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Dynamical system on a parabolic and elliptic Gelfand-type equation

Tosiya Miyasita

Abstract. We consider the parabolic equation with exponential nonlinearity and the
corresponding elliptic equation. First, we study the set of stationary solution and its
spectral property. Next we show that the solution of parabolic equation blows up in
finite time for the initial value satisfying a positive integrand condition by the Kaplan
method. Finally we find a global solution for the negative initial value by upper-
lower solution method and for the two dimensional domain by the Trudinger-Moser
inequality, respectively. By the global boundedness and the existence of Lyapunov
function, we treat its dynamical properties of the omega limit set.
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the nonlocal problem.
Nowadays, it seems that there are not enough studies for (1) and (2) except [1]. The aim
of this paper is to study (1) and (2), respectively. The solution set of (2) has already been
investigated in [1]. To introduce the known results obtained in [1] and state our theorems,
we denote the m-th eigenvalue and eigenfunction of −∆ in Ω with the Dirichlet boundary
condition by µm and ϕm normalized as ‖ϕm‖2 = 1 for m ∈ N, respectively, where ‖ · ‖p is

the standard Lp norm in Ω with p ∈ [1,∞]. For the sake of convenience, we set µ0 = 0. We
define the solution set C by

C ≡
{
(λ, v) ∈ R+ ×

(
C2(Ω) ∩ C0(Ω)

) ∣∣ v = v(x) solves (2) for λ > 0
}
,

where R+ = {x | x > 0} and

C0(Ω) ≡
{
v ∈ C(Ω)

∣∣ v(x) = 0 on x ∈ ∂Ω
}

endowed with the L∞ norm. In [1], they derived the necessary condition for the existence
of positive classical solution of (2). Together with their results, we have the following
proposition:

Proposition 1 (Cf. Proposition 1.2 in [1]) Let Ω ⊂ Rn be a star-shaped domain with
respect to the origin with C2- boundary ∂Ω for n ∈ N. There exists λ0 which depends only
on Ω satisfying λ0 ≥ 0 for n = 1, 2 and λ0 > 0 for n ≥ 3. Then we have following:
(i) if (λ, v) ∈ C satisfies v > 0 in Ω, then λ ∈ (λ0, µ

1),
(ii) if (λ, v) ∈ C satisfies v < 0 in Ω, then λ > µ1,
(iii) if n ≥ 3 and λ ∈ (0, λ0), then (λ, v) ∈ C satisfies v = 0 in Ω.

If (λ, v) ∈ C is a classical solution, the Morse index i = i(λ, v) is defined by the number
of negative eigenvalues ν of

(5)

 ∆ψ + λevψ = −νψ x ∈ Ω,
ψ(x) = 0 x ∈ ∂Ω,
‖ψ‖2 = 1.

First of all, we introduce results of the stationary solution. It is clear that (2) has a
trivial solution (λ, v) = (λ, 0) for any λ > 0. The second proposition is concerned with
the bifurcation from the trivial solution and Morse index around the bifurcation point.
The result for (2) is a little bit similar to that for (4). The difference is the value of
the Morse index on the branch of the nontrivial solution set. We prove the existence of
nontrivial solution by the bifurcation theory [2]. We compute Morse index by the exchange
of eigenvalues [11, 12, 13].

Proposition 2 Let Ω = (0, 1). Then we have µm = (mπ)
2
and i(λ, 0) = m − 1 for

λ ∈ (µm−1, µm] with m ∈ N. Two continua S±
m ⊂ C of nontrivial solution bifurcate at

(λ, v) = (µm, 0). Furthermore

i(λ, v) =

 2k − 2 for (λ, v) ∈ S−
m and m = 2k − 1,

2k − 1 for (λ, v) ∈ S+
m and m = 2k − 1,

2k − 1 for (λ, v) ∈ S±
m and m = 2k

holds for sufficiently close to the bifurcation point (µm, 0), where k ∈ N.
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In [1], they studied the bifurcation diagram and computed the bound for Morse index
globally, not locally around a bifurcation point. If Ω is a unit ball and the solution is positive
and radially symmetric, they establish the existence of singular solution, multiple existence
of the regular solution and bound for its Morse index. Their results are similar to those of
the well-known Gelfand problem

∆v + λev = 0.

As mentioned in [6, 15], they also derived the bending result of the solution set for n ∈ [3, 9].
Next, we consider the case where the solution blows up in finite time. Thanks to the
convexity of ev − 1, we can apply the Kaplan method [8] to obtain following two blow-up
conditions of u0.

Proposition 3 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω for n ∈ N. For
u0 ∈ C0(Ω), the solution of (1) blows up in finite time on the condition that
(i)

∫
Ω
u0(x)ϕ

1(x) dx > 2
∥∥ϕ1∥∥

1

(
µ1 − λ

)
/λ holds for 0 < λ < µ1,

(ii)
∫
Ω
u0(x)ϕ

1(x) dx > 0 holds for λ ≥ µ1.

