ON PROPERTIES OF SOLUTIONS ANNIHILATED BY A COMPLEX VECTOR FIELD IN \mathbb{R}^{2}

Haruki NINOMIYA
Department of mathematics, Osaka Institute of Technology

Received December 20, 2001

Abstract

Let X be a nowhere-zero C^{∞} complex vector field defined near the origin in \mathbb{R}^{2}. We may suppose that X has the form of $\frac{\partial}{\partial t}+\operatorname{ir}(t, x) \frac{\partial}{\partial x}$, where $r(t, x)$ is a real-valued C^{∞} function. Up to now the investigations on local integrability for vector fields X satisfying $r(0, x)=0$ have been focused. This paper treats the vector field X of the form of $$
\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}
$$ where d is a positive integer and $a(x)$ a real-valued C^{∞} function satisfying $a(0)=0$. Under certain assumptions on $a(x)$, the following properties are shown:

Property A. Every C^{1} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies that $u(0, x)$ is constant is identically constant.

Property B. Every C^{2} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies $u(t, x)-u(-t, x)=o\left(t^{2}\right)(t \rightarrow 0)$ is identically constant.

1. Introduction

Let X be a nowhere-zero C^{∞} complex vector field defined near the origin in \mathbb{R}^{2}. It is said that X is locally integrable at the origin if there exist a neighborhood ω of the origin and function u satisfying $X u=0$ in ω such that $d u \neq 0$. We may suppose that X has the form of $\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}$, where $r(t, x)$ is a real-valued C^{∞} function. X is locally integrable at the origin if $r(t, x) \geqq 0$ in a neighborhood of the origin. There are several studies on local integrability for non-solvable vector fields $X([3],[4],[5],[7],[8],[9],[10], \cdots)$.

On the other-hand, Nirenberg [6](see also [2]) gave an example of X of the form of

$$
\frac{\partial}{\partial t}+i t\left(1+t \rho\left(t^{2}, x\right)\right) \frac{\partial}{\partial x}
$$

such that the $X u=0$ admits only constant solutions in any neighborhood of the origin, where $\rho(t, x)$ is a real-valued C^{∞} function satisfying some conditions. (Incidentally, L.Hölmander[1] gave an example of X (satisfying $r(0, x)=0)$ such that the $X u=0$ admits a C^{∞} solution in a neighborhood ω_{0} of the origin which vanishes for $t \leqq 0$ with the $\left.\operatorname{supp} u=\{(t, x) ; t \geqq 0\} \cap \omega_{0}.\right)$

Key Words and Phrases.Local integrability, complex vector field, non-solvable operator.

Up to now the investigations on local integrability for vector fields X satisfying $r(0, x)=0$ have been focused. In this paper we present an operator X of the form of

$$
\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}
$$

which has the following properties:
Property A. Every C^{1} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies that $u(0, x)$ is constant is identically constant.

Property B. Every C^{2} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies $u(t, x)-u(-t, x)=o\left(t^{2}\right)(t \rightarrow 0)$ is identically constant.

2. Theorems

Let c_{n} and d_{n} be real constants satisfying

$$
0<d_{n+1}<c_{n}<d_{n}<1(n=1,2, \cdots), \lim _{n \rightarrow \infty} d_{n}=0
$$

or

$$
-1<c_{n}<d_{n}<c_{n+1}<0(n=1,2, \cdots), \lim _{n \rightarrow \infty} c_{n}=0
$$

We assume:
(a.1) $a(x) \in C^{\infty}((-1,1))$.
(a.2) $a(x) \equiv 0$ in $\left[c_{n}, d_{n}\right](n=1,2, \cdots)$ and $a(x)>0$ in $(-1,1) \backslash \cup_{n=1}^{\infty}\left[c_{n}, d_{n}\right]$.
(a.3) d is a positive integer.

Then we obtain the following:
Theorem A. Let X be $\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}$. Then every C^{1} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies that $u(0, x)$ is constant is identically constant.

Theorem B. Let X be $\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}$. Then every C^{2} solution u of the equation $X u=0$ in a neighborhood of the origin which satisfies $u(t, x)-u(-t, x)=o\left(t^{2}\right)(t \rightarrow 0)$ is identically constant.

Remark 1. Whatever a positive integer d, the vector field $X \equiv \frac{\partial}{\partial t}+i t^{d} \frac{\partial}{\partial x}$ has the property such as stated in Theorem A but does not have the one such as stated in Theorem B:
$u \equiv \frac{t^{d+1}}{d+1}+i x$ is a non-constant solution of $X u=0$ which satisfies $u(t, x)-u(-t, x)=$ $o\left(t^{2}\right)(t \rightarrow 0)$.

