FUZZIFICATIONS OF PSEUDO-BCI IDEALS

SUN SHIN AHN, YOUNG BAE JUN, HEE SIK KIM AND MICHIRO KONDO*

Received October 31, 2003

ABSTRACT. The fuzzification of pseudo-BCI ideals is considered, and some of their properties are investigated. Characterizations of pseudo-BCI ideals are provided. Also the homomorphic image and preimage of pseudo-BCI ideals are discussed.

1. INTRODUCTION

Georgescu and Iorgulescu [1] introduced the notion of a pseudo-BCK algebra as an extended notion of BCK-algebras. In [4], Jun, one of the present authors, gave a characterization of pseudo-BCK algebra, and provided conditions for a pseudo-BCK algebra to be \wedge -semi-lattice ordered (resp. \cap -semi-lattice ordered). Jun et al. [7] introduced the notion of (positive implicative) pseudo-ideals in a pseudo-BCK algebra, and then they investigated some of their properties. In [2], Dudek and Jun introduced the notion of pseudo-BCI algebras as an extension of BCI-algebras, and investigated some properties. Jun et al. [5] introduced the concepts of pseudo-atoms, pseudo-BCI ideals and pseudo-BCI homomorphisms in pseudo-BCI algebras. They displaied characterizations of a pseudo-BCI ideal, and provided conditions for a subset to be a pseudo-BCI ideal. They also introduced the notion of a \diamond -medial pseudo-BCI algebra, and gave its characterization. In this paper, we consider the fuzzification of pseudo-BCI ideals. We also discuss the homomorphic image and preimage of pseudo-BCI ideals.

2. Preliminaries

Definition 2.1. [2] A pseudo-BCI algebra is a structure $\mathfrak{X} = (X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on a set X, "*" and " \diamond " are binary operations on X and "0" is an element of X, verifying the axioms: for all $x, y, z \in X$,

- (a1) $(x * y) \diamond (x * z) \preceq z * y, (x \diamond y) * (x \diamond z) \preceq z \diamond y,$
- (a2) $x * (x \diamond y) \preceq y, x \diamond (x * y) \preceq y,$
- (a3) $x \preceq x$,
- (a4) $x \leq y, y \leq x \Longrightarrow x = y,$
- (a5) $x \preceq y \iff x * y = 0 \iff x \diamond y = 0$.

Note that every pseudo-BCI algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$ is a BCI-algebra. Every pseudo-BCK algebra is a pseudo-BCI algebra.

Proposition 2.2. [2] In a pseudo-BCI algebra \mathfrak{X} the following holds:

- (p1) $x \leq 0 \Rightarrow x = 0.$
- (p2) $x \preceq y \Rightarrow z * y \preceq z * x, \ z \diamond y \preceq z \diamond x.$
- $(p3) \ x \preceq y, \, y \preceq z \Rightarrow x \preceq z.$

2000 Mathematics Subject Classification. 06F35, 03G25, 04A72.

Key words and phrases. (fuzzy) pseudo-BCI ideal.

^{*}Corresponding author. Tel.: +81-476-46-8457; fax: +81-476-46-8038

 $\begin{array}{l} (\mathrm{p4}) & (x*y)\diamond z = (x\diamond z)*y.\\ (\mathrm{p5}) & x*y \preceq z \Leftrightarrow x\diamond z \preceq y.\\ (\mathrm{p6}) & (x*y)*(z*y) \preceq x*z, \ (x\diamond y)\diamond (z\diamond y) \preceq x\diamond z.\\ (\mathrm{p7}) & x \preceq y \Rightarrow x*z \preceq y*z, \ x\diamond z \preceq y\diamond z.\\ (\mathrm{p8}) & x*0 = x = x\diamond 0.\\ (\mathrm{p9}) & x*(x\diamond (x*y)) = x*y \ and \ x\diamond (x*(x\diamond y)) = x\diamond y. \end{array}$

3. Fuzzy Pseudo-BCI ideals

In what follows let \mathfrak{X} denote a pseudo-*BCI* algebra unless otherwise specified. For any nonempty subset *J* of *X* and any element *y* of *X*, we denote

