Scientiae Mathematicae Japonicae

Dynamical system on a parabolic and elliptic Gelfand-type equation

TosryA MIYASITA
Received December 11, 2020 revised May 28, 2021

ABSTRACT. We consider the parabolic equation with exponential nonlinearity and the
corresponding elliptic equation. First, we study the set of stationary solution and its
spectral property. Next we show that the solution of parabolic equation blows up in
finite time for the initial value satisfying a positive integrand condition by the Kaplan
method. Finally we find a global solution for the negative initial value by upper-
lower solution method and for the two dimensional domain by the Trudinger-Moser
inequality, respectively. By the global boundedness and the existence of Lyapunov
function, we treat its dynamical properties of the omega limit set.
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the nonlocal problem.

Nowadays, it seems that there are not enough studies for (1) and (2) except [1]. The aim
of this paper is to study (1) and (2), respectively. The solution set of (2) has already been
investigated in [1]. To introduce the known results obtained in [1] and state our theorems,
we denote the m-th eigenvalue and eigenfunction of —A in  with the Dirichlet boundary
condition by u™ and ¢™ normalized as [|¢™ ||, = 1 for m € N, respectively, where || - |, is
the standard LP norm in Q with p € [1, 00]. For the sake of convenience, we set u° = 0. We
define the solution set C by

C= {()\,v) ERT x (C*(2) N Co()) | v = v(x) solves (2) for A > 0},
where Rt = {z | z > 0} and
Co() = {v € C@) | v(z)=0onze 39}

endowed with the L>° norm. In [1], they derived the necessary condition for the existence
of positive classical solution of (2). Together with their results, we have the following
proposition:

Proposition 1 (Cf. Proposition 1.2 in [1]) Let Q C R™ be a star-shaped domain with
respect to the origin with C?- boundary 0 for n € N. There exists Ao which depends only
on Q satisfying Ag > 0 forn =1,2 and A\g > 0 for n > 3. Then we have following:

(i) if (\,v) € C satisfies v > 0 in €, then X € (Ao, pt),

(ii) if (\,v) € C satisfies v < 0 in Q, then X\ > u?,

(ili) if n > 3 and A € (0, \o), then (A, v) € C satisfies v =0 in Q.

If (A\,v) € C is a classical solution, the Morse index ¢ = i(\, v) is defined by the number
of negative eigenvalues v of

A+ Xep = —vp x €,
(5) Y(z) =0 z € 00,
¥l = 1.

First of all, we introduce results of the stationary solution. It is clear that (2) has a
trivial solution (\,v) = (A,0) for any A > 0. The second proposition is concerned with
the bifurcation from the trivial solution and Morse index around the bifurcation point.
The result for (2) is a little bit similar to that for (4). The difference is the value of
the Morse index on the branch of the nontrivial solution set. We prove the existence of
nontrivial solution by the bifurcation theory [2]. We compute Morse index by the exchange
of eigenvalues [11, 12, 13].

Proposition 2 Let Q = (0,1). Then we have ™ = (mx)® and i(A\,0) = m — 1 for
A€ (=t ™ with m € N. Two continua S& C C of nontrivial solution bifurcate at
(A, v) = (@™, 0). Furthermore

2k -2 for (\,v) €S, and m =2k — 1,
iA\v)=23 2k—1 for (\v) €S andm=2k—1,
2k —1 for (\,v) € St and m = 2k

holds for sufficiently close to the bifurcation point (u1™,0), where k € N.
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In [1], they studied the bifurcation diagram and computed the bound for Morse index
globally, not locally around a bifurcation point. If €2 is a unit ball and the solution is positive
and radially symmetric, they establish the existence of singular solution, multiple existence
of the regular solution and bound for its Morse index. Their results are similar to those of
the well-known Gelfand problem

Av+ Ae’ =0.

As mentioned in [6, 15], they also derived the bending result of the solution set for n € [3,9].
Next, we consider the case where the solution blows up in finite time. Thanks to the
convexity of e’ — 1, we can apply the Kaplan method [8] to obtain following two blow-up
conditions of ug.

Proposition 3 Let Q) C R™ be a bounded domain with smooth boundary ) forn € N. For
ug € Co(Q), the solution of (1) blows up in finite time on the condition that

(1) [quo(x)o! (z)de > 2 HgblHl (1t = X) /X holds for 0 < X < p?,

(ii) [ouo(2)p! () dx > 0 holds for X > p'.

