INTUITIONISTIC FUZZY ASSOCIATIVE \mathcal{I} -IDEALS OF IS-ALGEBRAS

ZHAN JIANMING & XIANG DAJING

Received December 19, 2003

ABSTRACT. In this paper, we introduce the concept of intuitionistic fuzzy associative \mathcal{I} -ideals of IS-algebras and investigate some related properties.

1.Introduction and Preliminaries

The notion of BCI-algebras was proposed by Iseki in 1966. For the general development of BCI-algebras, the ideal theory plays an important role. In 1993, Jun et al.[1] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup, In 1998, for the convenience of study, Jun et al.[3] renamed the BCI-semigrup as IS-algebra and studied further properties of these algebras. In [6] Roh et al. introduced the concept of associative \mathcal{I} -ideals and strong \mathcal{I} -ideals in an IS-algebra. Jun et al. [8] established the fuzzification of \mathcal{I} -ideals in IS-algebras and E.H.Roh [4] studied the properties of fuzzy associative \mathcal{I} -ideals of IS-algebras.

In this paper, we introduce the concept of intuitionistic fuzzy associative \mathcal{I} -ideals of IS-algebras and investigate some related properties.

By a BCI-algebra we mean an algebra (X; *, 0) of type (2, 0) satisfying the following conditions:

- (I) ((x * y) * (x * z)) * (z * y) = 0
- (II) (x * (x * y)) * y = 0
- (III) x * x = 0
- (IV) x * y = 0 and y * x = 0 imply x = y

A partial ordering on X can be defined by $x \leq y$ if and only if x * y = 0.

A nonempty subset I of a BCI-algebra X is called an ideal of X if

- (i) $0 \in I$
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

A fuzzy set μ is a function $\mu: X \to [0,1]$, and the complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. We shall write $a \wedge b$ for $min\{a,b\}$ and $a \vee b$ for $max\{a,b\}$, where a and b are any real numbers.

A fuzzy set μ in a BCI-algebra X is called a fuzzy ideal of X if (i) $\mu(0) \geq \mu(x)$, (ii) $\mu(x) \geq \mu(x * y) \wedge \mu(y)$ for all $x, y \in X$.

An intuitionistic fuzzy set (briefly, IFS) A in nonempty set X is an object having the form $A = \{(x, \alpha_A(x), \beta_A(x)) \mid x \in X\}$, where the function $\alpha_A : X \to [0, 1]$ and $\beta_A : X \to [0, 1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \le \alpha_A(x) + \beta_A(x) \le 1, \quad \forall \in X$$

An intuitionistic fuzzy set $A = \{(x, \alpha_A(x), \beta_A(x)) \mid x \in X\}$ in X can be identified to an ordered pair (α_A, β_A) in $I^X \times I^X$. For the sake of simplicity, we shall use the symbol $A = (\alpha_A, \beta_A)$ for the $IFSA = \{(x, \alpha_A(x), \beta_A(x)) \mid x \in X\}$.

²⁰⁰⁰ Mathematics Subject Classification. 03G25,06F35.

Key words and phrases. (Intuitionistic) fuzzy associative \mathcal{I} -ideals, (Fuzzy) associative \mathcal{I} -ideals, IS-algebras.

An IS-algebra X is a nonempty set X with two binary operations "*" and "·" and constant 0 satisfying the axioms:

- (I) I(X) = (X; *, 0) is a BCI-algebra,
- (II) $S(X) = (X, \cdot)$ is a semigroup,
- (III) The operation "·" is distribute over the operation "*", that is, $x \cdot (y*z) = (x \cdot y)*(x \cdot z)$ and $(x*y) \cdot z = (x \cdot z)*(y \cdot z)$ for all $x, y, z \in X$.

A nonempty subset A of a semigroup $S(X) = (X, \cdot)$ is said to be stable if $xa \in A$, whenever $x \in S(X)$ and $a \in A$.

A nonempty subset A of an IS-algebra X is called an \mathcal{I} -ideal of X if

- (i) A is a stable subset of S(X),
- (ii) for any $x, y \in I(X), x * y \in A$ and $y \in A$ imply that $x \in A$.

Note that if A is an \mathcal{I} -ideal of an IS-algebra, then $0 \in A$. Thus A is an ideal of I(X).