 $*(y,J) := \{x \in X \mid x * y \in J\} \text{ and } \diamond (y,J) := \{x \in X \mid x \diamond y \in J\}.$

Note that $*(y, J) \cap \diamond(y, J) = \{x \in X \mid x * y \in J, x \diamond y \in J\}.$

Definition 3.1. [5] A nonempty subset J of \mathfrak{X} is called a *pseudo-BCI ideal* of \mathfrak{X} if it satisfies

 $\begin{array}{ll} \text{(I1)} & 0 \in J, \\ \text{(I2)} & \forall y \in J, \, *(y,J) \subseteq J \ \text{and} \ \diamond (y,J) \subseteq J. \end{array}$

Note that if \mathfrak{X} is a pseudo-*BCI* algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then the notion of a pseudo-*BCI* ideal and a *BCI*-ideal coincide.

Definition 3.2. A fuzzy set $\mu : \mathfrak{X} \to [0, 1]$ is called a *fuzzy pseudo-BCI ideal* of \mathfrak{X} if for every $t \in \text{Im}(\mu), U(\mu; t)$ is a pseudo-*BCI* ideal of \mathfrak{X} .

Theorem 3.3. A fuzzy set $\mu : \mathfrak{X} \to [0,1]$ is a fuzzy pseudo-BCI ideal of \mathfrak{X} if and only if it satisfies:

(i) $\mu(0) \ge \mu(x), \forall x \in X.$

(ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}, \forall x, y \in X.$ (iii) $\mu(a) \ge \min\{\mu(a \diamond b), \mu(b)\}, \forall a, b \in X.$

Proof. Assume that μ is a fuzzy pseudo-*BCI* ideal of \mathfrak{X} and suppose that there exists $x_0 \in X$ such that $\mu(0) < \mu(x_0)$. Taking $t_0 := \frac{1}{2}(\mu(0) + \mu(x_0))$, we get $\mu(0) < t_0 < \mu(x_0)$. Hence $0 \notin U(\mu; t_0)$, which is a contradiction. Therefore $\mu(0) \ge \mu(x)$ for all $x \in X$. Assume that (ii) is false. Then

$$\mu(x_1) < \min\{\mu(x_1 * y_1), \, \mu(y_1)\}\$$

for some $x_1, y_1 \in X$. Putting

$$t_1 := \frac{1}{2}(\mu(x_1) + \min\{\mu(x_1 * y_1), \, \mu(y_1)\}),$$

we have $\mu(x_1) < t_1 < \min\{\mu(x_1 * y_1), \mu(y_1)\}$. It follows that $x_1 * y_1 \in U(\mu; t_1)$ and $y_1 \in U(\mu; t_1)$, but $x_1 \notin U(\mu; t_1)$. This is a contradiction. Hence (ii) is true. Similarly we have (iii).

Corollary 3.4. Let μ be a fuzzy pseudo-BCI ideal of \mathfrak{X} . If $x \leq y$ in \mathfrak{X} , then $\mu(x) \geq \mu(y)$.

Proof. The proof is straightforward.

We give conditions for a fuzzy set in \mathfrak{X} to be a fuzzy pseudo-*BCI* ideal of \mathfrak{X} .

Theorem 3.5. Let μ be a fuzzy set in \mathfrak{X} such that

- (i) $\mu(0) \ge \mu(x), \forall x \in X.$
- (ii) $\mu(x \diamond y) \ge \min\{\mu(((x \ast y) \diamond y) \ast z), \mu(z)\}, \forall x, y, z \in X.$
- (iii) $\mu(a * b) \ge \min\{\mu(((a \diamond b) * b) \diamond c), \mu(c)\}, \forall a, b, c \in X.$

14

y). □ Then μ is a fuzzy pseudo-BCI ideal of \mathfrak{X} .