The first global existence result is concerned with the nonpositive solution. For the
nonpositive initial value, we establish the global solution by constructing a lower-upper
solution pair.

Theorem 1 Let Q C R™ be a bounded domain with smooth boundary S for n € N. For
ug € Co(Q) with ug(x) <0 for any x € Q, we have T, = 400 and

u € C([0,400); Co(Q2)) N C*((0, +00); Co(Q))
satisfying u < 0 in  x [0,4+00). If X < ut, then
[Ju( )l gy =0
as t = oo, where [l s = |V, for w e HY(Q).

We introduce the main theorems on the global existence for Q C R? and Q = (0,1),
respectively. For small parameter and initial value, we construct the global solution by the
Lyapunov function

1

(6) Ly(u) = f/ \Vul® da — )\/ (e" —u) dz,
2 Ja Q

Sobolev and Trudinger-Moser inequalities.

Theorem 2 Let Q C R? be a bounded domain with smooth boundary 0. For any A > 0
and ug € H () satisfying

2|9
(7) <C:2rM + T |> PLs ||uo||§101 < 4r (logdr — 1),

we have Ty, = +00 and
u € C([0, +00); Hy (2)) N C*((0, +00); L*(2)),

where Cppar > 0 is a constant which depends only on Q) coming from the Trudinger-Moser
inequality. Moreover, there is some A1 > 0 such that for any A < A1, we have

(-, 2) 5 — 0

as t — +oo.
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Theorem 3 Let Q = (0,1). If we replace (7) by
eC? 1 2
2 (62 Cs 4 7r2) A+ [luollpyy < elog2,

then the conclusion of Theorem 2 is still true, where C's > 0 is an embedding constant which
depends only on Q0 coming from H}(Q) C C(Q).

In the last result, we derive the dynamical properties. The Lyapunov function (6) plays
an important role in arguing the convergence problem.

Proposition 4 (Cf. Theorem 2.1 in [4]) Under the same hypotheses as Theorems 2 or
3, w(ug) is invariant, non-empty, compact and connected in Hg(2). Moreover w(ug) is a
single point in HE(Q).

This paper is composed of 5 sections. In Section 2, we show Propositions 1 and 2. We
obtain the stationary solution by a bifurcation theory and compute the Morse index. In
Section 3, we obtain some differential inequalities by the energy method and solve them
to show Proposition 3. In Section 4, we decompose a solution of (1) into that of the heat
equation with the non-zero initial value and the nonlinear heat equation with the zero
initial value. Then we construct a lower and upper solution, which leads us to the proof of
Theorem 1. In Section 5, we use the Lyapunov function and Trudinger-Moser inequality.
Then we derive the H! estimate, which gives us the proof of Theorems 2 and 3. Finally,
we derive the compactness of the orbit, which prove that the global solution converges to a
stationary solution. By the existence of the Lyaounov function, we can prove Proposition
4.

2 Stationary solution First, we consider the condition on a parameter when a positive,
negative or trivial solution exists. We use the Kaplan method [8] and Pohozaev identity
[16]. If © is a ball, similar results to those in Proposition 1 are obtained in [1]. Next,
we apply a bifurcation theory in [2], obtain a curve of solution (A, v) and parametrize the
solution (A\,v) = (A(s),v(+,s)) and the eigenpair (v,v) = (v(s),?¥(-,s)), respectively. To
compute the Morse index, we consider the signs of v/(s) and v”(s) at bifurcation points in
the same way as [11, 12, 13]. Owing to the boundary condition, the proof for (2) is more
complicated than that for (4) as proven in [12]. However, for completeness we prove it.

We prepare the Pohozaev identity in [16].

Lemma 1 Let Q@ C R"™ be a bounded domain with C?-boundary OS2 for n € N. Let f(v) €
C(R). Suppose that v € C?(Q) N C(Q) satisfies

Av+ f(v)=0 z€Q,
v(xz) =0 x € 0.

