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THREE-PERSON GAMES OF ODD-MAN-WINS
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Abstract. By introducing a specified definition of the equilibrium value of three-
person two-choice games of “odd-man-wins” and “odd-man-out” are formulated and
solved and then results are applied to the sequential n-stage-game version. It is shown
that, in the equilibrium play of the n-stage Odd-Man-Wins each player chooses R for
small offers and randomizes R and A, for other offers, whereas in the n-stage Odd-Man-
Out, each player randomizes R and A for every offer of any size, and pure-strategy
triple A-A-A doesn’t appear (expect at the last stage) even when players face a very
large offer.

1 Statement of the Problem. Let Xi, i = 1, 2, · · · , n, be i.i.d. random variables each
with uniform distribution on [0, 1]. As each Xi comes up, each player I, II and III must
choose simultaneously and independently of other players’ choices, either to accept (A) or to
reject (R) it. If all players accept the Xi, then they get 1

3Xi each, and the game terminates.
If all players reject the Xi this is rejected and the next Xi+1 is presented and the game
continues. If players’ choices are different, the odd-man gets the whole and the others get
nothing, and the game terminates. If all of the first n− 1 random variables are rejected, all
players must accept the n-th. Each player aims to maximize the expected reward he can
get, and the problem is to find a reasonable solution to this three-person n-stage game.

Let (vn, vn, vn) be the eq.values for the game (c.f., the game is symmetric for the players).
The Optimality Equation is

(vn, vn, vn) = E[eq.val.Mn(X)] (n ≥ 1, v1 =
1
6
)(1.1)

where the payoff matrix Mn(x) is such that

R by III A by III
R by II vn−1, vn−1, vn−1 0, 0, x
A by II 0, x, 0 x, 0, 0

R by III A by III
R by II x, 0, 0 0, x, 0
A by II 0, 0, x x/3, x/3, x/3

(1.2)
R by I

A by I

This game may be called odd-man-wins game. Closely-related another game is may-be,
odd-man-out. The Optimality Equation is

(wn, wn, wn) = E[eq.val.Mn(X)] (n ≥ 1, w1 =
1
6
)(1.3)

where the payoff matrix Mn(x) is

2000 Mathematics Subject Classification. 60G40, 90C39, 90D10.
Key words and phrases. Optimal stopping game, Nash equilibrium, three-person competitive game,

Prisoners’ Dilemma.



2 MINORU SAKAGUCHI

R by III A by III
R by II wn−1, wn−1, wn−1 x/2, x/2, 0
A by II x/2, 0, x/2 0, x/2, x/2

R by III A by III
R by II 0, x/2, x/2 x/2, 0, x/2
A by II x/2, x/2, 0 x/3, x/3, x/3

(1.4)
R by I

A by I

The odd-man gets nothing, and the “even-men” divide the Xi (at the i-th stage) equally.
Each player wants not to become the odd-man.

Each player must think about : (1) He wants to become the odd-man (an even-man), if
the game is Odd-Man-Wins (Odd-Man-Out), especially when he faces a very large Xi, and
(2) Since Xi is a random variable, he can expect a larger one may come up in the future.

The game(1.1)-(1.2) and (1.3)-(1.4) are solved in Sections 2 and 3, respectively. We need
a specified definition of the eq.val.in these optimality equation, as in Assumption A stated in
Section 2, since the equilibrium is often undetermined in Nash theory of competitive games.
We have found in Section 3 that the game of odd-man-out yields a seemingly unreasonable
solution, which surely comes from our Theorem 3. The result may be called a three-person
game version of Prisoners’ Dilemma, or may be led from the inadequacy of our Assumption
A.

One of the fundamental and elaborate literature in game theory (including cooperative
theory of games) is Petrosjan and Zenkevich [2]. Assumption A was first used in Ref.[5] in
a multistage two-person two-choice game. There are a few mathematical literature which
discuss three-person competitive games, and one of them is Vorobjev [7] and others are
Sakaguchi [3, 4, 6] and Mazalov and Banin [1]. The present paper owes much on Vorobjev’s
work.