Proof. Taking y = 0 in (ii) and using (p8), we know that

$$\mu(x) \ge \min\{\mu(x * z), \mu(z)\}$$

for all $x, z \in X$. If we take b = 0 in (iii) and use the condition (p8), then

$$\mu(a) \ge \min\{\mu(a \diamond c), \mu(c)\}$$

for all $a, c \in X$. Hence, by Theorem 3.3, we have that μ is a fuzzy pseudo-ideal of \mathfrak{X} . \Box

Proposition 3.6. If $\mu : \mathfrak{X} \to [0,1]$ is a fuzzy pseudo-BCI ideal of \mathfrak{X} , then

(i) $\forall x, y, z \in X, z * y \leq x \Rightarrow \mu(z) \geq \min\{\mu(x), \mu(y)\}.$

(ii) $\forall a, b, c \in X, c \diamond b \preceq a \Rightarrow \mu(c) \ge \min\{\mu(a), \mu(b)\}.$

Proof. (i) Let $x, y, z \in X$ be such that $z * y \preceq x$. Then $\mu(z * y) \ge \mu(x)$ by Corollary 3.4, and so

$$\mu(z) \ge \min\{\mu(z * y), \mu(y)\} \ge \min\{\mu(x), \mu(y)\}$$

by Theorem 3.3(i). Now let $a, b, c \in X$ be such that $c \diamond b \preceq a$. Using Corollary 3.4, we get $\mu(c \diamond b) \geq \mu(a)$. It follows from Theorem 3.3(ii) that

$$\mu(c) \ge \min\{\mu(c \diamond b), \mu(b)\} \ge \min\{\mu(a), \mu(b)\}$$

This completes the proof.

The following is obvious from Theorem 3.3.

Theorem 3.7. Let $\mu : \mathfrak{X} \to [0,1]$ be a fuzzy set satisfying the following properties

(i) $\mu(0) \ge \mu(x), \forall x \in X.$

(ii) $\forall x, y, z \in X, \ x * y \leq z \Rightarrow \mu(x) \geq \min\{\mu(y), \mu(z)\}.$

(iii) $\forall a, b, c \in X, a \diamond b \leq c \Rightarrow \mu(a) \geq \min\{\mu(b), \mu(c)\}.$

Then μ is a fuzzy pseudo-BCI ideal of \mathfrak{X} .

Theorem 3.8. If μ is a fuzzy pseudo-BCI ideal of \mathfrak{X} , then the set

$$I := \{ x \in X \mid \mu(x) = \mu(0) \}$$

is a pseudo-BCI ideal of \mathfrak{X} .

Proof. Obviously, $0 \in I$. For any $y \in I$, let $x \in *(y, I)$ and $a \in \diamond(y, I)$. Then $x * y \in I$ and $a \diamond y \in I$, which imply that $\mu(x * y) = \mu(0) = \mu(a \diamond y)$. It follows from Theorem 3.3 that

 $\mu(x) \ge \min\{\mu(x * y), \mu(0)\} = \mu(0) \text{ and } \mu(a) \ge \min\{\mu(a * y), \mu(0)\} = \mu(0)$

so from Theorem 3.3(i) that $\mu(x) = \mu(0) = \mu(a)$. Hence $x, a \in I$, which shows that $*(y, I) \subseteq I$ and $\diamond(y, I) \subseteq I$. This completes the proof.

Definition 3.9. A fuzzy set $\mu : \mathfrak{X} \to [0,1]$ is called a *fuzzy pseudo-BCI subalgebra* of \mathfrak{X} if it satisfies

(i) $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

(ii) $\mu(a \diamond b) \ge \min\{\mu(a), \mu(b)\}$ for all $a, b \in X$.

It follows from the transfer principle ([6]) that

Theorem 3.10. A fuzzy set $\mu : \mathfrak{X} \to [0,1]$ is a fuzzy pseudo-BCI subalgebra of \mathfrak{X} if and only if the nonempty level set $U(\mu; t)$ is a pseudo-BCI subalgebra of \mathfrak{X} where $t \in \text{Im}(\mu)$.

Theorem 3.11. For a fuzzy set μ in \mathfrak{X} , let μ^{\vee} be a fuzzy set in \mathfrak{X} defined by

$$\mu^{\vee}(x) := \sup\{t \in [0,1] \mid x \in \langle U(\mu;t) \rangle\}, \, \forall x \in X$$

Then μ^{\vee} is the least fuzzy pseudo-BCI ideal of \mathfrak{X} that contains μ , where $\langle U(\mu;t) \rangle$ means the least pseudo-BCI ideal of \mathfrak{X} containing $U(\mu;t)$.