The first global existence result is concerned with the nonpositive solution. For the
nonpositive initial value, we establish the global solution by constructing a lower-upper
solution pair.

Theorem 1 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω for n ∈ N. For
u0 ∈ C0(Ω) with u0(x) ≤ 0 for any x ∈ Ω, we have Tu0 = +∞ and

u ∈ C
(
[0,+∞);C0(Ω)

)
∩ C1

(
(0,+∞);C0(Ω)

)
satisfying u ≤ 0 in Ω× [0,+∞). If λ < µ1, then

‖u(·, t)‖H1
0
→ 0

as t→ +∞, where ‖w‖H1
0
= ‖∇w‖2 for w ∈ H1

0 (Ω).

We introduce the main theorems on the global existence for Ω ⊂ R2 and Ω = (0, 1),
respectively. For small parameter and initial value, we construct the global solution by the
Lyapunov function

(6) Lλ(u) ≡
1

2

∫
Ω

|∇u|2 dx− λ

∫
Ω

(eu − u) dx,

Sobolev and Trudinger-Moser inequalities.

Theorem 2 Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. For any λ > 0
and u0 ∈ H1

0 (Ω) satisfying

(7)

(
C2

TM +
2 |Ω|
µ1

)
λ2 + ‖u0‖2H1

0
< 4π (log 4π − 1) ,

we have Tu0
= +∞ and

u ∈ C
(
[0,+∞);H1

0 (Ω)
)
∩ C1

(
(0,+∞);L2(Ω)

)
,

where CTM > 0 is a constant which depends only on Ω coming from the Trudinger-Moser
inequality. Moreover, there is some λ1 > 0 such that for any λ < λ1, we have

‖u(·, t)‖H1
0
→ 0

as t→ +∞.
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Theorem 3 Let Ω = (0, 1). If we replace (7) by

2

(
e2eC

2
S +

1

π2

)
λ2 + ‖u0‖2H1

0
< e log 2,

then the conclusion of Theorem 2 is still true, where CS > 0 is an embedding constant which
depends only on Ω coming from H1

0 (Ω) ⊂ C(Ω).

In the last result, we derive the dynamical properties. The Lyapunov function (6) plays
an important role in arguing the convergence problem.

Proposition 4 (Cf. Theorem 2.1 in [4]) Under the same hypotheses as Theorems 2 or
3, ω(u0) is invariant, non-empty, compact and connected in H1

0 (Ω). Moreover ω(u0) is a
single point in H1

0 (Ω).

This paper is composed of 5 sections. In Section 2, we show Propositions 1 and 2. We
obtain the stationary solution by a bifurcation theory and compute the Morse index. In
Section 3, we obtain some differential inequalities by the energy method and solve them
to show Proposition 3. In Section 4, we decompose a solution of (1) into that of the heat
equation with the non-zero initial value and the nonlinear heat equation with the zero
initial value. Then we construct a lower and upper solution, which leads us to the proof of
Theorem 1. In Section 5, we use the Lyapunov function and Trudinger-Moser inequality.
Then we derive the H1 estimate, which gives us the proof of Theorems 2 and 3. Finally,
we derive the compactness of the orbit, which prove that the global solution converges to a
stationary solution. By the existence of the Lyaounov function, we can prove Proposition
4.

2 Stationary solution First, we consider the condition on a parameter when a positive,
negative or trivial solution exists. We use the Kaplan method [8] and Pohožaev identity
[16]. If Ω is a ball, similar results to those in Proposition 1 are obtained in [1]. Next,
we apply a bifurcation theory in [2], obtain a curve of solution (λ, v) and parametrize the
solution (λ, v) = (λ(s), v(·, s)) and the eigenpair (ν, ψ) = (ν(s), ψ(·, s)), respectively. To
compute the Morse index, we consider the signs of ν′(s) and ν′′(s) at bifurcation points in
the same way as [11, 12, 13]. Owing to the boundary condition, the proof for (2) is more
complicated than that for (4) as proven in [12]. However, for completeness we prove it.

We prepare the Pohožaev identity in [16].

Lemma 1 Let Ω ⊂ Rn be a bounded domain with C2-boundary ∂Ω for n ∈ N. Let f(v) ∈
C(R). Suppose that v ∈ C2(Ω) ∩ C(Ω) satisfies{

∆v + f(v) = 0 x ∈ Ω,
v(x) = 0 x ∈ ∂Ω.