Then the identity

%/299(;5.”) (g:j)zdw—i—n;Q/Qf(v)vdx:n/QF(v)d:E

holds, where dw is the area element of OQ with standard metric, v is the outer unit normal
vector at © and

Fv) = / i) dp.
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Proof of Proposition 1 By p and ¢, we denote the first eigenvalue p! and corresponding
eigenfunction ¢! of —A in a star-shaped € with the Dirichlet boundary condition. Then
we have ¢ > 0 in Q. First of all, we obtain relations between p and A stated in (i) and (ii)
of the proposition. Multiplying (2) by ¢ > 0 and integrating it over €, we have

—u/¢vdx+/\/¢(e”—1) dz =0
Q Q
and then
(/\—u)/dwdx<0
Q

for v 20 by expz — 1 > x for z € R . If a solution v > 0 in 2, then we have A < pu. For
v < 0, we have A > u. Next we obtain a lower bound A\g given in (i) and (ii). In the case

of n =1,2, since
/ Vol dz = )\/ (e’ — 1) vdx
Q Q

holds, we conclude that A\g > 0 for v Z 0 by (expax — 1)x > 0 for all z € R. Thus we
concentrate on the case of n > 3. Applying Lemma 1 to f(v) = A(e” —1) and F(v) =
A(e” —v — 1) and noting that Q is star-shaped, we find

n—2

/\/(e”—l)vdacgn)\/(e”—v—l)dm
2 Q Q
n—2 2 n—2 n-—2
= — U—l
1 /Q|Vv\ dx ( 5 1 >)\/Q(e Yvdx
n/\/(ev—v—l)dx—n72/\/(ev—l)vdx.
Q Q

n—2 - 3n+ 2 n—2

and then

IN

Putting

glx)=n(e"—xz—1)—

4 4 4 ’
we have g(1) > 0,
3 2 3 2 -2
g (z) = n;— e’ — n;— o 1 e’z
and lim, 1 o g(z) = lim, 4 ¢'(x) = —oo. Hence there exists & > 0 which depends only

on n such that g(x) < 0 for x > £. Since for ¢, k € [0, 1],

g(z) < n(e®—xz-1)
bd
< _ EXT d
< n/o de(e ex) de
1
= nx/ (e — 1) de
0
! ! d KRET
= nx — (e"7) dr de
0 0 dk
1ol
= ns;z:Q/ / e*** dk de
0o Jo
1l
< mc2/ / e dk de
o Jo

na?e® for x > 0,
na> forx <0
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holds for all x € R, we have
—2
n / |Vv\2 dx
4 Q
< )\/ g(v) dx+>\/ g(v) dm—i—)\/ g(v)dx
an{v<o} anfo<v<e} Qn{v>¢}

< )\n/ v2dx + )\n/ v2e? dz
Qn{v<0} an{o<v<¢}

< )\n(e’5+1)/v2dx
Q

< )\—?(ef—i—l)/ Vol® dz
K Q

thanks to the Poincaré inequality
1

N

(8) lolly < Vol

for all v € H}(Q), which implies that

1 _
o = M (n—2)

1
=pnze d Mo < A
ety ~# and 0<ds

for a nontrivial solution v. Finally we show the last claim (iii). Suppose that v(z) is a
nontrivial solution of (2). Then for 0 < A < A, we have

)\0/ |Vl dz < )\/ |Vl dz < AO/ |Vo|? de,
Q Q Q

which implies that v = 0. O
Proof of Proposition 2 An easy calculation yields
(u™, ™) = ((mﬂ')2 ,V2sin mﬂ'x)

for m € N. At (\,v) = (), 0), (5) has the k-th eigenvalue v* = ;¥ — \ and the corresponding
eigenfunction ¢¥* = ¢* for k € N. Hence, we have a simple eigenvalue ™ = 0 at (\,v) =
(™, 0) and i(\,v) = m — 1 for (A\,v) = (\,0) with g™~ ! < X\ < p™ with m € N. The
first part of proposition is proved. We will show that the nontrivial solutions bifurcate from
(A, v) = (1™, 0). We define X = C2(Q)NCy(Q), Y = C(NQ) and a mapping F : Rt x X — Y
by

F(\v)=Av+ (A +p™) (e’ —1)

for m € N. Then F(\,0) = 0 and the Fréchet derivative is given as
Fy(\v)[w] = Aw+ (A + ™) e’w

for w € X. Since
Fy(0,0)[w] = Aw + ",

the kernel of F,(0,0) is spanned by wg = ¢™. We have

Fyy(N\,0)[A, w] = Ae®w,
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which implies that F),(0,0)[A, wo] does not belong to the range of F,(0,0). Hence applying
Theorem 1.7 in [2] to this setting, we obtain two continua S of solutions (\,v) of (2)
bifurcating from (A, v) = (u™,0) satisfying

