NOTES ON INTERPOLATION THEOREM BETWEEN B^{p} AND $B M O$

Yasuo Komori

Recieved November 26, 2002

Abstract

We show that the sharp function f^{\sharp} belongs to B^{p} (the dual of Beurling algebra) if and only if f belongs to $C M O^{p}$ (central mean oscillation). We also show the interpolation theorem between B^{p} and $B M O$.

1 Introduction The John-Nirenberg space $B M O$ is characterized by the sharp function f^{\sharp} (see Section 2). Matsuoka [4] obtained the estimates of f^{\sharp} on B^{p} and $C M O^{p}$. In this paper, we refine his results and show that f is in $C M O^{p}$ if and only if f^{\sharp} is in B^{p}. Applying our theorem, we obtain the interpolation theorem between B^{p} and $B M O$. Our theorem is applicable to Calderón-Zygmund operators.

2 Definitions The following notation is used: For a set $E \subset R^{n}$ we denote the characteristic function of E by χ_{E} and $|E|$ is the Lebesgue measure of E.

We denote a ball of radius R centered at origin by $B(0, R)$ and for any ball Q, we denote the radius of Q by $\operatorname{rad}(Q)$.

First we define some function spaces which we shall consider in this paper.
Definition 1. Let $1<p<\infty$ and let

$$
B^{p}=\left\{f \in L_{l o c}^{p}\left(R^{n}\right):\|f\|_{B^{p}}=\sup _{R \geq 1}\left(\frac{1}{|B(0, R)|} \int_{B(0, R)}|f(x)|^{p} d x\right)^{1 / p}<\infty\right\}
$$

Definition 2. Let $1<p<\infty$ and let

$$
\begin{aligned}
& C M O^{p}=\left\{f \in L_{l o c}^{p}\left(R^{n}\right):\|f\|_{C M O^{p}}=\right. \\
&\left.\sup _{R \geq 1}\left(\frac{1}{|B(0, R)|} \int_{B(0, R)}\left|f(x)-m_{R}(f)\right|^{p} d x\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

where

$$
m_{R}(f)=\frac{1}{|B(0, R)|} \int_{B(0, R)} f(x) d x
$$

Remark. $B^{p} \subset C M O^{p}$.
About basic properties of B^{p} and $C M O^{p}$, see for example [1] and [2].
Definition 3. We define

$$
B M O=\left\{f \in L_{l o c}^{1}\left(R^{n}\right):\|f\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| d x<\infty\right\},
$$

where the supremum is taken over all balls $Q \subset R^{n}$ and

$$
f_{Q}=\frac{1}{|Q|} \int_{Q} f(x) d x
$$

Definition 4. For any $f \in L_{l o c}^{1}$, the sharp function f^{\sharp} is defined by

$$
f^{\sharp}(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y,
$$

where the supremum is taken over all balls Q containing x.
Remark. $B M O \subset C M O^{p}$ and $\left\|f^{\sharp}\right\|_{L^{\infty}}=\|f\|_{B M O}$.
3 Results Matsuoka [4] obtained the following:
Theorem A. Let $1<p<\infty$. Then

$$
\left\|f^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}},
$$

where C_{p} is a positive constant depending only on p and n.
Theorem B . Let $1<p<\infty$. Then

$$
\|f\|_{C M O^{p}} \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}},
$$

if

$$
\lim _{R \rightarrow \infty} \frac{1}{|B(0, R)|} \int_{B(0, R)}|f(x)|^{p} d x=0
$$

Our results are the following:
Theorem 1. Let $1<p<\infty$. Then

$$
\left\|f^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{C M O^{p}} .
$$

Theorem 2. Let $1<p<\infty$. If $f \in L_{\text {loc }}^{p}$, then

$$
\|f\|_{C M O^{p}} \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}} .
$$

Applying our theorems, we obtain the next interpolation theorem. Matsuoka [3], [4] proved the following:

Theorem C. Suppose $1<p_{0}<\infty$, and let T be a sublinear operator such that
T is bounded from $B^{p_{0}}$ to $B^{p_{0}}$ and
T is bounded from L^{∞} to L^{∞}.
Then T is bounded from B^{p} to B^{p} where $p_{0}<p<\infty$.
Our result is the following:
Theorem 3. Suppose $1<p_{0}<\infty$, and let T be a sublinear operator such that
T is bounded from $B^{p_{0}}$ to $C M O^{p_{0}}$ and
T is bounded from L^{∞} to $B M O$.

