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Abstract. Let R be a Dubrovin valuation ring. It is shown that R is fully bounded
iff for any prime ideal P of R which is different from the Jacobson radical of R, P is
Goldie prime and either it is lower limit or there is a Goldie prime ideal P1 such that
the prime segment P1 ⊃ P is Archimedean.

1. Introduction. A ring is called right bounded if any essential right ideal contains a
non-zero (two-sided) ideal. Similarly, we can define a left bounded ring. A ring is just called
bounded if it is both right bounded and left bounded.
Let S be a ring. We say that S is fully bounded if S/P is bounded for any prime ideal P of
S. We write J(S) for the Jacobson radical of S and Spec(S) for the set of all prime ideals
of S.

Let R be a Dubrovin valuation ring of a simple Artinian ring Q (see [7, chap. II] for the
definition and elementary properties of Dubrovin valuation rings). A prime ideal P of R is
called Goldie prime if R/P is a prime Goldie ring.

We denote by G-Spec(R) the set of all Goldie prime ideals of R. Now let P1, P ∈
G-Spec(R) with P1 ⊃ P . The pair P1 ⊃ P is called a prime segment if there are no Goldie
primes properly between P1 and P .

Let P ∈ G-Spec(R) with P �= J(R) and set P1 = ∩ {Pλ | Pλ ∈ G-Spec(R) with Pλ ⊃ P
}. Then, in [2], they have shown that the following four cases only occur:
(1) P is lower limit, i.e., P = P1. Otherwise, P1 ⊃ P is a prime segment.
(2) P1 ⊃ P is Archimedean ([1, Theorem 6(a)]).
(3) P1 ⊃ P is simple ([1, Theorem 6(b)]).
(4) P1 ⊃ P is exceptional, i.e., there exists a non-Goldie prime ideal C such that P1 ⊃ C ⊃ P
([1, Theorem 6(c)]).

With this classification, we shall prove that R is fully bounded iff (1) and (2) only hold
(Theorem 2.5). (Note that R/J(R) is bounded, because it is a simple Artinian ring). For
any regular element c in J(R), we define P (c) = ∩{Pλ | Pλ ∈ G-Spec(R) with c ∈ Pλ}, a
Goldie prime ideal ([1, Proposition 1]). R is called locally invariant if cP (c) = P (c)c for
any regular element c in J(R). This concept was defined by Gräter [5] in order to study the
approximation theorem in the case where R is a total valuation ring. We shall show that
R is fully bounded if and only if it is locally invariant, by using Theorem 2.5 (Proposition
2.6).

If Q is of finite dimensional over its center, then R is always fully bounded. In the end
of the paper, we shall give several examples of fully bounded Dubrovin valuation rings of Q
with infinite dimension over the center.
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2. Fully bounded Dubrovin valuation rings.

Throughout this section, R will denote a Dubrovin valuation ring of a simple Artinian
ring Q. For any P ∈ Spec (R), set C(P ) = {c ∈ R | c is regular mod P }. If P ∈G-
Spec(R), then C(P ) is localizable and we denote by RP the localization of R at P . Before
starting the lemmas, we note the following: There is a one-to-one correspondence between
G-Spec(R) and the set of all overrings of R, which is given by P −→ RP with P = J(RP )
and S −→ J(S) (P ∈ G-Spec(R) and S is an overring of R). Furthermore, for any P , P1 ∈
G-Spec(R), P ⊃ P1 iff RP ⊂ RP1 ([7, §6] and [1, §2]). We will freely use these properties
throughout the paper.

Lemma 2.1. Let S be an order in Q and A be an S-ideal such that Or(A) = T = Ol(A),
where Or(A) = {q ∈ Q | Aq � A } and Ol(A) = {g ∈ Q | gA � A }. Suppose that A = aT
for some a ∈ A. Then A = Ta.

Proof. T = Ol(A) = aTa−1 implies A = Ta.

Lemma 2.2. Let R be a Dubrovin valuation ring of Q and P ∈ G-Spec(R). Suppose that
P is lower limit, i.e., P = ∩ {Pλ | Pλ ∈ G-Spec(R) with Pλ ⊃ P }. Then RP = ∪ RPλ

and C(P ) = ∪ C(Pλ).

Proof. Since Pλ ⊃ P , it follows that RP ⊃ RPλ
so that RP � S = ∪ RPλ

. Suppose that
RP ⊃ S. Then for any Pλ, Pλ = J(RPλ

) � J(S) ⊃ J(RP ) = P implies P = ∩ Pλ � J(S)
⊃ P , a contradiction. Hence RP = ∪ RPλ

and so C(P ) = ∪ C(Pλ) follows.