Then the identity

1

2

∫
∂Ω

(x · ν)
(
∂v

∂ν

)2

dω +
n− 2

2

∫
Ω

f(v)v dx = n

∫
Ω

F (v) dx

holds, where dω is the area element of ∂Ω with standard metric, ν is the outer unit normal
vector at x and

F (v) =

∫ v

0

f(p) dp.
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Proof of Proposition 1 By µ and ϕ, we denote the first eigenvalue µ1 and corresponding
eigenfunction ϕ1 of −∆ in a star-shaped Ω with the Dirichlet boundary condition. Then
we have ϕ > 0 in Ω. First of all, we obtain relations between µ and λ stated in (i) and (ii)
of the proposition. Multiplying (2) by ϕ > 0 and integrating it over Ω, we have

−µ
∫
Ω

ϕv dx+ λ

∫
Ω

ϕ (ev − 1) dx = 0

and then

(λ− µ)

∫
Ω

ϕv dx < 0

for v 6≡ 0 by expx − 1 ≥ x for x ∈ R . If a solution v > 0 in Ω, then we have λ < µ. For
v < 0, we have λ > µ. Next we obtain a lower bound λ0 given in (i) and (ii). In the case
of n = 1, 2, since ∫

Ω

|∇v|2 dx = λ

∫
Ω

(ev − 1) v dx

holds, we conclude that λ0 ≥ 0 for v 6≡ 0 by (expx− 1)x ≥ 0 for all x ∈ R. Thus we
concentrate on the case of n ≥ 3. Applying Lemma 1 to f(v) = λ (ev − 1) and F (v) =
λ (ev − v − 1) and noting that Ω is star-shaped, we find

n− 2

2
λ

∫
Ω

(ev − 1) v dx ≤ nλ

∫
Ω

(ev − v − 1) dx

and then

n− 2

4

∫
Ω

|∇v|2 dx =

(
n− 2

2
− n− 2

4

)
λ

∫
Ω

(ev − 1) v dx

≤ nλ

∫
Ω

(ev − v − 1) dx− n− 2

4
λ

∫
Ω

(ev − 1) v dx.

Putting

g(x) = n (ex − x− 1)− n− 2

4
(ex − 1)x = nex − 3n+ 2

4
x− n− n− 2

4
exx,

we have g(1) > 0,

g′(x) =
3n+ 2

4
ex − 3n+ 2

4
− n− 2

4
exx

and limx→+∞ g(x) = limx→+∞ g′(x) = −∞. Hence there exists ξ > 0 which depends only
on n such that g(x) ≤ 0 for x ≥ ξ. Since for ε, κ ∈ [0, 1],

g(x) ≤ n (ex − x− 1)

≤ n

∫ 1

0

d

dε
(eεx − εx) dε

= nx

∫ 1

0

(eεx − 1) dε

= nx

∫ 1

0

∫ 1

0

d

dκ
(eκεx) dκ dε

= nεx2
∫ 1

0

∫ 1

0

eκεx dκ dε

≤ nx2
∫ 1

0

∫ 1

0

eκεx dκ dε

≤
{
nx2ex for x ≥ 0,
nx2 for x ≤ 0
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holds for all x ∈ R, we have

n− 2

4

∫
Ω

|∇v|2 dx

≤ λ

∫
Ω∩{v≤0}

g(v) dx+ λ

∫
Ω∩{0≤v≤ξ}

g(v) dx+ λ

∫
Ω∩{v≥ξ}

g(v) dx

≤ λn

∫
Ω∩{v≤0}

v2 dx+ λn

∫
Ω∩{0≤v≤ξ}

v2ev dx

≤ λn
(
eξ + 1

) ∫
Ω

v2 dx

≤ λn

µ1

(
eξ + 1

) ∫
Ω

|∇v|2 dx

thanks to the Poincaré inequality

(8) ‖v‖2 ≤ 1√
µ1

‖∇v‖2

for all v ∈ H1
0 (Ω), which implies that

λ0 ≡ µ1 (n− 2)

4n (eξ + 1)
< µ1 and 0 < λ0 ≤ λ

for a nontrivial solution v. Finally we show the last claim (iii). Suppose that v(x) is a
nontrivial solution of (2). Then for 0 < λ < λ0, we have

λ0

∫
Ω

|∇v|2 dx ≤ λ

∫
Ω

|∇v|2 dx < λ0

∫
Ω

|∇v|2 dx,

which implies that v ≡ 0. 2

Proof of Proposition 2 An easy calculation yields

(µm, ϕm) =
(
(mπ)

2
,
√
2 sinmπx

)
for m ∈ N. At (λ, v) = (λ, 0), (5) has the k-th eigenvalue νk = µk−λ and the corresponding
eigenfunction ψk = ϕk for k ∈ N. Hence, we have a simple eigenvalue νm = 0 at (λ, v) =
(µm, 0) and i(λ, v) = m − 1 for (λ, v) = (λ, 0) with µm−1 < λ ≤ µm with m ∈ N. The
first part of proposition is proved. We will show that the nontrivial solutions bifurcate from
(λ, v) = (µm, 0). We define X = C2(Ω)∩C0(Ω), Y = C(Ω) and a mapping F : R+×X → Y
by