Then T is bounded from B^{p} to $C M O^{p}$ where $p_{0}<p<\infty$.
Remark. The condition (*) is natural, because Calderón-Zygmund operators satisfy (*) (see [2]).

4 Lemmas To prove our theorems we need some lemmas. First we show the boundedness of the maximal function.

Definition 5. The Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

where the supremum is taken over all balls Q containing x.
Lemma 1 ([1], [2]). Let $1<p<\infty$. Then

$$
\|M f\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}}
$$

Next we define Beurling algebra A^{p}.
Definition 6. Let $1<p<\infty$ and let

$$
A^{p}=\left\{f:\|f\|_{A^{p}}=\left\|f \cdot \chi_{B(0,1)}\right\|_{L^{p}}+\sum_{k=1}^{\infty} 2^{k n / p^{\prime}}\left\|f \cdot \chi_{B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)}\right\|_{L^{p}}<\infty\right\}
$$

where $1 / p+1 / p^{\prime}=1$.
Next we define atom and some Hardy space.
Definition 7. Let $1<p<\infty$. We say a function $a(x)$ is a central $(1, p)$-atom if a satisfies the following:

$$
\begin{aligned}
& \operatorname{supp}(a) \subset B(0, R) \text { for some } R \geq 1 \\
& \left(\frac{1}{|B(0, R)|} \int_{B(0, R)}|a(x)|^{p} d x\right)^{1 / p} \leq \frac{1}{|B(0, R)|} \\
& \int a(x) d x=0
\end{aligned}
$$

Definition 8. Let $1<p<\infty$. We define the Hardy space $H A^{p}$ by

$$
H A^{p}=\left\{f: f(x)=\sum_{j=1}^{\infty} c_{j} a_{j}(x), a_{j} \text { 's are central }(1, p) \text {-atoms and } \sum_{j=1}^{\infty}\left|c_{j}\right|<\infty\right\}
$$

and the norm $\|f\|_{H A^{p}}$ be the infimum of $\sum_{j=1}^{\infty}\left|c_{j}\right|$ over all representations of f.
Chen and Lau [1] and García-Cuerva [2] obtained the following duality theorems.

Lemma 2.

$$
\left(A^{p}\right)^{*}=B^{p^{\prime}}, \quad \text { where } \quad 1 / p+1 / p^{\prime}=1
$$

Lemma 3.

$$
\left(H A^{p}\right)^{*}=C M O^{p^{\prime}}, \quad \text { where } \quad 1 / p+1 / p^{\prime}=1
$$

$H A^{p}$ is characterized by the grand maximal function.
Lemma 4. If $f \in H A^{p}$ then $\mathcal{M} f \in A^{p}$ and $\|f\|_{H A^{p}} \approx\|\mathcal{M} f\|_{A^{p}}$.

See [2] for the definition of \mathcal{M} and the proof of this lemma.
The next lemma is trivial.

Lemma 5.

$$
\begin{aligned}
\|f\|_{B^{p}} \approx\left(\frac{1}{|B(0,4)|}\right. & \left.\int_{B(0,4)}|f(x)|^{p} d x\right)^{1 / p} \\
& +\sup _{k \geq 3}\left(\frac{1}{2^{k n}} \int_{B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)}|f(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

The following lemma is proved in [5], p. 146.
Lemma 6. Suppose that $f \in L_{\text {loc }}^{p}$ and a is a central $\left(1, p^{\prime}\right)$-atom. Then

$$
\left|\int f(x) a(x) d x\right| \leq C \int f^{\sharp}(x) \mathcal{M} a(x) d x .
$$

5 Proof of Theorem 1 By Lemma 5, it suffices to show the following two inequalities.

$$
\begin{align*}
& \frac{1}{|B(0,4)|} \int_{B(0,4)} f^{\sharp}(x)^{p} d x \leq C_{p}\|f\|_{C M O^{p}}^{p}, \tag{I}\\
& \frac{1}{2^{k n}} \int_{B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)} f^{\sharp}(x)^{p} d x \leq C_{p}\|f\|_{C M O^{p}}^{p}, \quad \text { where } \quad k \geq 3 . \tag{II}
\end{align*}
$$