Remark 2. Whatever an even number d, we know that the equation $X u=\frac{\partial u}{\partial t}+i\left(t^{d}+\right.$ $a(x)) \frac{\partial u}{\partial x}=0$ has a smooth solution u in a neighborhood of the origin such that $u_{x} \neq$ 0 . So, there exists a non-constant solution u annihilated by X which does not satisfy $u(t, x)-u(-t, x)=o\left(t^{2}\right)(t \rightarrow 0)$.

3. Proof

Proof of Theorem A. Suppose the contrary. Then we may suppose that $X u=0$ has a C^{1} solution u in a neighborhood of the origin ω such that $\frac{\partial u}{\partial x} \not \equiv 0$. Noting that the operator $X=\frac{\partial}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial}{\partial x}$ is elliptic in $\left\{(t, x) ; t^{d}+a(x) \neq 0\right\}$, we find that $u \in$ $C^{\infty}\left(\omega \cap\left\{(t, x) ; t^{d}+a(x) \neq 0\right\}\right)$.

Differentiating the $X u=0$ with respect to x and setting $v=u_{x}$, we obtain

$$
\frac{\partial v}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial v}{\partial x}+i a^{\prime}(x) v=0 \quad \text { in } \quad \omega \cap\left\{(t, x) ; t^{d}+a(x) \neq 0\right\}
$$

Taking a sufficiently large integer n such that $\left[c_{n}, d_{n}\right] \subset \omega \cap\{(t, x): t=0\}$, we have

$$
\left(\frac{\partial}{\partial t}+i t^{d} \frac{\partial}{\partial x}\right) v=0
$$

in $\omega \cap(-\infty, \infty) \times\left[c_{n}, d_{n}\right] \cap\{(t, x) ; t \neq 0\}$.
Since $v(0, x)=u_{x}(0, x)=0$ in $\left[c_{n}, d_{n}\right]$, at first, we find that v must vanish identically in $\omega \cap(-\infty, \infty) \times\left[c_{n}, d_{n}\right]$.

On the other hand, we may suppose that there exists a point $\mathrm{P}_{0} \in \omega \cap\left\{(t, x) ; t^{d}+a(x) \neq\right.$ $0\}$ such that $v\left(\mathrm{P}_{0}\right) \neq 0$. We take a simply connected domain $D \subset \omega$ with a smooth rectifiable boundary such that D does not intersect with $\left\{(t, x) ; t^{d}+a(x) \neq 0\right\}, \mathrm{P}_{0} \in D$, and $D \cap(-\infty, \infty) \times\left(c_{n}, d_{n}\right) \neq \emptyset$.

Since X is elliptic in D, we find that there exists a smooth function Z such that $d Z \neq 0$ satisfying $X Z=0$ in D. Then $X=X \bar{Z} \frac{\partial}{\partial \bar{Z}}$. We also find that there exists a smooth solution w satisfying $\frac{\partial w}{\partial \bar{Z}}=\frac{i a^{\prime}(x)}{X \bar{Z}}$ in D. Thus we see that $\frac{\partial(v \exp w)}{\partial \bar{Z}}=0$ holds in D. Therefore, from $v=0$ in $\omega \cap(-\infty, \infty) \times\left[c_{n}, d_{n}\right]$, we can conclude that v vanishes identically in D, which contradicts $v\left(\mathrm{P}_{0}\right) \neq 0$.
Proof of Theorem B. Suppose the contrary. Then we may suppose that the $X u=0$ has a C^{2} solution u in a neighborhood of the origin ω such that $\frac{\partial u}{\partial x} \not \equiv 0$. Differentiating the $X u=0$ with respect to x and setting $v=u_{x}$, we have

$$
\begin{equation*}
\frac{\partial v}{\partial t}+i\left(t^{d}+a(x)\right) \frac{\partial v}{\partial x}+i a^{\prime}(x) v=0 \quad \text { in } \quad \omega \tag{1}
\end{equation*}
$$

By taking the odd part of equation $X u=0$ with respect to t,

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+i t^{d} \frac{\partial}{\partial x}\right) u^{o}=-i a(x) u_{x}^{e} \tag{2}
\end{equation*}
$$

where u^{o} denotes the odd part of u with respect to t and u^{e} the even one. Taking a sufficiently large integer N such that $\left[c_{n}, d_{n}\right] \subset \omega \cap\{(t, x): t=0\}$ for every $n>N$, we see the following

Lemma 1.