A fuzzy set in a semigroup $S(X) = (X, \cdot)$ is said to be fuzzy stable if $\mu(x \cdot y) \ge \mu(y)$ for all $x, y \in X$.

A fuzzy set μ in an IS-algebra X is called a fuzzy \mathcal{I} -ideal of X if (i) μ is a fuzzy stable set in S(X); (ii) μ is a fuzzy ideal of a BCI-algebra X.

Definition 1.1([6]) A nonempty subset A of an IS-algebra X is called an associative \mathcal{I} -ideal (briefly, $A\mathcal{I}$ -ideal) of X if (i) A is a stable subset of S(X); (ii) for any $x, y, z \in I(X), (x * y) * z \in A$ and $y * z \in A$ imply that $x \in A$.

Definition 1.2([4]) A fuzzy set μ in an IS-algebra X is called a fuzzy associative \mathcal{I} -ideal (briefly, $FA\mathcal{I}$ -ideal) of X if (i) μ is a fuzzy stable set in S(X); (ii) $\mu(x) \geq \mu((x*y)*z) \wedge \mu(y*z)$ for all $x, y, z \in X$.

2. Intuitionistic fuzzy associative \mathcal{I} -ideals of IS-algebras

Definition 2.1 An $IFSA = (\alpha_A, \beta_A)$ in an IS-algebra X is called an intuitionistic fuzzy \mathcal{I} -ideal (briefly, $IF\mathcal{I}$ -ideal) of X if

- (I) $\alpha_A(x \cdot y) \ge \alpha_A(y)$,
- (II) $\beta_A(x \cdot y) \leq \beta_A(y)$,
- (III) $\alpha_A(x) \ge \alpha_A(x * y) \wedge \alpha_A(y)$,
- (IV) $\beta_A(x) \leq \beta_A(x * y) \vee \beta_A(y)$.

for all $x, y \in X$.

Definition 2.2 An $IFSA = (\alpha_A, \beta_A)$ in an IS-algebra X is called an intuitionistic fuzzy associative \mathcal{I} -ideal(briefly, $IFA\mathcal{I}$ -ideal) of X if

- (I) $\alpha_A(x \cdot y) \ge \alpha_A(y)$,
- (II) $\beta_A(x \cdot y) \leq \beta_A(y)$,
- (III) $\alpha_A(x) \ge \alpha_A((x*y)*z) \wedge \alpha_A(y*z)$,
- (IV) $\beta_A(x) \leq \beta_A((x*y)*z) \vee \beta_A(y*z)$.

for all $x, y, z \in X$.

Example 2.3 Consider an IS-algebra $X = \{0, a, b, c\}$ with the following Cayley tables;

*	0	a	b	c		•	0	a	b	c
0	0	0	b	b	•	0	0	0	0	0
a	a	0	c	b		a	0	a	0	a
b	b	b	0	0		b	0	0	b	b
c	c	b	a	0		c	0	a	b	c

Define an $IFSA = (\alpha_A, \beta_A)$ in X as follows:

 $\alpha_A(0) = \alpha_A(b) = 0.6$ and $\alpha_A(a) = \alpha_A(c) = 0.2$; $\beta_A(0) = \beta_A(b) = 0$ and $\beta_A(a) = \beta_A(c) = 0.3$. Then $A = (\alpha_A, \beta_A)$ is an $IF\mathcal{I}$ -ideal of X.

Example 2.4 Consider an IS-algebra $X = \{0, a, b, c\}$ with Cayley tables as follows:

*	0	a	b	c		0	a	b	c
0	0	a	b	c	0	0	0	0	0
a	a	0	c	b	a	0	a	b	c
b	b	c	0	a	b	0	a	b	c
c	c	b	a	0			0		

Define an $IFSA = (\alpha_A, \beta_A)$ in X as follows:

 $\alpha_A(0) = \alpha_A(a) = 1$ and $\alpha_A(b) = \alpha_A(c) = t$; $\beta_A(0) = \beta_A(a) = 0$ and $\beta_A(b) = \beta_A(c) = s$, where $t \in [0, 1], s \in [0, 1]$ and $t + s \leq 1$. Then $A = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of X.

Proposition 2.5 Every $IFA\mathcal{I}$ -ideal is an $IF\mathcal{I}$ -ideal.