Proof. At first we shall show

$$U(\mu^{\vee};t) = \bigcap_{\epsilon>0} \langle U(\mu;t-\epsilon) \rangle.$$

Let $x \in U(\mu^{\vee}; t)$. Since $\mu^{\vee}(x) \ge t$, for every $\epsilon > 0$ there exists t^* such that

$$x \in U(\mu^{\vee}; t^*)$$
 and $t^* > t - \epsilon$.

We have $U(\mu^{\vee}; t^*) \subseteq U(\mu; t - \epsilon)$ by $t^* > t - \epsilon$. It follows that for every $\epsilon > 0$

$$x\in U(\mu;t-\epsilon)\subseteq \langle U(\mu;t-\epsilon)\rangle$$

and hence that

$$x \in \bigcap_{\epsilon > 0} \langle U(\mu; t - \epsilon) \rangle$$

Conversely, for every $x \in X$, we have

$$\begin{split} x \in \bigcap_{\epsilon > 0} \langle U(\mu; t - \epsilon) \rangle &\Longrightarrow x \in \langle U(\mu; t - \epsilon) \rangle \text{ for every } \epsilon > 0 \\ &\Longrightarrow t - \epsilon \in \{t \in [0, 1] \mid x \in \langle U(\mu; t) \rangle\} \text{ for every } \epsilon > 0 \\ &\Longrightarrow t - \epsilon \le \sup\{t \in [0, 1] \mid x \in \langle U(\mu; t) \rangle\} = \mu^{\vee}(x) \text{ for every } \epsilon > 0 \\ &\Longrightarrow t \le \mu^{\vee}(x) \\ &\Longrightarrow x \in U(\mu^{\vee}; t) \end{split}$$

Hence we have $U(\mu^{\vee}; t) = \bigcap_{\epsilon > 0} \langle U(\mu; t - \epsilon) \rangle.$

It is obvious that

$$U(\mu;t) = \bigcap_{\epsilon > 0} U(\mu;t-\epsilon).$$

Since $\langle U(\mu; t - \epsilon) \rangle$ is a pseudo-*BCI* ideal and contains $U(\mu; t)$, we can conclude that $U(\mu^{\vee}; t) = \bigcap_{\epsilon > 0} \langle U(\mu; t - \epsilon) \rangle$ is the least pseudo-*BCI* ideal containing $U(\mu; t)$. It follows from transfer principle ([6]) that μ^{\vee} is the least fuzzy pseudo-*BCI* ideal of \mathfrak{X} containing μ .

Definition 3.12. [5] Let \mathfrak{X} and \mathfrak{Y} be pseudo-*BCI* algebras. A mapping $\mathfrak{f} : \mathfrak{X} \to \mathfrak{Y}$ is called a *pseudo-BCI homomorphism* if $\mathfrak{f}(x * y) = \mathfrak{f}(x) * \mathfrak{f}(y)$ and $\mathfrak{f}(x \diamond y) = \mathfrak{f}(x) \diamond \mathfrak{f}(y)$ for all $x, y \in X$.

Note that if $\mathfrak{f}: \mathfrak{X} \to \mathfrak{Y}$ is a pseudo-*BCI* homomorphism, then $\mathfrak{f}(0_{\mathfrak{X}}) = 0_{\mathfrak{Y}}$ where $0_{\mathfrak{X}}$ and $0_{\mathfrak{Y}}$ are zero elements of \mathfrak{X} and \mathfrak{Y} , respectively.

Let \mathfrak{f} be a mapping from \mathfrak{X} to \mathfrak{Y} . If μ is a fuzzy set in \mathfrak{X} , then the fuzzy set $\mathfrak{f}(\mu)$ in \mathfrak{Y} defined by $\mathfrak{f}(\mu)(y) = \sup_{x \in \mathfrak{f}^{-1}(y)} \mu(x)$ for all $y \in \mathfrak{Y}$, if $\mathfrak{f}^{-1}(y) = \emptyset$ then we put $\mathfrak{f}(\mu)(y) = 0$, is called the *image* of μ under \mathfrak{f} . Similarly, if ν is a fuzzy set in \mathfrak{Y} , then the fuzzy set $\mu = \nu \circ f$ in \mathfrak{X} , i.e., the fuzzy set defined by $\mu(x) = \nu(\mathfrak{f}(x))$ for all $x \in X$ is called the *preimage* of ν under \mathfrak{f} .

