oλ ⇐⇒ λ ∈ {λi|i = 1, 2, ..., n}. For each i = 1, 2, ..., n, since xaλi

∈ Taλi
,

there are countable subsets Ξi of Ξ and mi ∈ N for i = 1, 2, ..., n such that Hλi,m(xaλi
)

is a partial refinement of {Uaλi
,ξ|ξ ∈ Ξi} for every m ≥ mi. Let us put m∗ =max{mi|i =

1, 2, ..., n} and Ξ∗ = ∪n
i=1Ξi. Then Hm(x) is a partial refinement of {Gξ|ξ ∈ Ξ∗}.

To show this, let x ∈ p−1
aλ

(H)∩Oλ, H ∈ Hλ,m. Then λ = λi for some i = 1, 2, ..., n. Since
xaλi

∈ H, H ⊂ Uaλi
,ξ for some ξi. Therefore p−1

aλi
(Uaλi

,ξ) ⊂ Gξ. �

Theorem 12. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-paracompact
where κ = |Ω|. If every finite subproduct of σ is ww-δθ-refinable, then σ is ww-δθ-refinable.

Proof. Let G = {Gξ|ξ ∈ Ξ} be an arbitrary open cover of σ. Let us define Λ, Ua,ξ, Ua, Vλ, Taλ
,

Cλ, Oλ and Uλ are similar to that of the proof of Theorem 11. Since Yaλ
is ww-δθ-refinable

and Taλ
is closed in Yaλ

, there is a sequence (Hλ,m)m∈N of collections of open sets in Yaλ

satisfying:
(6)λ. Hλ,m covers Taλ

for each m.
(7)

′
λ. For each y ∈ Taλ

, there are a countable subset Ξy of Ξ and an my ∈ N such that
(i). y ∈ ⋂{Uaλ,ξ|ξ ∈ Ξy},
(ii). st(y,Hλ,m) ⊂ ⋃{Uaλ,ξ|ξ ∈ Ξy} for each m ≥ my.

Put Hm = {p−1
aλ

(H) ∩ Oλ|H ∈ Hλ,m, λ ∈ Λ}. Then we have:
(8) Hm is an open cover of σ.
(9)

′
For each x ∈ σ, there are a countable subset Ξx of Ξ and an mx ∈ N such that

(i) x ∈ ⋂{Gξ|ξ ∈ Ξx},
(ii) st(x,Hmx) ⊂ ⋃{Gξ|ξ ∈ Ξx}. �
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Theorem 13. Let S = {Xα|α ∈ Ω} be spaces and G an open subspace of σ = σ(S).
Suppose G is κ-submetacompact where κ = |Ω|. If every finite subproduct of σ is hereditarily
w-δθ-refinable, then G is w-δθ-refinable.

Proof. Let G = {Gξ|ξ ∈ Ξ} be an arbitrary open cover of G. For each a ∈ A, let Ua,ξ

be the maximal open set in Ya satisfying p−1
a (Ua,ξ) ⊂ Gξ and put Ua =

⋃
ξ∈Ξ Ua,ξ. Since

U = {p−1
a (Ua)|a ∈ A} is an open cover of G with |U| = κ, there is a σ-discrete closed

cover F =
⋃

n∈N Fn of G, where Fn is discrete in G such that Fn ≺ U . We can represent
Fn = {Fa,n|a ∈ A} with Fa,n ⊂ Ua for each a ∈ A.

For each a ∈ A, since Ua = {Ua,ξ|ξ ∈ Ξ} is an open cover of Ua and Ua is δθ-refinable,
there is a sequence (Ha,m)m∈N of open covers of Ua satisfying:
(1)a. Ha,m ≺ Ua for each m.
(2)a. For each y ∈ Ua, there is an m(y) ∈ N such that ord(y,Ha,m(y)) ≤ ω.