Proof Let $IFSA = (\alpha_A, \beta_A)$ be an $IFA\mathcal{I}$ -ideals of an IS-algebra X and let $x, y \in X$. Then $\alpha_A(x) \geq \alpha_A((x*y)*0) \wedge \alpha_A(y*0) = \alpha_A(x*y) \wedge \alpha_A(y)$ and $\beta_A(x) \leq \beta_A((x*y)*0) \vee \beta_A(y*0) = \beta_A(x*y) \vee \beta_A(y)$. Hence $IFSA = (\alpha_A, \beta_A)$ is an $IF\mathcal{I}$ -ideal of X.

The following example shows that the converse of proposition 2.5 may not be true.

Example 2.6 Let X be an IS-algebra in Example 2.3 and let $IFSA = (\alpha_A, \beta_A)$ defined by $\alpha_A(0) = \alpha_A(b) = 0.6$ and $\alpha_A(a) = \alpha_A(c) = 0.2$; $\beta_A(0) = \beta_A(b) = 0$ and $\beta_A(a) = \beta_A(c) = 0$. It's routine to check that IFSA is an $IF\mathcal{I}$ -ideal. But IFSA is not an $IF\mathcal{I}$ -ideal of X, since $\alpha_A(a) < \alpha_A((a*b)*c) \land \alpha_A(b*c)$.

Proposition 2.7 Let $IFSA = (\alpha_A, \beta_A)$ be an $IF\mathcal{I}$ -ideal of an IS-algebra X. If $x \leq y$ in X, then $\alpha_A(x) \geq \alpha_A(y)$ and $\beta_A(x) \leq \beta_A(y)$, that is, α_A is order-reserving and β_A is order-preserving.

Proof Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0 and so $\alpha_A(x) \geq \alpha_A(x * y) \wedge \alpha_A(y) = \alpha_A(0) \wedge \alpha_A(y) = \alpha_A(y)$ and $\beta_A(x) \leq \beta_A(x * y) \vee \beta_A(y) = \beta_A(0) \vee \beta_A(y) = \beta_A(y)$.

Proposition 2.8 Let $IFSA=(\alpha_A,\beta_A)$ be an $IF\mathcal{I}$ -ideal of an IS-algebra X. Then IFSA is an $IFA\mathcal{I}$ -ideal of X if and only if it satisfies $\alpha_A(x) \geq \alpha_A((x*y)*y); \beta_A(x) \leq \beta_A((x*y)*y)$ for all $x,y \in X$.

Proof Let $IFSA=(\alpha_A, \beta_A)$ be an $IFA\mathcal{I}$ -ideal of X, $\alpha_A(x) \geq \alpha_A((x*y)*y) \wedge \alpha_A(y*y) = \alpha_A((x*y)*y) \wedge \alpha_A(0) = \alpha_A((x*y)*y)$ and $\beta_A(x) \leq \beta_A((x*y)*y) \vee \beta_A(y*y) = \beta_A((x*y)*y) \vee \beta_A(0) = \beta_A((x*y)*y)$.

Conversely, note that $((x*z)*z)*(y*z) = ((x*z)*(y*z))*z \le (x*y)*z$ for all $x,y,z \in X$. If follows that $\alpha_A(x) \ge \alpha_A((x*z)*z) \ge \alpha_A((x*z)*z)*(y*z)) \land \alpha_A(y*z) \ge \alpha_A((x*y)*z) \land \alpha_A(y*z)$ and $\beta_A(x) \le \beta_A((x*z)*z) \le \beta_A((x*z)*z)*(y*z)) \lor \beta_A(y*z) \le \beta_A((x*y)*z) \lor \beta_A(y*z)$ for all $x,y,z \in X$. This completes the proof.

Lemma 2.9 An $IFSA=(\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of X if and only if the fuzzy sets α_A and $\overline{\beta}_A$ are $FA\mathcal{I}$ -ideals of X.