F (λ, v) = ∆v +
(
λ+ µm

)(
ev − 1

)
for m ∈ N. Then F (λ, 0) = 0 and the Fréchet derivative is given as

Fv(λ, v)[w] = ∆w +
(
λ+ µm

)
evw

for w ∈ X . Since
Fv(0, 0)[w] = ∆w + µmw,

the kernel of Fv(0, 0) is spanned by w0 = ϕm. We have

Fλv(λ, v)[Λ, w] = Λevw,
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which implies that Fλv(0, 0)[Λ, w0] does not belong to the range of Fv(0, 0). Hence applying
Theorem 1.7 in [2] to this setting, we obtain two continua S±

m of solutions (λ, v) of (2)
bifurcating from (λ, v) = (µm, 0) satisfying

S+
m =

{(
λ(s), v(·, s)

) ∣∣ lim
s→+0

(
λ(s), v(·, s)

)
=

(
µm, 0

)
and s ∈ (0, α)

}
and

S−
m =

{(
λ(s), v(·, s)

) ∣∣ lim
s→−0

(
λ(s), v(·, s)

)
=

(
µm, 0

)
and s ∈ (−α, 0)

}
in R+ ×X with some α > 0. Moreover the mapping

s ∈ (−α, α) 7→
(
λ(s), v(·, s)

)
∈ R+ ×X

belongs to C2(−α, α) and v(·, s) is expressed as

v(·, s) = sϕm(·) + sρ(·, s)

for a function ρ(·, s) : (−α, α) → Z with C2 dependence in s and ρ(·, 0) = 0, where Z is a
complement of the kernel of Fv(0, 0). We set

Cm = S−
m ∪

{
(µm, 0)

}
∪ S+

m.

The bifurcation result is established. Finally, we will compute the Morse index. At(
λ(s), v(·, s)

)
∈ Cm, it follows from a perturbation theory in [9] that the k-th eigenpair(

νkm, ψ
k
m

)
=

(
νkm(s), ψk

m(·, s)
)
is C2 dependence in s. A simple computation yields

νkm(0) =
(
k2 −m2

)
π2 and ψk

m(x, 0) = ϕk(x) =
√
2 sin kπx

for
(
λ, v

)
=

(
µm, 0

)
∈ Cm. Under these notations, we have

v̇(x, 0) = ϕm(x) = ψm
m(x, 0) =

√
2 sinmπx,

where v̇ stands for (d/ds)v(·, s) and v̇(·, 0) = (d/ds)v(·, s)|s=0. Now we have the following
lemmas:

Lemma 2 For k ∈ N, we have the following:

Ik,1 ≡
∫ 1

0

ψk
m(x, 0) dx =

√
2

kπ

{
1− (−1)k

}
,

Ik,2 ≡
∫ 1

0

{
ψk
m(x, 0)

}2
dx = 1,

Ik,3 ≡
∫ 1

0

{
ψk
m(x, 0)

}3
dx =

4
√
2

3kπ

{
1− (−1)k

}
,

Ik,4 ≡
∫ 1

0

{
ψk
m(x, 0)

}4
dx =

3

2
.

Lemma 3 If m is even and ν̇mm(0) = λ̇(0) = 0, then we have

Jm ≡
∫ 1

0

{ψm
m(x, 0)}2 ψ̇m

m(x, 0) dx = −5

6
.
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Proof Differentiating (5) with respect to s and putting s = 0 and k = m, then we have

∆ψ̇m
m(x, 0) + µmψ̇m

m(x, 0) = −µm {ψm
m(x, 0)}2

because of νmm(0) = ν̇mm(0) = λ̇(0) = 0 and

∆ψ̇m
m(x, 0) + (mπ)

2
ψ̇m
m(x, 0) = (mπ)

2
(cos 2mπx− 1) .

Solving this ordinary differential equation with ψ̇m
m(0, 0) = ψ̇m

m(1, 0) = 0 under the restric-
tion

d

ds

∫ 1

0

{ψm
m(x, s)}2 dx = 2

∫ 1

0

ψm
m(x, s)ψ̇m

m(x, s) dx = 0

at s = 0 and noting that m is even, we obtain

ψ̇m
m(x, 0) =

4

3
cosmπx− 1− 1

3
cos 2mπx =

4

3
cosmπx− 4

3
+

1

3
{ψm

m(x, 0)}2 ,

which yields the conclusion along with Im,2 and Im,4 in Lemma 2. 2

We return back to the proof of Proposition 2. Differentiating (2) twice and (5) once
with respect to s, we have

∆v̈ + λ̈(ev − 1) + 2λ̇ev v̇ + λev v̇2 + λev v̈ = 0

and
∆ψ̇ + λ̇evψ + λev v̇ψ + λevψ̇ = −ν̇ψ − νψ̇.