Theorem 3.13. Any pseudo-BCI homomorphic preimage of a fuzzy pseudo-BCI ideal is also a fuzzy pseudo-BCI ideal.

Proof. Let $\mathfrak{f} : \mathfrak{X} \to \mathfrak{Y}$ be a pseudo-*BCI* homomorphism of pseudo-*BCI* algebras. Let ν be a fuzzy pseudo-*BCI* ideal of \mathfrak{Y} and let μ be the preimage of ν under \mathfrak{f} . Then $\nu(0_{\mathfrak{Y}}) \geq \nu(\mathfrak{f}(x)) = \mu(x)$ for all $x \in X$. But $\nu(0_{\mathfrak{Y}}) = \nu(\mathfrak{f}(0_{\mathfrak{X}})) = \mu(0_{\mathfrak{X}})$, and so $\mu(0_{\mathfrak{X}}) \geq \mu(x)$ for all $x \in X$. Now we have

$$\begin{array}{lll} \mu(x) & \geq & \nu(\mathfrak{f}(x)) \; \forall x \in X \\ & \geq & \min\{\nu(\mathfrak{f}(x \ast y) \ast \nu(\mathfrak{f}(y))\} \; \forall x, y \in Y \\ & = & \min\{\mu(x \ast y), \mu(y)\} \; \forall x, y \in X, \end{array}$$

and similarly

$$\mu(a) \geq \min\{\mu(a \diamond b), \mu(b)\} \; \forall a, b \in X$$

Hence, by Theorem 3.3, μ is a fuzzy pseudo-*BCI* ideal of \mathfrak{X} .

Lemma 3.14. [3] Let \mathfrak{f} be a mapping from a set X to a set Y and let μ be a fuzzy set in X. Then $U(\mathfrak{f}(\mu), t) = \bigcap_{0 < s < t} \mathfrak{f}(U(\mu; t - s))$ for all $t \in (0, 1]$.

Lemma 3.15. [5] Let $\mathfrak{f} : \mathfrak{X} \to \mathfrak{Y}$ be an onto pseudo-BCI homomorphism of pseudo-BCI algebras. If I is a pseudo-BCI ideal of \mathfrak{X} , then $\mathfrak{f}(I)$ is a pseudo-BCI ideal of \mathfrak{Y} .

By Lemma 3.14, Lemma 3.15, it is easy to show that

Theorem 3.16. An onto pseudo-BCI homomorphic image of a fuzzy pseudo-BCI ideal is a fuzzy pseudo-BCI ideal.

References

- [1] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, (submitted).
- [2] W. A. Dudek and Y. B. Jun, On pseudo-BCI algebras, (submitted).
- [3] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japonica 42(2) (1995), 333-335.
- [4] Y. B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae Online 7 (2002), 225–230.
- [5] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo-BCI algebras, (submitted).
- [6] Y.B.Jun and M.Kondo, Transfer principle of of fuzzy BCK/BCI-algebras, to appear in Math. Japonica
 [7] Y. B. Jun, M. Kondo and K. H. Kim, Pseudo-ideals of pseudo-BCK algebras, Scientiae Mathematicae
- Japonicae Online 8 (2003), 87–91.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyung-Moon Sa Co. Seoul, Korea 1994.
- [9] L. A. Zadeh, *Fuzzy sets*, Information and Control **8** (1965), 338–353.

S. S. Ahn, DEPARTMENT OF MATHEMATICS EDUCATION, DONGGUK UNIVERSITY, SEOUL 100-715, KOREA *E-mail address*: sunshine@dgu.ac.kr

Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea $E\text{-}mail\ address:\ \texttt{heekim@hanyang.ac.kr}$

M. Kondo, School of Information Environment, Tokyo Denki University, Inzai, 270-1382, Japan

E-mail address: kondo@sie.dendai.ac.jp