$$
u_{x}^{e}(0, x) \not \equiv 0 \quad \text { in } \quad\left[c_{n}, d_{n}\right]
$$

for every $n>N$.
Proof. Suppose that exists a positive integer $m>N$ such that

$$
u_{x}^{e}(0, x) \equiv 0 \quad \text { in } \quad\left[c_{m}, d_{m}\right] .
$$

From (1), we have

$$
\left(\frac{\partial}{\partial t}+i t^{d} \frac{\partial}{\partial x}\right) v=0
$$

in $\omega \cap(-\infty, \infty) \times\left[c_{m}, d_{m}\right]$.
Since $v(0, x)=u_{x}(0, x)=u_{x}^{e}(0, x)=0$ in $\left[c_{m}, d_{m}\right]$, we find that v must vanish identically in $\omega \cap(-\infty, \infty) \times\left[c_{m}, d_{m}\right]$ and hence we can conclude that v vanishes identically in ω, by making use of the same method such as used in Theorem A. This yields a contradiction.

From now on we take n such that $n>N$ and fix it. By Lemma 1, there exist real constants $a_{n}^{\prime}, b_{n}^{\prime}\left(a_{n}^{\prime}<0<b_{n}^{\prime}\right), c_{n}^{\prime}, d_{n}^{\prime}\left(c_{n} \leqq c_{n}^{\prime}<d_{n}^{\prime} \leqq d_{n}\right)$ such that $\Re u_{x}^{e}(t, x) \neq 0$ or $\Im u_{x}^{e}(t, x) \neq 0$ holds in $\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]$. We arbitrarily take positive constants $\varepsilon_{1}, \varepsilon_{2}$ such that $\varepsilon_{1}<\varepsilon_{2}<b_{n}^{\prime}$. We have the following

Lemma 2.

$$
\begin{aligned}
& -i \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) u_{x}^{e} d t d x= \\
& \int_{\varepsilon_{1}}^{\varepsilon_{2}}-i t^{d}\left(u^{o}\left(t, d_{n}^{\prime}\right)-u^{o}\left(t, c_{n}^{\prime}\right)\right) d t+ \\
& \int_{c_{n}^{\prime}}^{d_{n}^{\prime}}\left(u^{o}\left(\varepsilon_{2}, x\right)-u^{o}\left(\varepsilon_{1}, x\right)\right) d x
\end{aligned}
$$

Proof. Setting $v(x, y)=x-\frac{i t^{d+1}}{d+1}$ and making use of (2), we have

$$
\begin{aligned}
& -i \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) u_{x}^{e} d t d x= \\
& -i \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) u_{x}^{e} v_{x} d t d x= \\
& \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]}\left(u_{t}^{o}+i t^{d} u_{x}^{o} B i g r\right) v_{x} d t d x= \\
& \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]}\left(u_{t}^{o} v_{x}-u_{x}^{o} v_{t}\right) d t d x= \\
& \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} d\left(u^{o}(t, x) d v(t, x)\right)= \\
& \oint_{\partial\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} u^{o}(t, x) d v(t, x)= \\
& \oint_{\partial\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} u^{o}(t, x) v_{t}(t, x) d t+u^{o}(t, x) v_{x}(t, x) d x= \\
& \int_{\varepsilon_{1}}^{\varepsilon_{2}}-i t^{d}\left(u^{o}\left(t, d_{n}^{\prime}\right)-u^{o}\left(t, c_{n}^{\prime}\right)\right) d t+\int_{c_{n}^{\prime}}^{d_{n}^{\prime}}\left(u^{o}\left(\varepsilon_{2}, x\right)-u^{o}\left(\varepsilon_{1}, x\right)\right) d x .
\end{aligned}
$$

By this Lemma 3 we obtain the following
Lemma 4. There exist positive constants C_{1}, C_{2}, C_{3} and C_{4} which are independent of ε_{1} and ε_{2} such that

$$
C_{1} \int_{c_{n}^{\prime}}^{d_{n}^{\prime}} a(x) d x \leqq C_{2} \frac{\varepsilon_{2}^{d+3}-\varepsilon_{1}^{d+3}}{\varepsilon_{2}-\varepsilon_{1}}+C_{3}\left(\varepsilon_{1}+\varepsilon_{2}\right)+C_{4} \varepsilon_{1}^{2}
$$

Proof. We see

$$
\begin{gathered}
\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) u_{x}^{e} d t d x\right| \geqq \\
\frac{\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) \Re u_{x}^{e} d t d x\right|+\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) \Im u_{x}^{e} d t d x\right|}{\sqrt{2}} .
\end{gathered}
$$