Putting s = 0 and k = m, multiplying by ψm
m(x, 0) and integrating them over (0, 1), we

have

2λ̇(0)

∫ 1

0

{ψm
m(x, 0)}2 dx+ µm

∫ 1

0

{ψm
m(x, 0)}3 dx = 0

and (
λ̇(0) + ν̇mm(0)

)∫ 1

0

{ψm
m(x, 0)}2 dx+ µm

∫ 1

0

{ψm
m(x, 0)}3 dx = 0.

Hence, Im,2 and Im,3 in Lemma 2 yield

λ̇(0) = ν̇mm(0) = −2
√
2

3
mπ {1− (−1)m} =

{
0 for even m,

− 4
√
2

3 mπ for odd m.

Henceforth, we assume that m is even. Differentiating (2) three times and (5) twice with
respect to s, putting s = 0 and k = m, multiplying by ψm

m(x, 0), integrating them over (0, 1)

and eliminating
∫ 1

0
{ψm

m(x, 0)}2 v̈(x, 0) dx, we have

2(mπ)2Im,4 + 6(mπ)2Jm = −3ν̈mm(0)Im,2

and hence

ν̈mm(0) =
2(mπ)2

3
> 0

by Lemmas 2 and 3. We conclude that{
νmm(0) = 0 and ν̇mm(0) < 0 for odd m,
νmm(0) = ν̇mm(0) = 0 and ν̈mm(0) > 0 for even m.
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In the case of m = 2k − 1, we have νmm(s) > 0 for sufficiently small s < 0,
νmm(0) = 0,
νmm(s) < 0 for sufficiently small s > 0

and i (λ(0), 0) = i
(
µ2k−1, 0

)
= 2k − 2. Hence we have

i(λ(s), v(·, s)) =
{

2k − 2 for sufficiently small s < 0,
2k − 1 for sufficiently small s > 0.

In the case of m = 2k, we have νmm(s) > 0 for sufficiently small |s| > 0, νmm(0) = 0 and
i (λ(0), 0) = i

(
µ2k, 0

)
= 2k − 1. Hence we have

i(λ(s), v(·, s)) = 2k − 1

for sufficiently small |s| > 0, which completes the proof. 2

Remark 1 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω for n ≥ 2. If we
assume that the eigenvalue µm is simple for all m ∈ N, the conclusion of bifurcation in
Proposition 2 is still true. However, the relation of Morse index is open. The bifurcation
problems where the zero eigenvalue is double are also considered for the equations other than
(2). In [3], the authors obtain four bifurcation curves and compute their Morse indices in a
square in Theorem 1.1. For a disk with Neumann boundary condition, in [10], the author
gives a sufficient condition for a branch of non-trivial solution not to have a secondary
bifurcation point in Theorem B and applies these results including the simple eigenvalue
case in Theorem C.

3 Blow-up Let u0 ∈ C0(Ω). We transform (1) into the integral equation

u(t) = e−Atu0 + λ

∫ t

0

e−A(t−s)
(
eu(s) − 1

)
ds

and establish a time-local solution

u ∈ C
(
[0, Tu0

);C0(Ω)
)
∩ C1

(
(0, Tu0

);C0(Ω)
)

by an abstract theory of evolution equation. Here, we extend A ≡ −∆ to be a self-adjoint
positive operator in C0(Ω) with the domain

D(A) =
{
u ∈ C0(Ω), Au ∈ C0(Ω)

}
and write the semi-group generated by A as e−At. In order to prove the proposition by
Kaplan’s method [8], we integrate the solution multiplied by the first eigenfunction ϕ1 of
A and differentiate it with respect to t. Then we get the differential inequalities and solve
them.

Proof of Proposition 3 We set

k =
∥∥ϕ1∥∥

1
and a(t) =

∫
Ω

u(x, t)ϕ1(x) dx
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for all t ∈ (0, Tu0). We have

a′ = −µ1a+ λ

∫
Ω

(
eu − 1

)
ϕ1(x) dx >

(
λ− µ1

)
a

by expx− 1 ≥ x for x ∈ R and integrate this inequality to obtain

a > e(λ−µ1)ta(0) = e(λ−µ1)t
∫
Ω

u0(x)ϕ
1(x) dx > 0

for all t ∈ (0, Tu0
). Next the Jensen inequality [20] and positivity of a imply that

a′ = −µ1a + λ

∫
Ω

euϕ1 dx− λk

> −µ1a+ λk
(
exp

a

k
− 1

)
>

(
λ− µ1

)
a+

λ

2k
a2

by expx ≥ 1 + x+ x2/2 for x ≥ 0. Hence putting p(t) ≡ 1/a(t) for all t ∈ (0, Tu0
), we have

p′ +
(
λ− µ1

)
p < − λ

2k
.

