In this paper, we shall show the following: If $A_1^{\delta} \ge A_2^{\delta}$ for some $\delta>0$ and $\log A_2 \ge \log B$, then for each $\alpha$ such that $0 \le \alpha \le \delta$, \[ (B^{\frac{r}{2}} A_1^t B^{\frac{r}{2}})^{\frac{\alpha+r}{t+r}} \ge (B^{\frac{r}{2}} A_2^p B^{\frac{r}{2}})^{\frac{\alpha+r}{p+r}} \] holds for all $p$, $t$ and $r$ such that $\delta \ge p \ge \frac{\alpha}{2}$, $t \ge \max\{\alpha, p\}$ and $r \ge 0$. And also we shall discuss a relation between $A_1^{\alpha} \ge A_2^{\alpha}$ and $(A_2^{\frac{-p}{2}} A_1^t A_2^{\frac{-p}{2}})^{\frac{p-\beta}{t-p}} \ge A_2^{p-\beta}$ for $0 \le \beta \le p