Lemma 2.3. Let R be a Dubrovin valuation ring of Q and P ∈ G-Spec(R). Then
(1) Spec(RP ) = {P1 | P1 ∈ Spec(R) with P � P1 }.
(2) Let P1 and P2 be in Spec(R) with P � P1 ⊃ P2. Then P1 ⊃ P2 is a prime segment of
R if and only if it is a prime segment of RP .

Proof. (1) Let P1 ∈ Spec(RP ).
Case 1. If P1 is Goldie prime, then (RP )P1 is an overring of RP (and so of R) with J((RP )P1)
= P1, i.e., P1 ∈ Spec(R) and P = J(RP ) � P1.
Case 2. If P1 is non-Goldie prime, then we can construct an exceptional prime segment of
RP , say, P2 ⊃ P1 ⊃ P0 by [1, Theorem 6]. By case 1, P � P2 and P2, P0 ∈ G-Spec(R).
It easily follows from note before Lemma 2.1 that there are no Goldie primes properly
between P2 and P0, which implies P2 ⊃ P0 is a prime segment of R. As in [1], let K(P2)
= {a ∈ P2 | P2aP2 ⊂ P2 }. Then K(P2) = P1 by [1, Corollary 7] and so P2 ⊃ P0 is an
exceptional prime segment of R with K(P2) = P1, i.e., P1 is non-Goldie prime of R with
P ⊃ P1. Conversely, let P1 ∈ Spec(R) with P � P1. Then from note before Lemma 2.1
and the method we have just done, we can easily see that P1 ∈ Spec(RP ) and that P1 ∈
G-Spec(R) iff P1 ∈ G-Spec(RP ).
(2) This is clear from (1).

Lemma 2.4. Let R be a Dubrovin valuation ring of Q and P1 ⊃ P be an Archimedean
prime segment. Then for any c ∈ P1\P , the following hold:
(1) RP1cRP1 = aRP1 = RP1a for some a ∈ P1.
(2) If c is a regular element, then cRP1 = RP1c and cP1 = P1c.
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Proof. Firstly note that P1 ⊃ P is an Archimedean prime segment of RP1 by Lemma 2.3
and [1, Corollary 7].
(1) Let R̃P1 = RP1/P , a Dubrovin valuation ring of RP = RP /P (see [7, (6.6)]) such that
J(R̃P1) = P̃1 = P1/P and P̃1 ⊃ (0̃) is Archimedean. Here for any a ∈ RP1 we write ã for
the image of a in R̃P1 . If P̃1 = P̃ 2

1 , then 0̃ �= R̃P1 c̃R̃P1 = ãR̃P1 = R̃P1 ã for some a ∈ P1

by [2, (2.1)]. If P̃1 ⊃ P̃ 2
1 , then R̃P1 is a Noetherian Dubrovin valuation ring and so any

ideal of R̃P1 is power of P̃1. Thus R̃P1 c̃R̃P1 = ãR̃P1 = R̃P1 ã for some a ∈ P1, because P̃1

is principal. Hence, in both cases, RP1cRP1 + P = aRP1 + P = RP1a + P . However, since
ã ∈ CR̃P1

(0̃) = {b̃ ∈ R̃P1 | b̃ is regular in R̃P1 }, it follows that a ∈ CRP1
(P ) and so a is

a regular element by [7, (22.6)]. Thus we have aRP1a
−1 � aRP a−1 = RP . It follows that

aRP1 and P are both left aRP1a
−1 and right RP1 -ideals. Hence aRP1 ⊃ P by [7, (6.4)]

and similarly RP1a ⊃ P . Since RP1cRP1 and P are both ideals of RP1 , it follows that
RP1cRP1 ⊃ P. Therefore RP1cRP1 = aRP1 = RP1a follows.
(2) By (1), P1 � RP1cRP1 = RP1a = aRP1 for some a ∈ P1. Suppose that cRP1 ⊂ RP1cRP1 .
Then, by [7, (6.3)], there is a b ∈ RP1cRP1 such that cRP1 � bP1 � aP1, because Ql(cRP1) =
cRP1c

−1 and P1 = J(RP1). So RP1a
−1cRP1 � P1. On the other hand, RP1cRP1 = aRP1

implies that RP1a
−1cRP1 = RP1 , a contradiction. Hence, cRP1 = RP1cRP1 and similarly

RP1c = RP1cRP1 so that cRP1 = RP1c. Since cRP1c
−1 = RP1 and J(RP1) = P1, we have

cP1c
−1 = P1 and so cP1 = P1c.

We are now ready to prove the main result of the paper.

Theorem 2.5. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then R
is fully bounded if and only if for any P ∈ Spec(R), P �= J(R), the following hold:
(1) P ∈ G-Spec(R).
(2) P is either lower limit or there is a P1 ∈ Spec(R) such that P1 ⊃ P is an Archimedean
prime segment.