Proof Let $IFSA=(\alpha_A,\beta_A)$ be an $IFA\mathcal{I}$ -ideal of X, clearly α_A is an $FA\mathcal{I}$ -ideal of X. For any $x,y,z\in X$, we have $\overline{\beta}_A(x\cdot y)=1-\beta_A(x\cdot y)\geq 1-\beta_A(y)=\beta_A(y)$ and $\overline{\beta}_A(x)=1-\beta_A((x*y)*z)\vee\beta_A(y*z)=(1-\beta_A((x*y)*z))\wedge(1-\beta_A(y*z))=\overline{\beta}_A((x*y)*z)\wedge\overline{\beta}_A(y*z)$. Hence $\overline{\beta}_A(y)$ is an $FA\mathcal{I}$ -ideal of X.

Conversely, assume that α_A and $\overline{\beta}_A$ are $FA\mathcal{I}$ -ideals of X. For any $x,y,z\in X$, we get(1) $\overline{\beta}_A(x*y)\geq \overline{\beta}_A(y)$ and that $\beta_A(x\cdot y)\leq \beta_A(y)$; (2) $\overline{\beta}_A(x)\geq \overline{\beta}_A((x*y)*z)\wedge \overline{\beta}_A(y*z)$ and that $1-\beta_A(x)\geq (1-\beta_A((x*y)*z))\wedge (1-\beta_A(y*z))=1-\beta_A((x*y)*z)\vee \beta_A(y*z)$, that is, $\beta_A(x)\leq \beta_A((x*y)*z)\vee \beta_A(y*z)$. Hence $IFSA=(\alpha_A,\beta_A)$ is an $IFA\mathcal{I}$ -ideal of X.

Theorem 2.10 Let $A = (\alpha_A, \beta_A)$ be an IFS in an IS-algebra X. Then $A = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of X if and only if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are $IFA\mathcal{I}$ -ideals of X.

Proof If $A = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal, then $\alpha_A = \overline{\overline{\alpha}}_A$ and β_A are $FA\mathcal{I}$ -ideals of X from Lemma 2.9, hence $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are $IFA\mathcal{I}$ -ideals of X. Conversely, if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are $IFA\mathcal{I}$ -ideals of X, then α_A and $\overline{\beta}_A$ are $FA\mathcal{I}$ -ideals of X, hence $A = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of X.

For any $t \in [0,1]$ and a fuzzy set μ in a nonempty set X, the set $U(\mu;t) = \{x \in X \mid \mu(x) \geq t\}$ is called an upper t-level cut of μ and the set $L(\mu;t) = \{x \in X \mid \mu(x) \leq t\}$ is called a lower t-level cut of μ .

Theorem 2.11 Let $A = (\alpha_A, \beta_A)$ be an IFS in an IS-algebra X, then $IFSA = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal if and only if for all $s, t \in [0, 1]$, the nonempty sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are $A\mathcal{I}$ -ideals of X.

Proof Let $IFSA=(\alpha_A,\beta_A)$ be an $IFA\mathcal{I}$ -ideal of X and let $x\in S(X)$ and $y\in U(\alpha_A;t)$. Then $\alpha_A(y)\geq t$ and so $\alpha_A(x\cdot y)\geq \alpha_A(y)\geq t$, which implies that $x\cdot y\in U(\alpha_A;t)$. Hence $U(\alpha_A;t)$ is a stable subset of S(X). Let $x,y,z\in I(X)$ be such that $(x*y)*z\in U(\alpha_A;t)$ and $y*z\in U(\alpha_A;t)$. Then $\alpha_A((x*y)*z)\geq t$ and $\alpha_A(y*z)\geq t$. It follows that $\alpha_A(x)\geq \alpha_A((x*y)*z)\wedge \alpha_A(y*z)\geq t$, so that $x\in U(\alpha_A;t)$. Hence $U(\alpha_A;t)$ is an $A\mathcal{I}$ -ideal of X. Now let $x\in S(X)$ and $y\in L(\beta_A;s)$. Then $\beta_A(y)\leq s$ and so $\beta_A(x\cdot y)\leq \beta_A(y)\leq s$, which implies that $x\cdot y\in L(\beta_A;s)$. Hence $L(\beta_A;s)$ is a stable subset of S(X). Let $x,y,z\in I(X)$ be such that $(x*y)*z\in L(\beta_A;s)$ and $y*z\in L(\beta_A;s)$. Then $\beta_A((x*y)*z)\leq s$ and $\beta_A(y*z)\leq s$, so that $x\in L(\beta_A;s)$. Hence $L(\beta_A;s)$ is an $A\mathcal{I}$ -ideal of X.