Here we can represent Ha,m = {Ha,m,ξ|ξ ∈ Ξ} with Ha,m,ξ ⊂ Ua,ξ for each ξ ∈ Ξ.
For each n ∈ ω, m ∈ N, a ∈ A and ξ ∈ Ξ, let H(n, m, a, ξ) = p−1

a (Ha,m,ξ) ∩ (G �⋃
b∈A,b �=a Fb,n) and put Hn,m = {H(n, m, a, ξ)|a ∈ A, ξ ∈ Ξ}. Then we have:

(3) Hn,m is an open cover of G.
(4) Hn,m ≺ G.
(5) For each x ∈ G, there are an n ∈ ω and an m ∈ N such that ord(x,Hn,m) ≤ ω.
Thus {Hn,m|n ∈ ω, m ∈ N} is a δθ-sequence of refinements of G. �

Theorem 14. Let S = {Xα|α ∈ Ω} be spaces and G an open subspace of σ = σ(S).
Suppose G is κ-submetacompact where κ = |Ω|. If every finite subproduct of σ is hereditarily
ww-δθ-refinable, then G is ww-δθ-refinable.

Proof. This proof is similar to that of Theorem 13. �

Corollary 1. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-submetacompact
where κ = |Ω|. If every finite subproduct of σ is hereditarily w-δθ-refinable, then σ is w-δθ-
refinable.

Corollary 2. Let S = {Xα|α ∈ Ω} be spaces and σ = σ(S). Suppose σ is κ-submetacompact
where κ = |Ω|. If every finite subproduct of σ is hereditarily ww-δθ-refinable, then σ is ww-
δθ-refinable.

4. Appendix to σ-products

Let us consider the following conditions for a space X .
(S1) X has an increasing closed cover {Xn|n ∈ ω}.
(S2) For each n ∈ ω, there is a closed cover Yn = {Ya|a ∈ An} of Xn.
(S3) For each a ∈ A =

⋃
n∈ω An, there is a continuous onto map pa : X → Ya such that

pa|Ya = identity.
(S4) For each n ∈ ω and each open set U such that Xn−1 ⊂ U , there is a discrete family
J = {Ja|a ∈ An} of open sets in X such that Ja ⊃ Ya � U . Here X−1 = ∅.
(S5) Kn = {Ya � Xn−1|a ∈ An} is a discrete family of closed subsets in X � Xn−1 for each
n ∈ ω. Here X−1 = ∅.
(S6) There is a point finite open expansion of Kn in X for each n ∈ ω (i.e., there is a point
finite open family Mn = {Mn,a|a ∈ An} in X such that Mn,a ⊃ Ya �Xn−1 for each a ∈ An.

Each normal σ-product space satisfies the conditions (S1) ∼ (S6). Each σ-product space
and each open subspace of it satisfies the conditions (S1) ∼ (S3) and (S5) ∼ (S6).
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In [5], the author generalised the theorems of the type: “(*) Let P be a topological property.
Let σ be a σ-product of spaces. If each finite subproduct of σ has property P , then σ has
P .” to the theorem of the type:
(1) Suppose X satisfies the conditions (S1) ∼ (S4). If each Ya has the property P , then X
has the property P .
(2) Suppose X satisfies the conditions (S1) ∼ (S3) and (S5) ∼ (S6). If each Ya has the
property P , then X has the property P .
The results of metacompactness and submetacompactness of σ-products are generalized to
the following by the same proof of [16] and [17],

Theorem 15. ([16]). Suppose X satisfies the conditions (S1) ∼ (S3) and (S5) ∼ (S6). If
each Ya is metacompact, then X is metacompact.

Theorem 16. ([17]). Suppose X satisfies the conditions (S1) ∼ (S3) and (S5) ∼ (S6). If
each Ya is submetacompact, then X is submetacompact.

Remark 2. Similar result hold for metaLindelöfness.

Definition 9. A space X is called “discretely θ-expandable” [14] if for every discrete col-
lection {Fξ|ξ ∈ Ξ} of subsets of X , there exists a sequence (Gn = {Gξ,n|ξ ∈ Ξ})n∈N of
collections of open subsets of X satisfying the following:
(i) Fξ ⊂ Gξ,n for each ξ and each n.
(ii) For every point x of X there is nx for which x is contained in at most finite member of
Gnx (i.e., Gnx is point finite at x).

A space X is called “θ-expandable” [14] if for every locally finite collection {Fξ|ξ ∈ Ξ} of
subsets of X , there exists a sequence (Gn = {Gξ,n|ξ ∈ Ξ})n∈N of collections of open subsets
of X satisfying the following:
(i) Fξ ⊂ Gξ,n for each ξ and each n.
(ii) For every point x of X there is an nx for which x is contained in at most finite member
of Gnx (i.e., Gnx is point finite at x).

