Mixed Schwarz Inequalities
via the Matrix Geometric Mean

Masayuki Fujimoto∗ and Yuki Seo**

Received June 18, 2018 ; revised September 8, 2018

Abstract. In this paper, by using the Cauchy-Schwarz inequality for matrices via
the matrix geometric mean due to J.I. Fujii, we show the following matrix version of a
mixed Schwarz inequality for any square matrices: Let A be an n-square matrix. For
any n-square matrices X, Y

$$|Y^*AX| \leq X^*|A|^{2\alpha}X \oplus U^*Y^*|A|^\alpha YU$$

holds for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$, where U is a unitary matrix in a polar
decomposition of $Y^*AX = U|Y^*AX|$. As applications, we show matrix Parseval’s
equation, Lin’s type extensions for a weighted version of a mixed Schwarz inequality,
and a weighted version of the Wielandt inequality for matrices.

Key words and phrases. weighted mixed Schwarz inequality, matrix geometric mean, Lin’s type exten-
sion, Wielandt inequality.