St =1 (A(s),v(-8) | lim (A(s),v(-,s)) = (u™,0) and s € (O,a)}

s——+0

. S, = {()\(s),v( ) | sl_1>m0 (A(s),v(-,8)) = (w™,0) and s € (—a70)}
in Rt x X with some o > 0. Moreover the mapping
s€ (—a,a) = (A(s),v(,s)) eRT x X
belongs to C?(—a,a) and v(-, s) is expressed as
v(-,8) = s¢™ () + sp(-, )

for a function p(-,s) : (—a, ) — Z with C? dependence in s and p(-,0) = 0, where Z is a
complement of the kernel of F,(0,0). We set

Crn =S, U{(W™,0)} UST.

The bifurcation result is established. Finally, we will compute the Morse index. At
(A(s),v(-,8)) € Crm, it follows from a perturbation theory in [9] that the k-th eigenpair
(vh k) = (VF(s),¥k (-, s)) is C? dependence in s. A simple computation yields

v (0) = (k* —m?)7? and  ¢F (2,0) = ¢*(z) = V2sinkra
for (/\,v) = (um,O) € C,,- Under these notations, we have

o(x,0) = ¢™(x) = Y7 (x,0) = V2sinmnaz,
where ¢ stands for (d/ds)v(-,s) and o(-,0) = (d/ds)v(-, s)|s=0. Now we have the following

lemmas:

Lemma 2 For k € N, we have the following:
" V2
Ik71 E/ wﬁw(x?o)dx: ?{1_(_1>k}a
0 ™
! 2
Ik,2 = / {1/)7131(3”70)} dr = 13
Ikg,/ {wk (2,0} {1ff "1,
T z/ (b0} dr =,
0

Lemma 3 If m is even and v7(0) = A(0) = 0, then we have

5
m_/{w (. 001 g3, 0) o = >
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Proof Differentiating (5) with respect to s and putting s = 0 and k& = m, then we have
Ay (,0) + p™ady(,0) = =™ {57 (,0)}
because of v7(0) = (0) = A(0) = 0 and
APz, 0) + (mm)® P (x,0) = (mm)® (cos 2mmz —1).

Solving this ordinary differential equation with ¢/ (0,0) = ¢"*(1,0) = 0 under the restric-
tion

d 1 1 .
%/0 {1/)2(:0,5)}2 d:E:Z/O v (x, s)(x, s)de =0

at s = 0 and noting that m is even, we obtain

. 4 1 1
Y(x,0) = gcosmﬂx—l—gCOSQmmczgcosmﬂx—g—i—g{d)ﬁ(x,O)}Q,

which yields the conclusion along with I, o and I, 4 in Lemma 2. O

We return back to the proof of Proposition 2. Differentiating (2) twice and (5) once
with respect to s, we have

A+ Ae? — 1) + 2Xe%0 4+ Xe’ 0% + Xei = 0
and . . . .
A+ Xe’ ) + Xe v + XV = —p — ).

Putting s = 0 and k£ = m, multiplying by ¥ (z,0) and integrating them over (0,1), we
have

0) / (@, 0))? do + ™ / (.00} dz =0
and

(Ao + 20 /{w,;x()} dx+um/1{¢z§(x,0)}3 dz = 0.
0

Hence, I, 2 and I, 3 in Lemma 2 yield

50 =50 = 2L - -y = { ¥
3

for even m,
420 for odd m.

Henceforth, we assume that m is even. Differentiating (2) three times and (5) twice with
respect to s, putting s = 0 and k = m, multiplying by ¢ (x, 0), integrating them over (0, 1)
and eliminating fol {¢m™(x,0)} i(z,0) dz, we have

2(mm) 2L 4 + 6(mm)* Ty = =307 (0) 0

and hence

by Lemmas 2 and 3. We conclude that

v(0)=0 and 27(0) <0 for odd m,
v(0)=v(0)=0 and #(0) >0 for even m.
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In the case of m = 2k — 1, we have

vi(s) >0  for sufficiently small s < 0,
Vi (0) =0,
v(s) <0  for sufficiently small s > 0

and 7 (A(0),0) =i (u?*~1,0) = 2k — 2. Hence we have

. | 2k —2 for sufficiently small s < 0,

i(A(s),v(,5)) = { 2k — 1 for sufficiently small s > 0.