Theorem G ([5, Proposition 2]). Suppose X satisfies the conditions (S1) ∼ (S4). Then
the following holds.
(a) If every Ya is discretely θ-expandable, then X is discretely θ-expandable.
(b) If every Ya is θ-expandable, then X is θ-expandable.

The above theorem can be generalised as follows:

Theorem 17. Suppose X satisfies conditions (S1) ∼ (S3) and (S5) ∼ (S6). Then the fol-
lowing holds.
(a) If every Ya is discretely θ-expandable, then X is discretely θ-expandable.
(b) If every Ya is θ-expandable, then X is θ-expandable.

Proof. (a). Let F = {Fλ|λ ∈ Λ} be a discrete collection of closed subsets in X . Then
Fa = {Fλ ∩ Ya|λ ∈ Λ} is a discrete collection of closed subsets in Ya for each a ∈ A. Since
Ya is θ-expandable, there is a sequence (La,m)m∈N of collections of open subsets in Ya such
that La,m = {Lλ,a,m|λ ∈ Λ}, satisfying:
(i)a. Fλ ∩ Ya ⊂ Lλ,a,m for each λ,m.
(ii)a. Lλ,a,m+1 ⊂ Lλ,a,m for each λ,m.
(iii)a. For each y ∈ Ya, there is an my ∈ N such that ord(y,La,my) < ω.

By (S6), there is a point finite open family Mn = {Ma,n|a ∈ An} in X such that Ya�Xn−1 ⊂
Ma,n for each a ∈ An. Here we may assume that Ma,n ∩ Xn−1 = ∅.
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Let us put Hλ,m =
⋃

n∈N

⋃
a∈An

(p−1
a (Lλ,a,m) ∩ Ma,n) and put Hm = {Hλ,m|λ ∈ Λ}.

Then Hm is a collection of open subsets in X for each m and satifies the following conditions:
(1) Fλ ⊂ Hλ,m for each λ ∈ Λ, m ∈ N.
(2) For each x ∈ X , there is an mx ∈ N such that ord(x,Hmx) < ω.

Proof of (1). Let x ∈ Fλ. Then, by (S1), x ∈ Xn � Xn−1 for some n ∈ ω. By (S2), x ∈ Ya

for some a ∈ An. Then, by (i)a, x ∈ Lλ,a,m. Since Ya � Xn−1 ⊂ Ma,n, x ∈ Lλ,a,m ∩Ma,n ⊂
Hλ,m.

Proof of (2). Let x ∈ X . Then, by (S1), x ∈ Xn � Xn−1 for some n ∈ ω. Then x /∈ Ma,l

for each l > n. Let A
′
l = {a ∈ Al|x ∈ Ma,l} for each l ≤ n and put A

′
=

⋃
i≤n A

′
l. Since

Ml is point finite at x for each l, A
′

is a finite set. Let us put xa = pa(x) for each a ∈ A.
By (iii)a, there is an ma ∈ N such that ord(xa,La,ma) < ω. Let m∗ = max{ma|a ∈ A′}.
Then ord (x,Hm∗) < ω.

To show this, let Λa = {λ ∈ Λ|xa ∈ Lλ,a,m∗} and put Λ
′
=

⋃
a∈A′ Λa. Then, since ord

(xa,La,ma) is finite and ord (xa,La,m∗) < ord (xa,La,ma),Λa is a finite set. Therefore Λ
′

is a finite set. If x ∈ Hλ,m∗ , then x ∈ p−1
a (Lλ,a,m∗) ∩Ma,l for some λ and l. Since x /∈ Ma,l

for each l > n, we have l ≤ n. Therefore, if x ∈ p−1
a (Lλ,a,m) ∩ Ma,l for some λ and l, then

a ∈ A
′
. And, since xa ∈ Lλ,a,m∗ , λ ∈ Λa.

(b). This proof is quite similar to that of (a). �

Corollary 3. (a). If every finite subproduct of σ is discretely θ-expandable, then σ is dis-
cretely θ-expandable.
(b)([10]). If every finite subproduct of σ is θ-expandable, then σ is θ-expandable.

Corollary 4. (a) If every finite subproduct of σ is hereditarily discretely θ-expandable, then
σ is hereditarily discretely θ-expandable.
(b) If every finite subproduct of σ is hereditarily θ-expandable, then σ is hereditarily θ-
expandable.

Remark 3. Almost θ-expandability in [10] is the same notion of θ-expandability in [14].
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