Proof. Suppose that R is fully bounded.
(1) Assume that there is a non-Goldie prime ideal C. Then we have an exceptional prime
segment, say, P1 ⊃ C ⊃ P2 by [1, Theorem 6]. R is an n-chain ring by [7, (5.11)] and so is
R = R/C. This implies that R has a finite Goldie dimension, say, m(� n). Thus there are
non-zero uniform right ideals Ui of R such that U1⊕ . . .⊕Um is an essential right ideal of R.
Since R is a prime ring, Ui ∩ P1 � Ui P1 �= 0 and so there are non-zero ui ∈ Ui ∩ P1, where
ui ∈ P1. Set I = u1R + . . . + umR. Then I = aR for some a ∈ I, because R is Bezout (cf.
[7, (5.11)] and I = u1R ⊕ . . . ⊕ umR = aR is an essential right ideal of R. We claim that
P1 ⊃ I. On the contrary, suppose that P1 = I, i.e., P1 = aR + C. Note that Ol(C) = RP1

= Or(C) by [2, (2.2)] so that C is an ideal of RP1 . If C is a principal right ideal of RP1 ,
say, C = cRP1 for some c ∈ C, then P1 = aRP1 + cRP1 = bRP1 for some b ∈ P1. It follows
from Lemma 2.1 that P1 = bRP1 = RP1b and so P1 ⊃ P 2

1 ⊃ C, which contradicts to the
fact that there are no ideals properly between P1 and C (cf. [1, Theorem 6]). If C is not
a principal right ideal of RP1 , then CP1 = C by [7, (6.9)] and so P1 = P 2

1 = aP1 + CP1

= aP1 + C. Thus we have a = ap + d for some p ∈ P1 and d ∈ C and a(1 − p) = d ∈ C.
It follows that a ∈ C, because 1 − p is a unit of RP1 , which shows I = 0, a contradiction.
We have shown that P1 ⊃ I and I is an essential right ideal of R. Hence R is not bounded,
because there are no ideals properly between P1 and C. Therefore, any prime ideal of R is
Goldie prime.
(2) Let P ∈ G-Spec(R) and suppose that P is not lower limit. Then there is a P1 ∈ G-
Spec(R) such that P1 ⊃ P is a prime segment, which is not exceptional by (1). Suppose
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that this is simple. For any c ∈ P1 ∩ C(P ), it follows that cP1 is an essential right ideal
of R = R/P , which is a Dubrovin valuation ring of RP /P (cf. [7, (5.12)]). Suppose that
cP1 = P1, i.e., cP1 + P = P1. Since cP1 and P are both left cRP1c

−1 and right RP1-ideals
(note cRP1c

−1 � cRP c−1 = RP ), we have either cP1 ⊃ P or cP1 � P by [7, (6.4)]. The
latter case is impossible and so cP1 ⊃ P . Thus cP1 = P1 and c−1 ∈ Ol(P1) = RP1 follows.
This is a contradiction, because c ∈ P1. Hence we have shown that P1 ⊃ cP1 and cP1 is
an essential right ideal. Therefore, R is not bounded, because there are no ideals properly
between P1 and (0). Hence either P is lower limit or there is a P1 ∈ G-Spec(R) such that
P1 ⊃ P is an Archimedean prime segment.

Conversely, suppose that the conditions (1) and (2) hold and let P ∈ Spec(R). Then
P is Goldie prime by (1). Firstly, assume that P is lower prime, i.e., P = ∩{Pλ | Pλ ∈
G-Spec(R) with Pλ ⊃ P}. Then C(P ) = ∪ C(Pλ) by Lemma 2.2. So, for any c ∈ C(P ),
we have c ∈ C(Pλ) for some λ. Then cR ⊃ Pλ, because cR and Pλ are both left cRc−1 and
right R-ideals. Hence cR ⊃ Pλ �= 0 in R = R/P , showing that R is bounded. Secondly,
suppose that the prime segment P1 ⊃ P is Archimedean and let c ∈ C(P ). Then, as before,
cP1 is an essential right ideal of R = R/P and so cP1 ∩ C(P ) �= ∅. Let d ∈ cP1 ∩ C(P ).
Then, by Lemma 2.4 (2) and [7,(22.7)], cR � cP1 � dRP1 = RP1d and dRP1 ⊃ P follows.
Therefore, R = R/P is bounded and hence R is fully bounded.

As an application of Theorem 2.5, we have the following:

Proposition 2.6. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then
R is locally invariant if and only if it is fully bounded .