Now $\Re u_{x}^{e}(t, x) \neq 0$ or $\Im u_{x}^{e}(t, x) \neq 0$ in $\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]$. Hence, when $\Re u_{x}^{e} \neq 0$, we see

$$
\begin{gathered}
\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) \Re u_{x}^{e} d t d x\right|=\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x)\left|\Re u_{x}^{e}\right| d t d x \geqq \\
\min _{\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]}\left|\Re u_{x}^{e}\right| \iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) d t d x= \\
\min _{\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]}\left|\Re u_{x}^{e}\right|\left(\varepsilon_{2}-\varepsilon_{1}\right) \int_{c_{n}^{\prime}}^{d_{n}^{\prime}} a(x) d x,
\end{gathered}
$$

and when $\Im u_{x}^{e} \neq 0$, in the similar way we have

$$
\begin{gathered}
\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) \Im u_{x}^{e} d t d x\right| \geqq \\
\min _{\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]}\left|\Im u_{x}^{e}\right|\left(\varepsilon_{2}-\varepsilon_{1}\right) \int_{c_{n}^{\prime}}^{d_{n}^{\prime}} a(x) d x .
\end{gathered}
$$

Therefore we find that there exists a positive constant C_{1} which is independent of ε_{2} and ε_{1} such that

$$
\left|\iint_{\left[\varepsilon_{1}, \varepsilon_{2}\right] \times\left[c_{n}^{\prime}, d_{n}^{\prime}\right]} a(x) u_{x}^{e} d t d x\right| \geqq C_{1}\left(\varepsilon_{2}-\varepsilon_{1}\right) \int_{c_{n}^{\prime}}^{d_{n}^{\prime}} a(x) d x
$$

Now, by the assumption that $u \in C^{2}$ and $u^{o}=o\left(t^{2}\right)$, we see that the function $\frac{u^{o}(t, x)}{t^{2}} \in$ $C^{0}(\omega)$. Hence we find that there exist positive constants $C_{i}(i=2,3,4)$ which are independent of ε_{2} and ε_{1} such that

$$
\left|\int_{\varepsilon_{1}}^{\varepsilon_{2}}-i t^{d}\left(u^{o}\left(t, d_{n}^{\prime}\right)-u^{o}\left(t, c_{n}^{\prime}\right)\right) d t\right| \leqq C_{2} \int_{\varepsilon_{1}}^{\varepsilon_{2}}(d+3) t^{d+2} d t=C_{2}\left(\varepsilon_{2}^{d+3}-\varepsilon_{1}^{d+3}\right)
$$

and

$$
\left|\int_{c_{n}^{\prime}}^{d_{n}^{\prime}}\left(u^{o}\left(\varepsilon_{2}, x\right)-u^{o}\left(\varepsilon_{1}, x\right)\right) d x\right| \leqq C_{3}\left(\varepsilon_{2}^{2}-\varepsilon_{1}^{2}\right)+C_{4} \varepsilon_{1}^{2}\left(\varepsilon_{2}-\varepsilon_{1}\right)
$$

Lemma 4 is thus obtained, by applying Lemma 3.
Finally, letting $\varepsilon_{2} \rightarrow 0$ in Lemma 4, we get the the contradiction that

$$
0<\int_{c_{n}^{\prime}}^{d_{n}^{\prime}} a(x) d x=0
$$

References

1. L. Hölmander, Linear Partial Differential Operators (p.225), Springer-Verlag, (1969).
2. H. Ninomiya, A note on the Nirenberg example, Funkcialaj Ekvacioj (Serio Internacia) 39(3) (1996), 339-402.
3. H. Ninomiya, A necessary condition of local integrability for a nowhere-zero complex vector field in \mathbb{R}^{2}, Scientiae Mathematicae 2(1) (1999), 1-9.
4. H. Ninomiya, A necessary and sufficient condition of local integrability, J. of Math. of Kyoto Univ. 39(4) (1999), 685-696.
5. H. Ninomiya, On a necessary condition of local integrability for complex vector field in \mathbb{R}^{2}, Scientiae Mathematicae Japonicae 54(2) (2001), 311-322.
6. L. Nirenberg, Lectures on linear partial differential equations, Reg.Conf. Series in Math. 17 A.M.S. (1973).
7. J. Sjöstrand, Note on a paper of F. Treves, Duke Math.J. 47(3) (1981), 601-608.
8. F. Treves, Remarks about certain first-order linear PDE in two variables, Comm. in Partial Differential Equations 15 (1980), 381-425.
9. F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique Centre de Mathématiques (1981).
10. F. Treves, Hypo-analytic structures (p.p.291-297 and 312-351), Princeton Univ. press (1992).

Department of mathematics, Osaka Institute of Technology, 5chome-16-1, Ohmiya Asahiku, Osaka 535, Japan

E-mail address: ninomiya@ge.oit.ac.jp