2 Odd-Man-Wins. Now we consider the game presented by (1.1)-(1.2). In order to
compute the r.h.s.of (1.1), let us consider the simplified game with payoff matrix

(2.1) R by I A by I

III’s R III’s A R A
II’s R c, c, c 0, 0, 1
II’s A 0, 1, 0 1, 0, 0

R 1, 0, 0 0, 1, 0
A 0, 0, 1 1/3, 1/3, 1/3

where c is a given constant.
Let V (c) be the CEV (common eq.value) of the game (2.1). Then since (1.1)-(1.2) results

(2.1′) vn = E[xV (c)|c=x−1vn−1 ],

we want to compute V (c).
Let 〈ᾱ, α〉 ,

〈
β̄, β

〉
and 〈γ̄, γ〉 denote the mixed strategies by I, II and III, respectively.

Also let K1(R, β, γ)[K1(A,β, γ)] be the expected payoff to I, when I chooses R [A] and II-III
employ the mixed strategies

〈
β̄, β

〉
and 〈γ̄, γ〉.

Then by (2.1) we have

K1(R, β, γ) = (β̄, β)
[

c 0
0 1

]
(γ̄, γ)T,

K1(A,β, γ) = (β̄, β)
[

1 0
0 1/3

]
(γ̄, γ)T,
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and hence

D1(β, γ) ≡ K1(R, β, γ) − K1(A,β, γ) = (β̄, β)
[

c − 1 0
0 2/3

]
(γ̄, γ)T(2.2)

=




(c − 1
3
)
[(

β − c − 1
c − 1/3

) (
γ − c − 1

c − 1/3

)
− (2/3)(1 − c)

(c − 1/3)2

]
, if c �= 1

3 ,

2
3
(−β̄γ̄ + βγ) =

2
3
(β + γ − 1), if c = 1

3 .

The equation D1(β, γ) = 0 (if c �= 1/3), is a hyperbola with the asymptotic axies
β = a(c) and γ = a(c), where a(c) ≡ c−1

c−1/3 , and it passes through the two corner points
(β, γ) = (1, 0) and (0, 1) in the unit square.

The condition for I that the strategy-triple (α, β, γ) be in equilibrium is (α, β, γ) ∈ S1

where
S1 = {(0, β, γ)|D1(β, γ) > 0} ∪ {(1, β, γ)|D1(β, γ) < 0}(2.3)

∪{(α, β, γ)|0 < α < 1 and D1(β, γ) = 0}.
Conditions for II and III are given by (α, β, γ) ∈ S2 ∩ S3 where S2 and S3 are defined

similarly as for S1 by beginning from the definitions

K2(α,A, γ) = (ᾱ, α)
[

1 0
0 1/3

]
(γ̄, γ)T,

K3(α, β, A) = (ᾱ, α)
[

1 0
0 1/3

]
(β̄, β)T,

D2(α, γ) ≡ K2(α,R, γ) − K2(α,A, γ),
D3(α, β) ≡ K3(α, β, R) − K3(α, β, A), etc.

By symmetry of the payoff matrix, S2[S3] is obtained from S1 by exchanging β → α and
D1 → D2[γ → α and D1 → D3]. Thus combining these, the condition that (α, β, γ) be in
equilibrium is (α, β, γ) ∈ S ≡ S1 ∩ S2 ∩ S3.

As is well-known in the Nash theory of competitive games, the equilibrium is often
undetermined, even in three-person two-choice games, which we investigate in the present
paper. So we prepare the following assumption.

Assumption A If the equilibrium consists of some corner and/or edge and a unique inner
point, then the latter is adopted for the equilibrium. If equilibrium consists of a single point,
either corner or inner point, this is adopted for the equilibrium.

We prove the following theorem.

Theorem 1 The solution to the three-person game (2.1) is as follows ; If c < 1, the mixed-
strategy triple (α0, α0, α0), with α0 =

√
1−c√

1−c+
√

2/3
is in eq. If c ≥ 1, the pure-strategy triple

R-R-R is in eq. The common eq.value is

V (c) =

{
(1 − c/3)

/ (√
1 − c +

√
2/3

)2

, if c < 1,
c, if c ≥ 1.