Conversely, assume that for each $s,t\in[0,1]$, the nonempty sets $U(\alpha_A;t)$ and $L(\beta_A;s)$ are $A\mathcal{I}$ -ideals of X. If there are $x_0,y_0\in S(X)$ such that $\alpha_A(x_0\cdot y_0)<\alpha_A(y_0)$, then taking $t_0=(\alpha_A(x_0\cdot y_0)+\alpha_A(y_0))/2$, we have $\alpha_A(x_0\cdot y_0)< t_0<\alpha_A(y_0)$. It follows that $y_0\in U(\alpha_A;t_0)$ and $x_0\cdot y_0\not\in U(\alpha_A;t_0)$. This is a contradiction. Therefore α_A is a fuzzy stable set in S(X). If there are $x_0,y_0\in S(X)$ such that $\beta_A(x_0\cdot y_0)<\beta_A(y_0)$, then taking $s_0=(\beta_A(x_0\cdot y_0)+\beta_A(y_0))/2$, we have $\beta_A(x_0\cdot y_0)>s_0>\beta_A(y_0)$, it follows that $y_0\in L(\beta_A;s_0)$ and $x_0\cdot y_0\not\in L(\beta_A;s_0)$. This is a contradiction, Therefore β_A is a fuzzy stable set in S(X). Suppose that $\alpha_A(x_0)<\alpha_A((x_0*y_0)*z_0)\wedge\alpha_A(y_0*z_0)$ for some $x_0,y_0,z_0\in X$, putting $t_0=(\alpha_A(x_0)+\alpha_A((x_0*y_0)*z_0)\wedge\alpha_A(y_0*z_0))/2$, then $\alpha_A(x_0)< t_0<\alpha_A((x_0*y_0)*z_0)\wedge\alpha_A(y_0*z_0)$. Which shows that $(x_0*y_0)*z_0,y_0*z_0\in U(\alpha_A;t_0)$ and $x_0\not\in U(\alpha_A;t_0)$. This is impossible. Finally, assume that $a,b,c\in X$ such that $\beta_A(a)>\beta_A((a*b)*c)\vee\beta_A(b*c)$. Taking $s_0=(\beta_A(a)+\beta_A((a*b)*c))/2$, then $\beta_A((a*b)*c)\vee\beta_A(b*c)$. Taking $s_0=(\beta_A(a)+\beta_A((a*b)*c))/2$, then $\beta_A((a*b)*c)\vee\beta_A(b*c)$. Therefore (a*b)*c and $b*c\in L(\beta_A;s_0)$, but $a\not\in L(\beta_A;s_0)$, which is a contradiction, this completes the proof.

Let J be a nonempty subset of [0,1].

Theorem 2.12 Let $\{I_t \mid t \in J\}$ be a collection of $A\mathcal{I}$ -ideals of IS-algebra X such that

(i) $X = \bigcup_{t \in J} I_t$,

(ii) s > t if and only if $I_s \subset I_t$ for all $s, t \in J$. Then an $IFSA = (\alpha_A, \beta_A)$ in X defined by

$$\alpha_A(x) = \sup\{t \in J \mid x \in I_t\}, \beta_A(x) = \inf\{t \in J \mid x \in I_t\}$$

for all $x \in X$ is an $IFA\mathcal{I}$ -ideal of X.

Proof According to Theorem 2.11, it is sufficient to show that $U(\alpha_A; t)$ and $L(\beta_A; s)$ are $A\mathcal{I}$ -ideals of X for every $t \in [0, \alpha_A(0)]$ and $s \in [\beta_A(0), 1]$. In order to prove that $U(\alpha_A; t)$ is an $A\mathcal{I}$ -ideal of X, we divide the proof into the following two cases:

(i) $t = \sup\{q \in J \mid q < t\}$

(ii) $t \neq \sup\{q \in J \mid q < t\}$

For the case (i) imply that

$$x \in U(\alpha_A; t) \Leftrightarrow x \in I_q, q < t \Leftrightarrow x \in \bigcap_{q < t} I_q$$

and that $U(\alpha_A;t) = \bigcap_{q < t} I_q$, which is an $A\mathcal{I}$ -ideal of X. For the case (ii), we claim that $U(\alpha_A;t) = \bigcup_{q \geq t} I_q$. If $x \in \bigcup_{q \geq t} I_q$, then $x \in I_q$ for some $q \geq t$, It follows that $\alpha_A(x) \geq q \geq t$, so that $x \in U(\alpha_A;t)$. This shows that $\bigcup_{q \geq t} I_q \subseteq U(\alpha_A;t)$. Now assume that $x \notin \bigcup_{q \geq t} I_q$, Then $x \notin I_q$ for all $q \geq t$, Since $t \neq \{q \in J \mid q < t\}$, there exists $\varepsilon > 0$ such that $(t - \varepsilon, t) \cap J = \emptyset$. Hence $x \notin I_q$ for all $q > t - \varepsilon$, which means that $x \in I_q$, then $q \leq t - \varepsilon$. Thus $\alpha_A(x) \leq t - \varepsilon < t$, and so $x \notin U(\alpha_A;t)$. Therefore $U(\alpha_A;t) \subseteq \bigcup_{q \geq t} I_q$, and thus $U(\alpha_A;t) = \bigcup_{q \geq t} I_q$, which is an $A\mathcal{I}$ -ideal of X. Next we prove that $L(\beta_A;s)$ is $A\mathcal{I}$ -ideal of X. We consider the following two cases:

(iii)
$$s = \inf\{r \in J \mid s < r\}$$
 (iv) $s \neq \inf\{r \in J \mid s < r\}$

For the case (iii), we have

$$x \in L(\beta_A; s) \Leftrightarrow x \in I_r, \forall s < r \Leftrightarrow x \in \bigcap_{s < r} I_r$$

and hence $L(\beta_A; s) = \bigcap_{s < r} I_r$ which is an $A\mathcal{I}$ -ideal of X. For the case (iv), there exists $\varepsilon > 0$ such that $(s, s + \varepsilon) \bigcap J = \varnothing$. We will show that $L(\beta_A; s) = \bigcup_{s \ge r} I_r$. If $x \in \bigcup_{s \ge r} I_r$, then $x \in I_r$ for some $r \le s$. It follows that $\beta_A(x) \le r \le s$, so that $x \in L(\beta_A; s)$. Hence $\bigcup_{s \ge r} I_r \subseteq L(\beta_A; s)$. Now if $x \notin \bigcup_{s \ge r} I_r$, then $x \notin I_r$ for all $r \le s$, which implies that $x \in I_r$ for all $r < s + \varepsilon$, that is, if $x \in I_r$, then $r \ge s + \varepsilon$. Thus $\beta_A(x) \ge s + \varepsilon > s$, that is, $x \notin L(\beta_A; s)$. Therefore $L(\beta_A; s) \subseteq \bigcup_{s \ge r} I_r$ and consequently $L(\beta_A; s) = \bigcup_{s \ge r} I_r$ which is an $A\mathcal{I}$ -ideal of X. This completes the proof.

3. On homomorphism of IS-algebras

Definition 3.1 A mapping $f: X \to Y$ of IS-algebras is called a homomorphism if

- (i) f(x * y) = f(x) * f(y) for all $x, y \in I(X)$
- (ii) $f(x \cdot y) = f(x) \cdot f(y)$ for all $x, y \in S(X)$

For any $IFSA=(\alpha_A,\beta_A)$ in Y. We define a new $IFSAf=(\alpha_A^f,\beta_A^f)$ in X by

$$\alpha_A^f(x) = \alpha_A(f(x)), \beta_A^f(x) = \beta_A(f(x)), \quad \forall x \in X$$

Theorem 3.2 Let $f: X \to Y$ be a homomorphism of IS-algebras. If $IFSA = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of Y, then $IFSA^f = (\alpha_A^f, \beta_A^f)$ in X is an $IFA\mathcal{I}$ -ideal of X.