In the case of m = 2k, we have v]'(s) > 0 for sufficiently small |s| > 0, v/7(0) = 0 and
i (X(0),0) =i (u**,0) = 2k — 1. Hence we have

i(A(s),v(-,8)) =2k -1
for sufficiently small |s| > 0, which completes the proof. O

Remark 1 Let Q C R™ be a bounded domain with smooth boundary 02 for n > 2. If we
assume that the eigenvalue p™ is simple for all m € N, the conclusion of bifurcation in
Proposition 2 is still true. However, the relation of Morse index is open. The bifurcation
problems where the zero eigenvalue is double are also considered for the equations other than
(2). In [3], the authors obtain four bifurcation curves and compute their Morse indices in a
square in Theorem 1.1. For a disk with Neumann boundary condition, in [10], the author
gives a sufficient condition for a branch of nmon-trivial solution mot to have a secondary
bifurcation point in Theorem B and applies these results including the simple eigenvalue
case in Theorem C.

3 Blow-up Let ug € Cy(Q). We transform (1) into the integral equation
t
u(t) = e Mug + )\/ e A=) (e“(s) —1)ds
0

and establish a time-local solution
u € C’([O,TuO); C’O(ﬁ)) N C’l((O,TuO); C’O(ﬁ))

by an abstract theory of evolution equation. Here, we extend A = —A to be a self-adjoint
positive operator in Cp(€2) with the domain

D(A) = {u €Co(Q), Aue co(ﬁ)}

and write the semi-group generated by A as e~“f. In order to prove the proposition by
Kaplan’s method [8], we integrate the solution multiplied by the first eigenfunction ¢! of
A and differentiate it with respect to t. Then we get the differential inequalities and solve

them.

Proof of Proposition 3 We set

k= H(blHl and a(t) = /Qu(x,t)qﬁl(m) dz
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for all t € (0,Ty,). We have

d=—plat X[ (" =1)¢" (x)dz>(A—p")a
Q
by expx — 1 > x for x € R and integrate this inequality to obtain
a > G(Af“l)ta(()) = 6()‘7“1)25/ ug(x)d (x) dz > 0
Q

for all t € (0,Ty,). Next the Jensen inequality [20] and positivity of a imply that

d = —pla —I—)\/euqbldw—/\k‘
Q

V

—pta + Ak(exp% — 1)

1 A,
> (A u)a—i—zka

by expz > 1+ 2 + x2/2 for > 0. Hence putting p(t) = 1/a(t) for all t € (0,T,,), we have
A
P+ ()\—,ul)p< T

Multiplying exp (A — p') ¢, and integrating this differential inequality with respect to t, we
obtain
—(A—pt)t A —(A—ph)t 1
0<p< pge( H)Jrzk(k—ul)(e( N)fl) for A #
po—ﬁt for A = pt,

where pg = 1/a(0). Let
1_
Hf—_l)\log <1—2pok(:>\)> for 0 < X < ut,
T 2 po for A = !,

L log (1+<>) for A > L.

Then since the assumption of (i) in Proposition 3 is equivalent to

1_
i>2k(;¢ /\)
Po A

for 0 < A < pu!, we have
_ 2p0]€ (,ul — )\)
A

Hence T is well-defined and we find 0 < T' < +oc0 such that p(t) = +0 as t — 7. The same
is true of the case of A > p!. Finally, we have

0<1 < 1.

. 1 . . 1 :
= _— = < S
+o0 tl;n% o0 tl;n% a(t) }LH% A u(z,t)o (z)de <k tlg% ;lelgu(m, t),

which leads us to the proof of proposition. o
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4 Negative global solution We decompose (1) into the heat equation with ug < 0 and
the nonlinear equation with wy = 0. First, we begin with the fundamental lemmas.

Lemma 4 Let uy € Cy(Q) be up(x) < 0 for any x € Q. The function
wi(z,t) = e *ug € C([0,+00); Co(Q2)) N CH((0, +00); Co())

solves
= Aw re, t>0,
w(z,t) =0 xed, t>0,
w(z,0) =up(z) z€Q
and satisfies w1 < 0 in £ x [0, +00).

Lemma 5 Let A > 0. The function

wa(x,t) = /t e A=) () ds € C ([0, +00); Co(Q)) N C’l((O, +00); Co(2))

0
solves
we=Aw—-X z€Q, t>0,
w(z,t) =0 r eI, t>0,
w(z,0)=0 x€Q
and satisfies wy < 0 in £ x [0, 400).
We solve the nonlinear equation by constructing the lower-upper solution pair.