(2.4)

V (c) is convex and increasing with values :
c = −1/3 0 1/3 1/2 1

V (c) = 5(1 − (2/3)
√

2) ≈ 0.2859 3(5 − 2
√

6) ≈ 0.3031 1/3 5(7 − 4
√

3) ≈ 0.3590 1
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Proof. Consider the five cases.
Case 1. c < 1/3 and hence a(c) ≡ c−1

c−1/3 > 1 :
Case 2. c = 1/3 and hence D1(β, γ) = 2

3 (β + γ − 1) ;
Case 3. 1/3 < c < 1 and hence a(c) < 0 ;
Case 4. c = 1 and hence a(c) = 0 and D1(β, γ) = 2

3βγ ;
Case 5. c > 1 and hence 0 < a(c) < 1.
We find from (2.2) that the sign of D1(β, γ) on [0, 1]2 is :

D1 > 0
D1 > 0 D1 > 0

D1 > 0 D1 > 0

D1 < 0
D1 < 0

D1 < 0

D1 = 0

Case 1 Case 2 Case 3

Case 4 Case 5
¿From these figures and (2.3) we derive S1 and then we construct S1 ∩ S2 ∩ S3 in each

case of 1 ∼ 5.
In Case 1, S1 consists of the two shaded regions in β − γ squre and one dotted curved

surface (see Figure 1). Therefore S consists of six (not twelve) edges, and one inner point
(α0, α0, α0), where α0 =

√
1−c√

1−c+
√

2/3
is the smaller root of the equation (α − a(c))2 =

(2/3)(1− c)/(c− 1
3 )2. The common eq.value V (c), corresponding to the inner point (of the

unit cube) solution is

V (c) = K1(R,α0, α0) = K1(A,α0, α0) =
1 − (1/3)c

(
√

1 − c +
√

2/3)2
(2.5)

(
=

1
3
, if c = 1

3 − 0
)

.

α α

γ γ

β β

Figure 1. S1 in Case 1. Figure 2. S1 in Case 2.
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In Case 2, S1 is shown by Figure 2, and so S consists of six edges and one inner point

α0 = β = γ = 1
2 . The latter gives V (1/3) =

(
1
2 , 1

2

) [
1/3 0
0 1

] (
1
2 , 1

2

)T = 1
3 .

In case 3, S1 is shown by Figure 3, and S consists of the same six edges as in Case 1 and
one inner point (α0, α0, α0), where α0 =

√
1−c√

1−c+
√

2/3
is the larger root of the same equation

as in Case 1. The inner point solution gives the value (2.5) again. Note that V (1− 0) = 1.
In Case 4, S1 = {(0, β, γ)|(β, γ) ∈ [0, 1]2}∪{(α, β, γ)|0 < α ≤ 1, βγ = 0} consists of three

(not six) side sequres and no inner point. So this means S = {(α, β, γ)|α, β or γ = 0}.

α α

γ γ

β β

Figure 3. S1 in Case 3. Figure 4. S1 in Case 4.

◦

◦
α

γ

β

Figure 5. S1 in Case 5.

In Case 5, S1 = {(0, β, γ)|(β, γ) ∈ [0, 1]2}∪{(α, β, γ)|0 < α < 1, (β, γ) = (1, 0) or (0, 1)}
is shown by Figure 5. Hence S = S1∩S2∩S3 = {0, 0, 0} i.e. R-R-R is the unique eq.strategy
triple, and the common eq.value of the game is c.

Combining all of the above discussions and referring to our Assumption A, we can obtain
the result stated in the theorem.

Proof of the rest part is made by elementary calculus. ¿From (2.4),

V ′(c) =
2 − √

(2/3)(1 − c)

3
√

1 − c
(√

1 − c +
√

2/3
)2

is positive, and increasing since both of 2−√
(2/3)(1 − c) and 1√

1−c(
√

1−c+
√

2/3)2
are positive

and increasing. �
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Note that V ′(0) = 14 − 17
√

2/3 ≈ 0.1196 and V ′(1) = +∞.

Corollary 1.1 α0(c) is concave and decreasing for c < 1. POA≡ Pr.{odd-man appears}
= 1 − α3

0 − ᾱ3
0 is increasing for c < 1

3 ; attains maximum at c = 1
3 , and decreasing for

1
3 < c < 1. Computation gives

c = −1/3 0 1/3 1/2 1
α0(c) = 2 −√

2 ≈ 0.5858 3 −√
6) ≈ 0.5505 1/2 2

√
3 − 3 0

POA= 0.7279 0.7424 3/4 0.7461 0

Proof. We see that α′
0(c) = −

[√
6(1 − c)(

√
1 − c +

√
2/3)2

]−1

is negative and decreas-
ing. Also the derivative of POA is

−3(α2
0 − ᾱ2

0)α
′
0(c) =

1 − 3c√
6(1 − c)

(√
1 − c +

√
2/3

)−4

,

Hence the result follows. �

Define state (n, x) to mean that the first random variable X1 in the n-stage game turns out
to be x.