We shall prove only (II). The proof of (I) is similar.
We write

$$
\begin{aligned}
f^{\sharp}(x) & \leq \sup _{x \in Q, \operatorname{rad}(Q) \geq 2^{k-3}} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y+\sup _{x \in Q, \operatorname{rad}(Q) \leq 2^{k-3}} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \\
& =f^{\sharp(1)}(x)+f^{\sharp(2)}(x) .
\end{aligned}
$$

First we estimate $f^{\sharp(1)}(x)$ on $B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)$.
If $x \in B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right), x \in Q$ and $\operatorname{rad}(Q) \geq 2^{k-3}$, then there exists a ball such that $Q \subset B(0, R)$ and $R \leq 10 \cdot \operatorname{rad}(Q)$. So we have

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq \frac{2 \cdot 10^{n}}{|B(0, R)|} \int_{B(0, R)}\left|f(y)-m_{R}(f)\right| d y
$$

and we obtain $f^{\sharp(1)}(x) \leq C_{n}\|f\|_{C M O^{p}}$.
Next we estimate $f^{\sharp(2)}(x)$ on $B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)$.
We define

$$
g(x)=\left(f(x)-m_{2^{k+1}}(f)\right) \cdot \chi_{B\left(0,2^{k+1}\right) \backslash B\left(0,2^{k-2}\right)}(x) .
$$

Suppose that $x \in B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right), x \in Q$ and $\operatorname{rad}(Q) \leq 2^{k-3}$. Then

$$
f(y)-f_{Q}=g(y)-g_{Q} \quad \text { for all } \quad y \in Q
$$

So we have

$$
f^{\sharp(2)}(x) \leq 2 M g(x) .
$$

By Lemma 1, we obtain

$$
\begin{aligned}
& \frac{1}{2^{k n}} \int_{B\left(0,2^{k}\right) \backslash B\left(0,2^{k-1}\right)} f^{\sharp(2)}(x)^{p} d x \leq C_{p}\|M g\|_{B^{p}}^{p} \leq C_{p}\|g\|_{B^{p}}^{p} \\
& \leq \frac{C_{p}}{2^{(k+1) n}} \int_{B\left(0,2^{k+1}\right)}\left|f(x)-m_{2^{k+1}}(f)\right|^{p} d x \leq C_{p}\|f\|_{C M O^{p}}^{p}
\end{aligned}
$$

6 Proof of Theorem 2 By the definition of $H A^{p}$ and Lemma 3, it suffices to show

$$
\left.\left|\int f(x) a(x) d x\right| \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}} \quad \text { for any central (1, } p^{\prime}\right) \text {-atom. }
$$

By Lemma 6, Lemma 2 and Lemma 4, we have

$$
\left|\int f(x) a(x) d x\right| \leq C \int f^{\sharp}(x) \mathcal{M} a(x) d x \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}}\|\mathcal{M} a\|_{A^{p^{\prime}}} \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}} .
$$

7 Proof of Theorem 3 We have

$$
\left\|(T f)^{\sharp}\right\|_{B^{p_{0}}} \leq C_{p_{0}}\|T f\|_{C M O^{p_{0}}} \leq\|f\|_{B^{p_{0}}}
$$

by Theorem 1, and we have

$$
\left\|(T f)^{\sharp}\right\|_{L^{\infty}}=\|T f\|_{B M O} \leq C\|f\|_{L^{\infty}} .
$$

So we obtain

$$
\left\|(T f)^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}} \quad \text { where } \quad p_{0}<p<\infty,
$$

by Theorem C, and we have

$$
\|T f\|_{C M O^{p}} \leq C_{p}\left\|(T f)^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}}
$$

by Theorem 2 .

References

[1] Y. Chen and K. Lau, Some new classes of Hardy spaces, J. Funct. Anal., 84 (1989), 255-278.
[2] J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2), 39 (1989), 137-193.
[3] K. Matsuoka, Interpolation theorem between some Banach spaces in generalized harmonic analysis: The real method, Tokyo J. Math., 14 (1991), 129-134.
[4] K. Matsuoka, Interpolation theorem between B_{0}^{p} and $B M O$, Sci. Math. Japonicae, 4 (2001), 329-336.
[5] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.

School of High Technology for Human Welfare, Tokai University, 317 Nishino Numazu Shizuoka 410-0395, Japan
E-mail: komori@wing.ncc.u-tokai.ac.jp