Proof Suppose $IFSA=(\alpha_A,\beta_A)$ is an $IFA\mathcal{I}$ -ideal of Y, then $\alpha_A^f(x\cdot y)=\alpha_A(f(x\cdot y))=\alpha_A(f(x)\cdot f(y))\geq \alpha_A(f(y))=\alpha_A^f(y)$ and $\beta_A^f(x\cdot y)=\beta_A(f(x\cdot y))=\beta_A(f(x)\cdot f(y))\leq \beta_A(f(y))=\beta_A^f(y)$. Now let $x,y,z\in X$, then $\alpha_A^f(x)=\alpha_A(f(x))\geq \alpha_A((f(x)*f(y))*f(z))\wedge \alpha_A(f(y)*f(z))=\alpha_A(f((x*y)*z))\wedge \alpha_A(f(y*z))=\alpha_A^f((x*y)*z)\wedge \alpha_A^f(y*z)$ and $\beta_A^f(x)=\beta_A(f(x))\leq \beta_A((f(x)*f(y))*f(z))\vee \beta_A(f(y)*f(z))=\beta_A(f((x*y)*z))\vee \beta_A(f(y*z))=\beta_A^f((x*y)*z)\vee \beta_A^f(y*z)$. Hence $IFSA^f=(\alpha_A^f,\beta_A^f)$ is an $IFA\mathcal{I}$ -ideal of X.

If we strengthen the condition of f, then we can construct the converse of Theorem 3.2 as follows:

Theorem 3.3 Let $f: X \to Y$ be an epimorphism of IS-algebras and let $IFSA = (\alpha_A, \beta_A)$ be an IFS in Y. If $IFSA^f = (\alpha_A^f, \beta_A^f)$ is an $IFA\mathcal{I}$ -ideal of X, then $IFSA = (\alpha_A, \beta_A)$ is an $IFA\mathcal{I}$ -ideal of Y.

Proof For any $x, y \in Y$, there exist $a, b \in X$ such that f(a) = x and f(b) = y. Then $\alpha_A(x \cdot y) = \alpha_A(f(a) \cdot f(b)) = \alpha_A(f(a \cdot b)) = \alpha_A^f(a \cdot b) \geq \alpha_A^f(b) = \alpha_A(f(b)) = \alpha_A(y)$. Now let $x, y, z \in Y$, then f(a) = x, f(b) = y and f(c) = z for some $a, b, c \in X$. It follows that $\alpha_A(x) = \alpha_A(f(a)) = \alpha_A^f(a) \geq \alpha_A^f((a * b) * c) \wedge \alpha_A^f(b * c) = \alpha_A(f((a * b) * c)) \wedge \alpha_A(f(b * c)) = \alpha_A((f(a) * f(b)) * f(c)) \wedge \alpha_A(f(b) * f(c)) = \alpha_A((x * y) * z) \wedge \alpha_A(y * z)$ and $\beta_A(x) = \beta_A(f(a)) = \beta_A^f(a) \leq \beta_A^f((a * b) * c) \vee \beta_A^f(b * c) = \beta_A(f((a * b) * c)) \vee \beta_A(f(b * c)) = \beta_A((f(a) * f(b)) * f(c)) \vee \beta_A(f(b) * f(c)) = \beta_A((x * y) * z) \vee \beta_A(y * z)$. This completes the proof.

References

- [1] Y.B. Jun, S.M. Hong, and E.H. Roh, BCI-semigroups, Honam Math. J. 15(1993), no. 1, 59-64.
- [2] Y.B. Jun and E.H. Roh, Fuzzy p & \mathcal{I} -ideals in IS-algebras, J.Fuzzy Math.7(1999), no. 2, 473-480.
- [3] Y.B. Jun, X.L. Xin, and E.H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24(1998), no.4, 309-321.
- [4] E.H. Roh, Y.B. Jun, and W.H. Shim, Fuzzy associative \mathcal{I} -ideals of IS-algebras, Internat J. Math. & Math. Sci. 24 (2000), no.11, 729-735.
- [5] Y.B. Jun and K.H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Internet J. Math.& Math. Sci 24(2000), no. 12. 839 -849.
- [6] E.H. Roh, Y.B. Jun, and W.H. Shim, Some ideals in IS-algebras, Sci. Math. 2(1999), no.3,315-320.
- [7] Y.B. Jun, E.H. Roh. and X. L. Xin, *I*-ideals generated by a set in *IS*-algebras, Bull. Korean Math. Soc. 35(1998), no.4, 615-624.
- [8] Y. B. Jun, S. S. Ahn, J. Y. Kim and H. S. Kim, Fuzzy \mathcal{I} -ideals in BCI-semigroups, Southeast Asian Bull. Math. 22(1998), no. 2. 147-153.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P.R. China

E-mail: zhanjianming@hotmail.com