Theorem 2 Solution to the three-person n-stage odd-man-wins. The CES (common eq.strategy)
in state (n, x) is :

Choose R, if x < vn−1 ;
Employ the mixed strategy (R,A; ᾱ0(x), α0(x)), with

α0(x) =
√

x − vn−1√
x − vn−1 +

√
(2/3)x

, if x > vn−1.

The sequence {vn} is determined by the recursion vn = T (vn−1), (n ≥ 2, v1 = 1/6), where

T (v) =


 v2 +

∫ 1

v

x(x − v/3)
(
√

x − v +
√

(2/3)x)2
dx, if v < 1,

v, if v > 1
(2.6)

Moreover vn, as n → ∞ converges to v∞ ≡ supv{v|T (v′) > v′, ∀v′ ∈ (0, v)}.
Proof. We apply Theorem 1 to the r.h.s.of (2.1′). Then

vn = v2
n−1 +

∫ 1

vn−1

xV (vn−1/x)dx, if vn−1 < 1

where V (·) is given by (2.4), and therefore (2.6) follows. T (v) is increasing, since

T ′(v) = v +
∫ 1

v

x
∂

∂v

[
x − v/3

(
√

x − v +
√

2x/3)2

]
dx(2.7)

= v +
∫ 1

v

x
{
2x − √

(2/3)x(x − v)
}

3
√

x − v(
√

x − v +
√

2x/3)3
dx,

(Note that the last integral doesn’t diverge, since
∫ 1

v
x2dx√
x−v

converges to 2
√

1 − v−
4

∫ 1

v x
√

x − vdx),

2x −
√

(2/3)x(x − v) ≥ 2x −
√

2/3(x − v/2) ≥ (2 −
√

2/3)x ≥ 0.
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and hence T ′(v) > v > 0. Therefore,

vn > vn−1 =⇒ vn+1 = T (vn) > T (vn−1) = vn

and

v2 = T (v1) = T

(
1
6

)
=

1
36

+
∫ 1

1/6

x(x − 1
18 )

(
√

x − 1/6 +
√

2x/3)2
dx

≥ 1
36

+
3
10

∫ 1

1/6

x(x − 1
18 )

x − 1
10

dx ≥ 1
36

+
3
10

· 1
2
· 35
36

=
25
144

>
1
6

implying vn > vn−1, ∀n. It is clear that vn ≤ 1.

Since T (v) is increasing with values T (0) = 3
2 (5− 2

√
6) ≈ 0.1515, T ′(0) = 2−

√
2/3

3(1+
√

2/3)3
≈

0.1008 and T (1) = T ′(1 − 0) = 1, {vn} converges to some limit α ∈ (0, 1], which satisfies
T (α) = α. �

Computation by computer gives the numerical values

v = 1/6 1/5 1/4 1/3 1/2 0.7 0.9
T (v) = 0.1896 0.2032 0.2273 0.2765 0.4078 0.6177 0.8717

and also gives v∞ ≈ 0.206. The merit for the players of multi-stage play is small, only
0.206 − 1/6 ≈ 0.0394.

3 Odd-Man-Out. We discuss in this section the game of “odd-man-out”. Consider the
game with payoff matrix

(3.1)
R by I A by I

R by III A by III R A
R by II h, h, h 1/2, 1/2, 0
A by II 1/2, 0, 1/2 0, 1/2, 1/2

R 0, 1/2, 1/2 1/2, 0, 1/2
A 1/2, 1/2, 0 1/3, 1/3, 1/3

where h is a given constant.
Let W (h) be the CEV of the one-stage game (3.1). Then for the n-stage game, Eq.(1.3)-

(1.4) gives

(3.1′) wn = E[xW (h)|h=x−1wn−1 ].

We want to compute W (h).
Similarly as in Section 2, we have

K1(R, β, γ) = (β̄, β)
[

h 1/2
1/2 0

]
(γ̄, γ)T,

K1(A,β, γ) = (β̄, β)
[

0 1/2
1/2 1/3

]
(γ̄, γ)T,

and

D1(β, γ) = K1(R, β, γ) − K1(A,β, γ) = (β̄, β)
[

h 0
0 −1/3

]
(γ̄, γ)T(3.2)

=




(h − 1
3
)
[
(β − a(h))(γ − a(h)) − h/3

(h − 1/3)2

]
, if h �= 1

3 ,

1
3
(1 − β − γ), if h = 1

3 .
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where a(h) ≡ h/(h − 1
3 ).