Proof. Suppose that R is locally invariant. In order to prove that it is fully bounded, on
the contrary, assume that R is not fully bounded. Then there are prime ideals P , P1 such
that either the prime segment P1 ⊃ P is simple or P1 ∈ G-Spec(R), P is a non-Goldie
prime ideal and there are no ideals properly between P1 and P . In either case, we shall
prove that there is a regular element c ∈ P1 \ P . Let c1 be any element in P1 \ P . If c1R is
an essential right ideal. Then c = c1 is regular. If c1R is not an essential right ideal, then
there is a right ideal I such that cR ⊕ I is essential. So it follows from Goldie’s theorem
that (cR ⊕ I)P1 is also an essential right ideal which is contained in P1 but not in P . So
there is a regular element c ∈ (c1R ⊕ I)P1 but not in P by [8, (3.3.7), Corollary]. Now let
c ∈ P1 \ P such that c is regular. Then cP1 = P1c, because P1 = P (c). Since P1 � cP1 =
P1c ⊃ P , we have cP1 = P1, which implies c−1 ∈ Ol(P1) = RP1 . Hence RP1 = cRP1 � P1,
a contradiction. Therefore, R is fully bounded.

Suppose that R is fully bounded. Let c ∈ J(R) such that c is regular. By the assumption
and Theorem 2.5, P (c) = ∩ {Pλ | Pλ ∈ Spec(R) such that Pλ 
 c }, which is Goldie prime
by [1, Proposition 1]. Suppose that P (c) is upper limit, i.e., P (c) = ∪ {Pµ | Pµ ∈ G-Spec(R)
with Pµ ⊂ P (c) }. Then there is a Pµ with Pµ 
 c. This contradicts the choice of P (c).
Hence P (c) ⊃ P = ∪ {Pµ | P (c) ⊃ Pµ } is a prime segment which must be Archimedean
by Theorem 2.5. Since c ∈ P (c)\P and c is regular, we have cP (c) = P (c)c by Lemma 2.4.
Hence R is locally invariant.

We say that R is invariant if cRc−1 = R for any regular element c in R and that it is of
rank n if there are exactly n Goldie prime ideals. From Lemma 2.4, we have

Proposition 2.7. Suppose that R is Archimedean and is of rank one. Then it is invariant.
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Proof. Let c be any regular element and let c1 be any regular element in J(R). Then
we have cRc−1 = cc1R(cc1)

−1 = R by Lemma 2.4, because c1, cc1 ∈ J(R).

We will give sevaral examples of fully bounded Dubrovin valuation rings.

Example 2.8. Any Dubrovin valuation ring of a simple Artinian ring with finite dimension
over its center is fully bounded.

Example 2.9. Any invariant valuation ring of a division ring is fully bounded (see [9,
Remarks to examples 2.1 and 2.4] for invariant valuation rings of division rings with infinite
dimensions over the centers).

In order to give more general examples, we recall the skew polynomial ring Q[x, σ] over
Q in an indeterminate x, where σ ∈Aut(Q). Since Q[x, σ] is a principal ideal ring, the
maximal ideal P = xQ[x, σ] is localizable, i.e., T = Q[x, σ]P = {f (x)c(x)−1 | f(x) ∈ Q[x, σ]
and c(x) ∈ C(P ) }, the localization of Q[x, σ] at P , is a Notherian Dubrovin valuation
ring with J(T ) = xT . Since Q is a simple Artinian ring, C(P ) = {c(x) ∈ Q[x, σ] | c(x) =
c0 + c1x + . . . + cnxn such that c0 is a unit in Q}. For any t = f(x)c(x)−1 ∈ T , where f(x)
= f0 + f1x + . . . + flx

l and c(x) = c0 + c1x + . . . + cnxn, the map ϕ: T −→ Q defined by
ϕ(t) = f0c

−1
0 is an ring epimorphism. Now let R be a Dubrovin valuation ring of Q. Then,

by [9, (1.6)], R̃ = ϕ−1(R), the complete inverse image of R by ϕ, is a Dubrovin valuation
ring of Q(x, σ) (Q(x, σ) stands for the quotient ring of Q[x, σ]). Furthermore, let P =
pR̃ (p ∈ Spec(R)). Then P ∈Spec(R̃) and R̃/P ∼= R/p by [9, (1.6)] and its proof. Thus it
follows from [9, (1.6)] that R̃ is fully bounded iff R is fully bounded. Hence we have

Example 2.10. With notation above, suppose that R is a fully bounded Dubrovin valua-
tion ring of Q and that σ is of infinite order ([9, Examples 2.1 ∼ 2.6, 2.7 and 2.8]). Then R̃
is a fully bounded Dubrovin valuation ring of Q(x, σ) and Q(x, σ) is of infinite dimensional
over the center.

Finally, we give a few remarks on non-fully bounded total valuation rings: An example
of a total valuation ring with a simple segment was first constructed by Mathiak ([6]). See
[3] for other examples of total valuation rings with simple segments. Dubrovin constructed
an example of a total valuation ring with an exceptional prime segment ([4]).
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