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NOTES ON INTERPOLATION THEOREM BETWEEN Bp AND BMO

Yasuo Komori

Recieved November 26, 2002

Abstract. We show that the sharp function f � belongs to Bp (the dual of Beurling
algebra) if and only if f belongs to CMOp (central mean oscillation). We also show
the interpolation theorem between Bp and BMO.

1 Introduction The John-Nirenberg space BMO is characterized by the sharp function
f � (see Section 2). Matsuoka [4] obtained the estimates of f � on Bp and CMOp. In this
paper, we refine his results and show that f is in CMOp if and only if f � is in Bp. Applying
our theorem, we obtain the interpolation theorem between Bp and BMO. Our theorem is
applicable to Calderón-Zygmund operators.

2 Definitions The following notation is used: For a set E ⊂ Rn we denote the charac-
teristic function of E by χE and |E| is the Lebesgue measure of E.

We denote a ball of radius R centered at origin by B(0, R) and for any ball Q, we denote
the radius of Q by rad(Q).

First we define some function spaces which we shall consider in this paper.

Definition 1. Let 1 < p < ∞ and let

Bp =

{
f ∈ Lp

loc(R
n) : ‖f‖Bp = sup

R≥1

( 1
|B(0, R)|

∫
B(0,R)

|f(x)|pdx
)1/p

< ∞
}

.

Definition 2. Let 1 < p < ∞ and let

CMOp =
{

f ∈ Lp
loc(R

n) : ‖f‖CMOp =

sup
R≥1

( 1
|B(0, R)|

∫
B(0,R)

|f(x) − mR(f)|pdx
)1/p

< ∞
}

,

where

mR(f) =
1

|B(0, R)|
∫

B(0,R)

f(x)dx.

Remark . Bp ⊂ CMOp.

About basic properties of Bp and CMOp, see for example [1] and [2].

Definition 3. We define

BMO =
{

f ∈ L1
loc(R

n) : ‖f‖BMO = sup
Q

1
|Q|

∫
Q

|f(x) − fQ|dx < ∞
}

,
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where the supremum is taken over all balls Q ⊂ Rn and

fQ =
1
|Q|

∫
Q

f(x)dx.

Definition 4. For any f ∈ L1
loc, the sharp function f � is defined by

f �(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y) − fQ|dy,

where the supremum is taken over all balls Q containing x.

Remark . BMO ⊂ CMOp and ‖f �‖L∞ = ‖f‖BMO.

3 Results Matsuoka [4] obtained the following:

Theorem A . Let 1 < p < ∞. Then

‖f �‖Bp ≤ Cp‖f‖Bp ,

where Cp is a positive constant depending only on p and n.

Theorem B . Let 1 < p < ∞. Then

‖f‖CMOp ≤ Cp‖f �‖Bp ,

if

lim
R→∞

1
|B(0, R)|

∫
B(0,R)

|f(x)|pdx = 0.

Our results are the following:

Theorem 1. Let 1 < p < ∞. Then

‖f �‖Bp ≤ Cp‖f‖CMOp .

Theorem 2. Let 1 < p < ∞. If f ∈ Lp
loc, then

‖f‖CMOp ≤ Cp‖f �‖Bp .

Applying our theorems, we obtain the next interpolation theorem. Matsuoka [3], [4]
proved the following:

Theorem C . Suppose 1 < p0 < ∞, and let T be a sublinear operator such that

T is bounded from Bp0 to Bp0 and
T is bounded from L∞ to L∞.

Then T is bounded from Bp to Bp where p0 < p < ∞.

Our result is the following:

Theorem 3. Suppose 1 < p0 < ∞, and let T be a sublinear operator such that

T is bounded from Bp0 to CMOp0 and
T is bounded from L∞ to BMO.(∗)

Then T is bounded from Bp to CMOp where p0 < p < ∞.

Remark . The condition (∗) is natural, because Calderón-Zygmund operators satisfy (∗)
(see [2]).
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4 Lemmas To prove our theorems we need some lemmas. First we show the boundedness
of the maximal function.

Definition 5. The Hardy-Littlewood maximal function Mf is defined by

Mf(x) = sup
Q

1
|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all balls Q containing x.

Lemma 1 ([1], [2]). Let 1 < p < ∞. Then

‖Mf‖Bp ≤ Cp‖f‖Bp.

Next we define Beurling algebra Ap.

Definition 6. Let 1 < p < ∞ and let

Ap =
{

f : ‖f‖Ap = ‖f · χB(0,1)‖Lp +
∞∑

k=1

2kn/p′‖f · χB(0,2k)\B(0,2k−1)‖Lp < ∞
}

,

where 1/p + 1/p′ = 1.

Next we define atom and some Hardy space.

Definition 7. Let 1 < p < ∞. We say a function a(x) is a central (1, p)-atom if a satisfies
the following:

supp(a) ⊂ B(0, R) for some R ≥ 1,( 1
|B(0, R)|

∫
B(0,R)

|a(x)|pdx
)1/p

≤ 1
|B(0, R)| ,∫

a(x)dx = 0.