The equation D1(β, γ) = 0 (if h �= 1/3), is a hyperbola with the asymptotic axies
β = a(h) and γ = a(h), and it passes through the two corner points (β, γ) = (1, 0) and
(0, 1).

Under Assumption A stated in the previous section, we obtain the following result.
Proof is made by the analogous way as in Theorem 1.

Theorem 3 The solution to the three-person game (3.1) as follows : For any h ≤ 0, the
pure-strategy triple A-A-A is in eq. For any h > 0, the mixed-strategy triple 〈α0, α0, α0〉,
with α0 =

√
h√

h+
√

1/3
is in eq. The CEV is

W (h) =




1/3, if h < 0

√
h/3 + h/3(√
h +

√
1/3

)2 , if h > 0.
(3.3)

This function is increasing and convex-concave for 0 < h < 3, attains maximum at
h = 3, and decreasing and concave-convex for h > 3. The two points of inflexion are
h = 1

3 (9 ± 4
√

5)(≈ 0.018, 5.981). Computation gives ;

h = 0 + 0 1/3 1/2 1 2 3 12 ∞
W (h) = 0 1/3 3

√
6 − 7 ≈ 0.3485 1

2
(
√

3 − 1) ≈ 0.3660 0.3739 3/8 18/49 1/3

Proof. Consider the four cases.
Case 1+. h ≤ 0, and hence 0 ≤ a(h) < 1.
Case 2+. 0 < h < 1/3, and hence a(h) < 0.
Case 3+. h = 1/3, and hence D1(β, γ) = 1

3 (1 − β − γ).
Case 4+. h > 1/3, and hence a(h) > 1.
The sign of D1(β, γ) in (β, γ) ∈ [0, 1]2 is :

D1 < 0
D1 < 0D1 < 0D1 < 0

D1 > 0
D1 > 0

D1 > 0

Case 4+Case 3+Case 2+
Case 1+

In Case 1+, S1 = {(α, β, γ)|0 < α < 1, (β, γ) = (1, 0) or (0, 1)} ∪ {(1, β, γ)|(β, γ) ∈
[0, 1]2}, as in shown by Figure 6. Hence S = S1 ∩ S2 ∩ S3 = {(1, 1, 1)} is the unique
pure-strategy eq. The CEV is 1

3 .
In Case 2+, S1 consists of the two shaded regions in β−γ square and one dotted curved

surface (see Figure 7). Therefore S consists of the two corners (0, 0, 0) and (1, 1, 1) and one
inner point (α0, α0, α0) on the center line α = β = γ, where α0 =

√
h√

h+
√

1/3
is the larger

root of the equation (α − a(h))2 = h/3
(h−1/3)2 . The CEV corresponding to the inner point

solution is

W (h) = K1(R,α0, α0) = K1(A,α0, α0) =

√
h/3 + h/3

(
√

h +
√

1/3)2
(= 1/3, if h = 1/3).(3.4)
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α

γ

β

Figure 7. S1 in Case 2+.
α

γ

β

Figure 6. S1 in Case 1+.

In Case 3+, S1 is shown by Figure 8, and S consists of the two corners (0, 0, 0) and
(1, 1, 1) and the center α = β = γ = 1/2 of the cube. The latter gives

W (1/3) = (1/2, 1/2)
[

1/3 1/2
1/2 0

]
(1/2, 1/2)T =

1
3
.

In Case 4+, S1 is as shown by Figure 9, and S consists of the two corners (0, 0, 0) and
(1, 1, 1) and the inner point (α0, α0, α0), where α0 =

√
h√

h+
√

1/3
is the smaller root of the

same equation as in Case 2+. The inner point solution give the value (3.4) again.

αα

γγ

ββ

Figure 9. S1 in Case 4+.Figure 8. S1 in Case 3+.

Combining all of these arguments and referring to our Assumption A we obtain the
result stated in the first half of the theorem.