Proposition 5 Let wy be a solution obtained in Lemma 4. For any A > 0, there exists a
unique solution

of
wy = Aw+)\(“’1+w—1) reN, t>0,
w(a,t) = T, 130,
w(z,0) = x €

satisfying wz < 0 in Q x [0, —|—oo).

Proof Since (0, ws) is an upper and lower solution pair, the statement follows from [18].

Proof of Theorem 1 Setting u = w; +ws3, we have a unique solution in an element of the
desired space satisfying u < 0in QxR*. Note that u(-,t) € C?(Q)NCo(Q) C H2(Q)NHL(Q)
for all ¢ > 1. Applying the Poincaré inequality (8), we have

ul/ Vul® dzg/(Au)Q
Q

for u € H%(Q) N H}(Q) and finally

2dt/|V\dx

—/ (Au)® dx—i—)\/ e |Vul* dx
Q Q
/(Au) dx—l—)\/|Vu| dx

/1’ - / |VU‘ dx
for t > 1, which yields
" a7y < €207l Dl — 0

as t — +o0. O

IA

IN
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5 Global solution In this section, we concentrate on  C R? and apply the Trudinger-
Moser inequality to our problem. We establish the global solution for sufficiently small
parameter and initial value. To obtain the estimate in the H} space, we extend B = —A to
be a self-adjoint positive operator in X = L?(Q2) with the domain D(B) = H?(Q) N H}(Q)
and write the semi-group generated by B as e~ 5. For n = 1, we can also derive the similar
estimates. We start with the Trudinger-Moser inequality and an easy lemma.

Proposition 6 ([14, 19]) Let Q C R? be a bounded domain with smooth boundary OS).
Then there exists Cppy > 0 which depends only on Q0 such that

1
/ e“dr < Crprexp (/ |Vul® dx)

Lemma 6 Let a,b,k > 0. We define

holds for all u € HJ ().

f(t)=ae* +b—t

fort>0. If

1 1
b+ %1oga< % (logk+1)

holds, then there exist t1 € (0,t9) and ta € (to,+00) such that f(t) > 0 is equivalent to
0 <t<ty ort>ty, wherety, t1 and ty satisfy to = (1/k)log (1/ak) and f'(to) = f(t1) =
f(t2) =0.

Proof First, we have f(0) =a+b > 0 and f'(t) = ake*® — 1. Note that

1 1 1
—log—>b0+->0

fo= 728 1 k

from the assumption. We find f’(to) = ake¥® —1 =0 and

1 1
f(to) = aef™ +b—ty =0+ ElogaJrE(longrl) <0,

which completes the proof. 0O

Proof of Theorem 2 Note that e* € L'(Q) for u € H}(Q) by Proposition 6. Hence the
Lyapunov function Ly(u) defined in (6) is well-defined for u € H}(Q). Since

d
) =~ u@)l; <0

holds, Ly (u) is the Lyapunov function for (1) and we have

La(u) = Lx(uo) — / lue(3)I1% ds < Ly(uo),

which yields

1 1
f||Vqu §)\/ e“dx—)\/ udm—i—fHuOHip —1—)\/ (ug — e") dux.
2 Q Q 2 0 Q
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Since

2
1 1 1
A/eudx:c A X /e“dngCQ )\2+(/e“dx>
Q M Crm Ja 2 ™M 207, \Ja

holds by the Young inequality, we have

1 2 1 1 o\ 1, o
SIValE < 5ChN+ g ([ evde) avTTlull, + 5 ol

1 1 1 N\ AW 1,
< 3Ok + oo (G Ivuls) + 2R v+ 5 ol

owing to expx > z for € R, the Trudinger-Moser inequality (Proposition 6) and the
Poincaré inequality (8). Again the Young inequality yields

M9 V2A/19] 19| | 1 9
(10) N IVul|, = BV f||V Hz— +1HVUH27
which implies that
1 1 1 1 |Q|
3 IVull; < §C72’M>‘2 + 5 exp <87r ||Vu||§> Z ||V ull + ||U0||§101
and that
2 1 2 219 2
Jully < 2exp (-l ) +2 (G + 20 ) 22+ 2ol