Definition 8. Let 1 < p < ∞. We define the Hardy space HAp by

HAp =
{
f : f(x) =

∞∑
j=1

cjaj(x), aj ’s are central (1, p)-atoms and
∞∑

j=1

|cj | < ∞
}
,

and the norm ‖f‖HAp be the infimum of
∑∞

j=1 |cj | over all representations of f .

Chen and Lau [1] and Garćıa-Cuerva [2] obtained the following duality theorems.

Lemma 2.

(Ap)∗ = Bp′
, where 1/p + 1/p′ = 1.

Lemma 3.

(HAp)∗ = CMOp′
, where 1/p + 1/p′ = 1.

HAp is characterized by the grand maximal function.

Lemma 4. If f ∈ HAp then Mf ∈ Ap and ‖f‖HAp ≈ ‖Mf‖Ap.
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See [2] for the definition of M and the proof of this lemma.
The next lemma is trivial.

Lemma 5.

‖f‖Bp ≈
( 1
|B(0, 4)|

∫
B(0,4)

|f(x)|pdx
)1/p

+ sup
k≥3

( 1
2kn

∫
B(0,2k)\B(0,2k−1)

|f(x)|pdx
)1/p

.

The following lemma is proved in [5], p. 146.

Lemma 6. Suppose that f ∈ Lp
loc and a is a central (1, p′)-atom. Then

∣∣∫ f(x)a(x)dx
∣∣ ≤ C

∫
f �(x)Ma(x)dx.

5 Proof of Theorem 1 By Lemma 5, it suffices to show the following two inequalities.

1
|B(0, 4)|

∫
B(0,4)

f �(x)pdx ≤ Cp‖f‖p
CMOp ,(I)

1
2kn

∫
B(0,2k)\B(0,2k−1)

f �(x)pdx ≤ Cp‖f‖p
CMOp , where k ≥ 3.(II)

We shall prove only (II). The proof of (I) is similar.
We write

f �(x) ≤ sup
x∈Q,rad(Q)≥2k−3

1
|Q|

∫
Q

|f(y) − fQ|dy + sup
x∈Q,rad(Q)≤2k−3

1
|Q|

∫
Q

|f(y) − fQ|dy

= f �(1)(x) + f �(2)(x).

First we estimate f �(1)(x) on B(0, 2k) \ B(0, 2k−1).
If x ∈ B(0, 2k) \B(0, 2k−1), x ∈ Q and rad(Q) ≥ 2k−3, then there exists a ball such that

Q ⊂ B(0, R) and R ≤ 10 · rad(Q). So we have

1
|Q|

∫
Q

|f(y) − fQ|dy ≤ 2 · 10n

|B(0, R)|
∫

B(0,R)

|f(y) − mR(f)|dy,

and we obtain f �(1)(x) ≤ Cn‖f‖CMOp .
Next we estimate f �(2)(x) on B(0, 2k) \ B(0, 2k−1).
We define

g(x) = (f(x) − m2k+1(f)) · χB(0,2k+1)\B(0,2k−2)(x).

Suppose that x ∈ B(0, 2k) \ B(0, 2k−1), x ∈ Q and rad(Q) ≤ 2k−3. Then

f(y) − fQ = g(y) − gQ for all y ∈ Q.

So we have

f �(2)(x) ≤ 2Mg(x).

By Lemma 1, we obtain

1
2kn

∫
B(0,2k)\B(0,2k−1)

f �(2)(x)pdx ≤ Cp‖Mg‖p
Bp ≤ Cp‖g‖p

Bp

≤ Cp

2(k+1)n

∫
B(0,2k+1)

|f(x) − m2k+1(f)|pdx ≤ Cp‖f‖p
CMOp .
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6 Proof of Theorem 2 By the definition of HAp and Lemma 3, it suffices to show

∣∣∫ f(x)a(x)dx
∣∣ ≤ Cp‖f �‖Bp for any central (1, p′)-atom.

By Lemma 6, Lemma 2 and Lemma 4, we have

∣∣∫ f(x)a(x)dx
∣∣ ≤ C

∫
f �(x)Ma(x)dx ≤ Cp‖f �‖Bp‖Ma‖Ap′ ≤ Cp‖f �‖Bp .

7 Proof of Theorem 3 We have

‖(Tf)�‖Bp0 ≤ Cp0‖Tf‖CMOp0 ≤ ‖f‖Bp0

by Theorem 1, and we have

‖(Tf)�‖L∞ = ‖Tf‖BMO ≤ C‖f‖L∞.

So we obtain

‖(Tf)�‖Bp ≤ Cp‖f‖Bp where p0 < p < ∞,

by Theorem C, and we have

‖Tf‖CMOp ≤ Cp‖(Tf)�‖Bp ≤ Cp‖f‖Bp

by Theorem 2.
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