The rest part follows from

W ′(h) =

√
1/h − √

1/3
6(
√

h +
√

1/3)3
and W ′′(h) =

3h − 4
√

3h − 1
12

√
3h3/2(

√
h +

√
1/3)4

. �

Corollary 3.1 α0(h) ≡
√

h√
h+

√
1/3

is concave and increasing for h > 0. POA≡ Pr.{odd-
man appears} = 1 − α3

0 − ᾱ3
0 is increasing for 0 < h < 1

3 , attains maximum at h = 1
3 , and

is decreasing for h > 1
3 . Computation gives :

h = 0+0 1/3 1 3 4 ∞
α0(h) = 0 1/2 0.6340 3/4 0.7760 1 − 0
POA= 0 3/4 0.6962 9/16 ≈ 0.5625 0.5215 0+0
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Proof. We have

α′
0(h) =

1
2
√

3

[√
h(
√

h +
√

1/3)2
]−1

,

and the derivative of POA is

−3(α2
0 − ᾱ2

0)α
′
0(h) =

1 − 3h

2
√

3h
(
√

h +
√

1/3)−4.

Hence the result follows �

It is a surprising result that W (h) is decreasing, when the reward h of coincidence
of players’ choices of R becomes larger beyond some amount (=3, in Theorem 3). This
situation may be called a three-person Prisoners’ Dilemma. Each player is involved in a
loss due to his suspicion that his rivals may forestall him, although they can surely get the
highest amount h, if they are admitted to cooperate by choosing R.

Theorem 4 The solution to the three-person n-stage odd-man-out is : The CEV in state
(n, x) is to employ the mixed strategy

(R,A; ᾱ0(x), α0(x)), with α0(x) =
√

wn−1/(
√

wn−1 +
√

x/3).

The sequence {wn} is determined by the recursion wn = U(wn−1) (n ≥ 2, w1 = 1/6),
where

U(w) =
∫ 1

0

√
wx/3 + w/3

(
√

w/x +
√

1/3)2
dx.(3.5)

As n → ∞, wn converges to w∞ = inf
{
w ∈ (0, 1

6 )|U(w′) < w′, ∀w′ ∈ (w, 1
6 )

}
.

Proof. We apply Theorem 3 to the r.h.s.of (3.1′). Then

wn =
∫ 1

0

xW (wn−1/x)dx,

where W (t) is given by (3.3), and therefore wn = U(wn−1), with

U(w) =
∫ 1

0

x

√
w/(3x) + w/(3x)

(
√

w/x +
√

1/3)2
dx.

This is (3.5). The derivative is

U ′(w) =
1
6

∫ 1

0

√
x/w − √

1/3
(
√

w/x +
√

1/3)3
dx.(3.6)

A comutation by computer shows that U(w) is concave and increasing for 0 ≤ w ≤ 1, with
values U(0) = 0, U ′(0 + 0) = +∞ and

w = 0.03 0.06 0.1 0.14 1/6 1/3 1/2 3/4 1
U(w) = 0.113 0.1341 0.1486 0.1571 0.1612 0.1745 0.1799 0.1837 0.1854

Also it gives w∞ ≈ 0.1603 as a unique root of the equation U(w) = w. Acutually, each
player suffers a demerit which glows larger as n becomes larger, such that 1

6 −w∞ ≈ 0.0064
(So, players coordinate, if admitted, to choose A-A-A in the first stage, expecting to get
1/6 each). �
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4 Remarks.
Remark 1 Theorems 2 and 4 show the following facts. (1) In the eq.play of the n-stage
Odd-Man-Wins, each player chooses R for small offers and randomizes R and A for other
offers. (2) In the eq.play of the n-stage Odd-Man-Out each player randomizes R and A for
offers of any size, and the pure-strategy triple A-A-A (R-R-R) doesn’t appear expect at the
last stage, even when players face a very large (small) offer.

Remark 2 Two functions T (v) in Theorem 2, and U(w) in Theorem 4 are roughly shown
by Figure 10. An important difference is that T (1

6 ) > 1
6 , and U(1

6 ) < 1
6 .

∧ ∧ ∧∨ ∨ ∨0
1/6 0.206

v
1

1

0.162

∧ ∧ ∧∨ ∨ ∨0 1/6
w

1

1

0.185

0.160

T (v)

Figure 10 a.

U(w)

Figure 10 b.

Multistage play yields each player a merit of size v∞ − 1
6 ≈ 0.0394 in Odd-Man-Wins,

and a demerit of size 1
6 − w∞ ≈ 0.0064 in Odd-Man-Out.

Acknowledgement The author thanks Atsuko Takano (Dept.of Information Sci., Hyogo
University, Hyogo) for computing the numerical values of T (v) in Theorem 2, and U(w) in
Theorem 4.
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