Multiplying exp
(
λ− µ1

)
t, and integrating this differential inequality with respect to t, we

obtain

0 < p <

{
p0e

−(λ−µ1)t + λ
2k(λ−µ1)

(
e−(λ−µ1)t − 1

)
for λ 6= µ1,

p0 − λ
2k t for λ = µ1,

where p0 = 1/a(0). Let

T ≡


−1

µ1−λ log

(
1− 2p0k(µ1−λ)

λ

)
for 0 < λ < µ1,

2k
λ p0 for λ = µ1,

1
λ−µ1 log

(
1 +

2p0k(λ−µ1)
λ

)
for λ > µ1.

Then since the assumption of (i) in Proposition 3 is equivalent to

1

p0
>

2k
(
µ1 − λ

)
λ

for 0 < λ < µ1, we have

0 < 1−
2p0k

(
µ1 − λ

)
λ

< 1.

Hence T is well-defined and we find 0 < T < +∞ such that p(t) → +0 as t→ T . The same
is true of the case of λ ≥ µ1. Finally, we have

+∞ = lim
t→T

1

p(t)
= lim

t→T
a(t) = lim

t→T

∫
Ω

u(x, t)ϕ1(x) dx ≤ k lim
t→T

sup
x∈Ω

u(x, t),

which leads us to the proof of proposition. 2
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4 Negative global solution We decompose (1) into the heat equation with u0 ≤ 0 and
the nonlinear equation with w0 ≡ 0. First, we begin with the fundamental lemmas.

Lemma 4 Let u0 ∈ C0(Ω) be u0(x) ≤ 0 for any x ∈ Ω. The function

w1(x, t) ≡ e−Atu0 ∈ C
(
[0,+∞);C0(Ω)

)
∩ C1

(
(0,+∞);C0(Ω)

)
solves  wt = ∆w x ∈ Ω, t > 0,

w(x, t) = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = u0(x) x ∈ Ω

and satisfies w1 ≤ 0 in Ω× [0,+∞).

Lemma 5 Let λ > 0. The function

w2(x, t) ≡
∫ t

0

e−A(t−s) (−λ) ds ∈ C
(
[0,+∞);C0(Ω)

)
∩ C1

(
(0,+∞);C0(Ω)

)
solves  wt = ∆w − λ x ∈ Ω, t > 0,

w(x, t) = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = 0 x ∈ Ω

and satisfies w2 ≤ 0 in Ω× [0,+∞).

We solve the nonlinear equation by constructing the lower-upper solution pair.

Proposition 5 Let w1 be a solution obtained in Lemma 4. For any λ > 0, there exists a
unique solution

w3 ∈ C
(
[0,+∞);C0(Ω)

)
∩ C1

(
(0,+∞);C0(Ω)

)
of  wt = ∆w + λ (ew1+w − 1) x ∈ Ω, t > 0,

w(x, t) = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = 0 x ∈ Ω

satisfying w3 ≤ 0 in Ω× [0,+∞).

Proof Since (0, w2) is an upper and lower solution pair, the statement follows from [18].

Proof of Theorem 1 Setting u = w1+w3, we have a unique solution in an element of the
desired space satisfying u ≤ 0 in Ω×R+. Note that u(·, t) ∈ C2(Ω)∩C0(Ω) ⊂ H2(Ω)∩H1

0 (Ω)
for all t ≥ 1. Applying the Poincaré inequality (8), we have

µ1

∫
Ω

|∇u|2 dx ≤
∫
Ω

(∆u)
2
dx

for u ∈ H2(Ω) ∩H1
0 (Ω) and finally

1

2

d

dt

∫
Ω

|∇u|2 dx = −
∫
Ω

(∆u)
2
dx+ λ

∫
Ω

eu |∇u|2 dx

≤ −
∫
Ω

(∆u)
2
dx+ λ

∫
Ω

|∇u|2 dx

≤ −
(
µ1 − λ

) ∫
Ω

|∇u|2 dx

for t ≥ 1, which yields

‖u(·, t)‖2H1
0
≤ e−2(µ1−λ)(t−1) ‖u(·, 1)‖2H1

0
→ 0(9)

as t→ +∞. 2
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5 Global solution In this section, we concentrate on Ω ⊂ R2 and apply the Trudinger-
Moser inequality to our problem. We establish the global solution for sufficiently small
parameter and initial value. To obtain the estimate in the H1

0 space, we extend B = −∆ to
be a self-adjoint positive operator in X = L2(Ω) with the domain D(B) = H2(Ω) ∩H1

0 (Ω)
and write the semi-group generated by B as e−Bt. For n = 1, we can also derive the similar
estimates. We start with the Trudinger-Moser inequality and an easy lemma.

Proposition 6 ([14, 19]) Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω.
Then there exists CTM > 0 which depends only on Ω such that∫

Ω

eu dx ≤ CTM exp

(
1

16π

∫
Ω

|∇u|2 dx
)

holds for all u ∈ H1
0 (Ω).