Hence for f(t) = ae** +b—t with

a=2, b:2<

then we have f(||uHiI%) >0 for all t > 0. Then the assumption

219

1
2
))\2+2|UOHH6 and k=,

1 1
b+Eloga< —E(logk—i—l)

in Lemma 6 is satisfied. In fact

( 219

holds by (7). We can apply Lemma 6 to obtain ||u||?{é <t or ||UH§{5 > t5. Now that we
have

) A 42 Huo||§{3 +8mlog2 < 8w (log8r — 1)

||u0||i13 < 4r (logdr — 1) < 8w logdm =t

along with (7), we find
(11) ||u||§15 <t <ty =28mlogdm

so long as the local solution exists. Hence we have a global solution in H}(Q). Next, we
define X* as the domain of B for a > 0 with graph norm ||u|| y. = ||B%ul|, for u € X,
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Then we derive the estimate in X/2+¢ = H1¥2¢(Q) for ¢ € (0,1/2) by the smoothing effect
of the heat equation. In fact, we have for t > 1

[ull x1/24
- Jee
2
t
< HBaethB%uOH +)\/ HBé+E€73(t78)(6u<S)71)“ ds
2 0 2
t
< Clt_fe_Czt ||u0||H§ + )\03/ (t — S)*(%Jre) e~ Calt—s) Heu . 1”2 ds
0
t 1
< CiVio+ACy / (t = 5)" 3 0 (e 1 1)l ) ds
0
t 1 1 1 1
< cu/t’oﬂcg/ (t—s5) (379 g=Calt=) {c%M exp (8 ||Vu||§> + |Qé} ds
0 i

AC t 1
< Cl\/%+ 3 {\/CTMeXp<8(:r>+ Q|}F(6>

i 2

by (11), where I'(p) is a gamma function defined by

“+ o0
I'(p) = / e TPty
0

for p > 0 and henceforth in this proof we will denote by C; a positive constant which
depends only on  and e, where i € N. Since we have H'2¢(Q) ¢ C(Q) with the Sobolev
embedding constant Cy > 0, we find

[ull oo < Ca|lull < Cs

x3+e

for t > 1. Hence the estimate similar to (9) is given as
2 — 1\ Cs)(t— 2
u(e, )| < €720 =22 E)ED u( 1)170 =0

for A\ < A\; = p'/expCs as t — +oc. O

Proof of Theorem 3 First, we note that pu! = 2.

function yields

In the same manner, Lyapunov

IN

1 5 e 1 5
= [IVall; Al dr + X1y ully + 5 [luol
2 0 2 0

Csllullyn | A L2
< 2ty 2 g, 4 gl

2

Cslully 1 2 A
S )\6 Hg + 1 HVU||2 + ?

1
+ 5 lluollzy
owing to H'(0,1) C C([0,1]) with the Sobolev embedding constant Cs > 0, (8) and (10).
Since we have

1
Cs llul 75 = V2¢Cs x < eCE+ o Nully

1
Ve ||U||H3
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we find
SIVu < xerCEomp (ully ) + 3 19l + 25 + 4 ol
= VB x Lo (il ) + IV + 25+ Sl
< w0t Lo (o lully ) + IVl + 25 + 3 oy

again by the Young inequality and

exp (52 Tl ) +4 (%5 4 25 ) 224 2 el = ulfy = 0
which completes the proof by applying Lemma 6 for

_ _ 2eC% 1 2 2 1
a=1, b4<e S+7T2))\ +2||u0||Hé and I<:72—e.

|

Proof of Proposition 4. Since the embedding X/2t¢ ¢ H}(2) is compact, the orbit
Ue>1 {u(-, )} is relatively compact in Hg(€2). Hence the omega limit set w(ug) is invariant,
non-empty, compact and connected in H{(Q2) by Theorem 5.1.8 in [7]. Again by Corollary
7.2.2 in [7] and the existence of the Lyapunov function, we have w(ug) C C. Moreover, thanks
to the regularity of nonlinear term (e* — 1) of (1), w(up) is a single point by Theorems 1.2
in [5] or 11.4.3 in [7].

O

Remark 2 In the proposition, we impose the same hypotheses as Theorems 2 or 3, which
1s not needed. If the global soluiton exists, then the conclusion is true by Theorem 2.1 in

[4].

Acknowledgement. The author would like to express his deepest gratitude to an anony-
mous referee for careful reading of the manuscript.
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