Lemma 6 Let a, b, k > 0. We define

f(t) = aekt + b− t

for t ≥ 0. If

b+
1

k
log a < −1

k
(log k + 1)

holds, then there exist t1 ∈ (0, t0) and t2 ∈ (t0,+∞) such that f(t) ≥ 0 is equivalent to
0 ≤ t ≤ t1 or t ≥ t2, where t0, t1 and t2 satisfy t0 = (1/k) log (1/ak) and f ′(t0) = f(t1) =
f(t2) = 0.

Proof First, we have f(0) = a+ b > 0 and f ′(t) = akekt − 1. Note that

t0 =
1

k
log

1

ak
> b+

1

k
> 0

from the assumption. We find f ′(t0) = akekt0 − 1 = 0 and

f(t0) = aekt0 + b− t0 = b+
1

k
log a+

1

k
(log k + 1) < 0,

which completes the proof. 2

Proof of Theorem 2 Note that eu ∈ L1(Ω) for u ∈ H1
0 (Ω) by Proposition 6. Hence the

Lyapunov function Lλ(u) defined in (6) is well-defined for u ∈ H1
0 (Ω). Since

d

dt
Lλ(u) = −‖ut(t)‖22 ≤ 0

holds, Lλ(u) is the Lyapunov function for (1) and we have

Lλ(u) = Lλ(u0)−
∫ t

0

‖ut(s)‖22 ds ≤ Lλ(u0),

which yields

1

2
‖∇u‖22 ≤ λ

∫
Ω

eu dx− λ

∫
Ω

u dx+
1

2
‖u0‖2H1

0
+ λ

∫
Ω

(u0 − eu0) dx.
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Since

λ

∫
Ω

eu dx = CTMλ× 1

CTM

∫
Ω

eu dx ≤ 1

2
C2

TMλ
2 +

1

2C2
TM

(∫
Ω

eu dx

)2

holds by the Young inequality, we have

1

2
‖∇u‖22 <

1

2
C2

TMλ
2 +

1

2C2
TM

(∫
Ω

eu dx

)2

+ λ
√
|Ω| ‖u‖2 +

1

2
‖u0‖2H1

0

≤ 1

2
C2

TMλ
2 +

1

2
exp

(
1

8π
‖∇u‖22

)
+
λ
√

|Ω|√
µ1

‖∇u‖2 +
1

2
‖u0‖2H1

0

owing to exp x > x for x ∈ R, the Trudinger-Moser inequality (Proposition 6) and the
Poincaré inequality (8). Again the Young inequality yields

(10)
λ
√
|Ω|√
µ1

‖∇u‖2 =

√
2λ

√
|Ω|√

µ1
× 1√

2
‖∇u‖2 ≤ |Ω|

µ1
λ2 +

1

4
‖∇u‖22 ,

which implies that

1

2
‖∇u‖22 ≤ 1

2
C2

TMλ
2 +

1

2
exp

(
1

8π
‖∇u‖22

)
+

|Ω|
µ1
λ2 +

1

4
‖∇u‖22 +

1

2
‖u0‖2H1

0

and that

‖u‖2H1
0
≤ 2 exp

(
1

8π
‖u‖2H1

0

)
+ 2

(
C2

TM +
2 |Ω|
µ1

)
λ2 + 2 ‖u0‖2H1

0
.

Hence for f(t) = aekt + b− t with

a = 2, b = 2

(
C2

TM +
2 |Ω|
µ1

)
λ2 + 2 ‖u0‖2H1

0
and k =

1

8π
,

then we have f(‖u‖2H1
0
) ≥ 0 for all t ≥ 0. Then the assumption

b+
1

k
log a < −1

k
(log k + 1)

in Lemma 6 is satisfied. In fact

2

(
C2

TM +
2 |Ω|
µ1

)
λ2 + 2 ‖u0‖2H1

0
+ 8π log 2 < 8π (log 8π − 1)

holds by (7). We can apply Lemma 6 to obtain ‖u‖2H1
0
≤ t1 or ‖u‖2H1

0
≥ t2. Now that we

have

‖u0‖2H1
0
< 4π (log 4π − 1) < 8π log 4π = t0

along with (7), we find

(11) ‖u‖2H1
0
≤ t1 < t0 = 8π log 4π

so long as the local solution exists. Hence we have a global solution in H1
0 (Ω). Next, we

define Xα as the domain of Bα for α ≥ 0 with graph norm ‖u‖Xα = ‖Bαu‖2 for u ∈ Xα.
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Then we derive the estimate in X1/2+ε = H1+2ε(Ω) for ε ∈ (0, 1/2) by the smoothing effect
of the heat equation. In fact, we have for t ≥ 1

‖u‖X1/2+ε

=
∥∥∥B 1

2+εu
∥∥∥
2

≤
∥∥∥Bεe−BtB

1
2u0

∥∥∥
2
+ λ

∫ t

0

∥∥∥B 1
2+εe−B(t−s)

(
eu(s) − 1

)∥∥∥
2
ds

≤ C1t
−εe−C2t ‖u0‖H1

0
+ λC3

∫ t

0

(t− s)
−( 1

2+ε)
e−C2(t−s) ‖eu − 1‖2 ds

≤ C1

√
t0 + λC3

∫ t

0

(t− s)
−( 1

2+ε)
e−C2(t−s)

(∥∥e2u∥∥ 1
2

1
+ ‖1‖2

)
ds

≤ C1

√
t0 + λC3

∫ t

0

(t− s)
−( 1

2+ε)
e−C2(t−s)

{
C

1
2

TM exp

(
1

8π
‖∇u‖22

)
+ |Ω|

1
2

}
ds

< C1

√
t0 +

λC3

C
1
2−ε
2

{√
CTM exp

(
t0
8π

)
+

√
|Ω|

}
Γ

(
1

2
− ε

)
by (11), where Γ(p) is a gamma function defined by

Γ (p) =

∫ +∞

0

e−xxp−1dx

for p > 0 and henceforth in this proof we will denote by Ci a positive constant which
depends only on Ω and ε, where i ∈ N. Since we have H1+2ε(Ω) ⊂ C(Ω) with the Sobolev
embedding constant C4 > 0, we find

‖u‖∞ ≤ C4 ‖u‖
X

1
2
+ε < C5

for t ≥ 1. Hence the estimate similar to (9) is given as

‖u(·, t)‖2H1
0
< e−2(µ1−λ expC5)(t−1) ‖u(·, 1)‖2H1

0
→ 0

for λ < λ1 ≡ µ1/ expC5 as t→ +∞. 2

Proof of Theorem 3 First, we note that µ1 = π2. In the same manner, Lyapunov
function yields

1

2
‖∇u‖22 ≤ λ

∫ 1

0

e|u| dx+ λ ‖1‖2 ‖u‖2 +
1

2
‖u0‖2H1

0

≤ λe
CS∥u∥

H1
0 +

λ

π
‖∇u‖2 +

1

2
‖u0‖2H1

0

≤ λe
CS∥u∥

H1
0 +

1

4
‖∇u‖22 +

λ2

π2
+

1

2
‖u0‖2H1

0

owing to H1(0, 1) ⊂ C([0, 1]) with the Sobolev embedding constant CS > 0, (8) and (10).
Since we have

CS ‖u‖H1
0
=

√
2eCS × 1√

2e
‖u‖H1

0
≤ eC2

S +
1

4e
‖u‖2H1

0
,
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we find

1

2
‖∇u‖22 ≤ λeeC

2
S exp

(
1

4e
‖u‖2H1

0

)
+

1

4
‖∇u‖22 +

λ2

π2
+

1

2
‖u0‖2H1

0

=
√
2λeeC

2
S × 1√

2
exp

(
1

4e
‖u‖2H1

0

)
+

1

4
‖∇u‖22 +

λ2

π2
+

1

2
‖u0‖2H1

0

≤ λ2e2eC
2
S +

1

4
exp

(
1

2e
‖u‖2H1

0

)
+

1

4
‖∇u‖22 +

λ2

π2
+

1

2
‖u0‖2H1

0

again by the Young inequality and

exp

(
1

2e
‖u‖2H1

0

)
+ 4

(
e2eC

2
S +

1

π2

)
λ2 + 2 ‖u0‖2H1

0
− ‖u‖2H1

0
≥ 0,

which completes the proof by applying Lemma 6 for

a = 1, b = 4

(
e2eC

2
S +

1

π2

)
λ2 + 2 ‖u0‖2H1

0
and k =

1

2e
.

2

Proof of Proposition 4. Since the embedding X1/2+ε ⊂ H1
0 (Ω) is compact, the orbit

∪t≥1 {u(·, t)} is relatively compact in H1
0 (Ω). Hence the omega limit set ω(u0) is invariant,

non-empty, compact and connected in H1
0 (Ω) by Theorem 5.1.8 in [7]. Again by Corollary

7.2.2 in [7] and the existence of the Lyapunov function, we have ω(u0) ⊂ C. Moreover, thanks
to the regularity of nonlinear term (eu − 1) of (1), ω(u0) is a single point by Theorems 1.2
in [5] or 11.4.3 in [7].

2

Remark 2 In the proposition, we impose the same hypotheses as Theorems 2 or 3, which
is not needed. If the global soluiton exists, then the conclusion is true by Theorem 2.1 in
[4].

Acknowledgement. The author would like to express his deepest gratitude to an anony-
mous referee for careful reading of the manuscript.
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